A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W  

simulation

Paper Title Other Keywords Page
MOOAAB02 Experimental Results with the SPARC Emittance-meter emittance, laser, cathode, electron 80
 
  • M. Ferrario
  • D. Alesini, M. Bellaveglia, S. Bertolucci, R. Boni, M. Boscolo, M. Castellano, A. Clozza, L. Cultrera, G. Di Pirro, A. Drago, A. Esposito, D. Filippetto, V. Fusco, A. Gallo, G. Gatti, A. Ghigo, M. Incurvati, C. Ligi, M. Migliorati, A. Mostacci, E. Pace, L. Palumbo, L. Pellegrino, R. Ricci, C. Sanelli, M. Serio, F. Sgamma, B. Spataro, F. Tazzioli, S. Tomassini, C. Vaccarezza, M. Vescovi, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Bacci, S. Cialdi, A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  • L. Catani, E. Chiadroni, A. Cianchi
    INFN-Roma II, Roma
  • A. M. Cook, M. P. Dunning, P. Frigola, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • L. Giannessi, M. Quattromini, C. Ronsivalle
    ENEA C. R. Frascati, Frascati (Roma)
  • P. Musumeci, M. Petrarca
    INFN-Roma, Roma
  The SPARC project foresees the realization of a high brightness photo-injector to produce a 150-200 MeV electron beam to drive a SASE-FEL in the visible light. As a first stage of the commissioning a complete characterization of the photoinjector has been done with a detailed study of the emittance compensation process downstream the gun-solenoid system. For this purpose a novel beam diagnostic device, called emittance meter, has been developed and used at SPARC. This device has allowed to measure the evolution of beam sizes, energy spread and rms transverse emittances at different location along the beamline, in the region where space-charge effects dominate the electron dynamics and the emittance compensation process takes place. In this paper we report our commissioning experience and the results obtained. In particular a comparison between the performances of a Gaussian laser pulse versus a Flat Top laser pulse will be discussed. We report also the first experimental observation of the double emittance minima effect on which is based the optimised matching with the SPARC linac.  
slides icon Slides  
 
MOZBAB02 Short Wavelength SASE FEL: Experiment vs. Theory electron, radiation, undulator, resonance 94
 
  • J. Rossbach
  Since 2005, the Free-Electron Laser FLASH at DESY delivers radiation pulses with unprecedented parameters to scientific users. Pulses in the 10 femtosecond range are produced at record wavelengths as short as 13 nanometers. Operating in the FEL saturation regime at the Gigawatt level, even higher harmonics are generated that are powerful enough to be attractive for users. Radiation pulses and the properties of electron bunches have been characterized in quite some detail. Based on these results, the state of the art of detailed comparison between the theory and experiment of short wavelength SASE FELs will be presented.  
slides icon Slides  
 
MOZBAB03 Compact Long Wavelength Free-Electron Lasers electron, radiation, bunching, laser 99
 
  • H. L. Andrews
  • C. H. Boulware, C. A. Brau, J. D. Jarvis
    Vanderbilt University, Nashville, Tennessee
  The idea of using the Smith-Purcell effect to build a compact (table-top) long wavelength (0.1 -1 mm) free-electron laser is quite old. However, it is only recently that a complete theory for the operation of such devices has been proposed. The current state of the theoretical and experimental efforts to understand these devices will be summarized.  
slides icon Slides  
 
MOOBAB01 Time-Resolved Phase Space Tomography at Flash Using a Transverse Deflecting RF-Structure emittance, quadrupole, electron, radiation 104
 
  • M. Roehrs
  • C. Gerth, H. Schlarb
    DESY, Hamburg
  To initiate Self-Amplification of Spontaneous Emission (SASE) in single-pass Free Electron Lasers (FEL), electron bunches with high peak current and small slice emittance and energy spread are necessary. At FLASH at DESY, this is accomplished by longitudinal bunch compression in two magnetic chicanes. The compression process may be accompanied by distortions from coherent synchrotron radiation and space charge forces. Their effect on the bunch properties can be studied with a vertically deflecting rf-structure (LOLA), which allows to measure the longitudinal phase space distribution and horizontal slice emittance of single bunches. In combination with tomographic methods the horizontal phase space distribution of time slices can be reconstructed. In this paper measurement results for SASE operation are presented and compared to simulations and bunch properties infered from the radiation signal.  
slides icon Slides  
 
MOZBC01 National Nuclear Security and Other Applications of Rare Isotopes target, site, background, factory 124
 
  • M. N. Kreisler
  The proposed Rare Isotope Accelerator will produce large quantities of short-lived isotopes in beams suitable for experiments in low energy nuclear physics and nuclear astrophysics. The full suite of particles available offers the opportunity for advances in other scientific fields and applied technologies, including national security, medical technology, material science, and nuclear energy.  
slides icon Slides  
 
MOPAN008 A Single Bunch Selector for the Next Low β Continuous Wave Heavy Ion Beam heavy-ion, ion, insertion, linac 158
 
  • G. E. Le Dem
  • M. Di Giacomo
    GANIL, Caen
  Funding: Eurisol Project supported by the European Commission under contract N? 515768 RIDS

The Eurisol heavy ion post-accelerator and the Spiral2 deuton/ion MEBT should transport a continuous wave (cw) beam from respectively a 88.05 MHz RFQ (β respectively 0.036 and 0.04) to a drift-tube linac. A high frequency chopper is being studied to select only 1 bunch over N, 10 < N < 10000 as asked by the physicists. It requires pulses higher than 3 kV, rising in less than 7 ns at a repetition rate up to 8.8 MHz. These figures are at the border of what can be provided by the travelling wave fast choppers and the capacitive-type chopping technologies. We have reviewed the current fast and slow chopping structures and their associated pulse generator. Some preliminary RF simulations to adapt the present chopping devices to our requirements are presented. The main limitations of these technologies when applied to isolate bunches in ion cw accelerators are also shown. Our first studies and results to solve the arising problems are discussed.

 
 
MOPAN013 Wien Filter as a Spin Rotator at Low Energy electron, emittance, focusing, polarization 170
 
  • B. Steiner
  • W. Ackermann, W. F.O. Muller, T. Weiland
    TEMF, Darmstadt
  Funding: Work supported by DFG under contract SFB 634

The Wien filter is well known as a common energy analyzer and is also used more and more as a compact variant of a spin rotator at low energy for electrons. The Wien filter based on a homogenous magnetic and electric field that are perpendicular to each other and transverse to the direction of the electrons. The rotation of the spin vector is caused by the magnetic field. If the force equilibrium condition is fulfilled the beam should not be deflected at the Wien filter. Simulations show that in the fringe fields the electrons get a kick. Therefore full 3D simulations of the electromagnetic fields and beam dynamics simulations are studied in detail at the example of the Wien filter at the new polarized 100 keV electron injector at the S-DALINAC. The results of the simulations with CST Design Environment(TM), MAFIA and V-Code are presented.

 
 
MOPAN014 DESY and ILC EDMS: Engineering Data Management for Large Scientific Projects controls, feedback, linear-collider 173
 
  • L. Hagge
  • J. Buerger, J. A. Dammann, S. Eucker, A. Herz, J. Kreutzkamp, S. Panto, D. Szepielak, P. Tumidajewicz, N. Welle
    DESY, Hamburg
  DESY is using an Engineering Data Management System (EDMS) for supporting the XFEL and PETRA III projects. The system offers a wide range of applications for managing complexity: It enables 3D CAD design collaboration, supports the manufacturing and preparation processes of s.c. cavities and provides general project documentation. The system is now also adopted by the ILC for the collaborative 3D CAD design of cryomodules in the three regions and for change management of the baseline configuration document. The DESY EDMS is based on a commercial system which has been customized to the specific needs of large scientific projects, making it a unique system. In addition to general engineering requirements, the EDMS supports ad-hoc teamwork, provides mechanisms for process industrialization and offers powerful yet easy-to-use web frontends. The paper gives an overview of the EDMS capabilities and reports experience and benefits of using the EDMS.  
 
MOPAN015 Compact Waveguide Distribution with Asymmetric Shunt Tees for the European XFEL klystron, linac, coupling, controls 176
 
  • V. V. Katalev
  • S. Choroba
    DESY, Hamburg
  In the European X-ray FEL 32 superconducting cavities (4 cryomodules with 8 cavities per module) are connected to one 10 MW multibeam klystron through a waveguide distribution system. The XFEL tunnel has limited space for the waveguide system and therefore a new more compact waveguide distribution has been developed. The waveguide distribution is based on a binary cell which consists of two circulators connected to a shunt tee with integrated phase shifters. Four binary cells are combined by three asymmetric pretunable shunt tees. The asymmetric shunt tees allow to change the RF power for each pair of cavities and to reach the maximum cryomodule gradient. In this paper we will present the status of the waveguide distribution system and report on the development of the different new waveguide components.  
 
MOPAN028 Current Status of Virtual Accelerator at J-PARC 3 GeV Rapid Cycling Synchrotron controls, injection, acceleration, beam-losses 215
 
  • H. Harada
  • K. Furukawa
    KEK, Ibaraki
  • H. Hotchi, Y. Irie, F. Noda, H. Sako, H. Suzuki
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • K. Shigaki
    Hiroshima University, Higashi-Hiroshima
  We have developed the logical accelerator called "Virtual Accelerator" based on EPICS for 3 GeV Rapid Cycling Synchrotron (RCS) in J-PARC. The Virtual Accelerator has a mathematical model of the beam dynamics in order to simulate the behavior of the beam and enables the revolutionary commissioning and operation of an accelerator. Additionally, we have constructed the commissioning tool based on the Virtual Accelerator. We will present a current status of the Virtual Accelerator system and some commissioning tool.  
 
MOPAN029 XAL Online Model Enhancements for J-PARC Commissioning and Operation space-charge, emittance, dipole, controls 218
 
  • C. K. Allen
  • H. Ikeda
    Visual Information Center, Inc., Ibaraki-ken
  • M. Ikegami
    KEK, Ibaraki
  • T. Ohkawa
    JAEA, Ibaraki-ken
  • H. Sako, G. B. Shen
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • A. Ueno
    JAEA/LINAC, Ibaraki-ken
  Funding: Work supported by a KEK foreign visiting researcher grant

The XAL application development environment has been installed as a part of the control system for the Japan Proton Accelerator Research Center (J-PARC). XAL was initially developed at SNS and has been described at length in previous conference proceedings (e.g., Chu et. al. APAC07, Galambos et. al. PAC05, etc.). The fundamental tenet of XAL is to provide a consistent, high-level programming interface, along with a set of high-level application tools, all of which are independent of the underlying machine hardware. Control applications can be built that run at any accelerator site where XAL is installed. Of course each site typically has specific needs not supported by XAL and the framework was designed with this in mind: each institution can upgrade XAL which then is accessible to all users. We outline the upgrades and enhancements to the XAL online model necessary for accurate simulation of the J-PARC linac. For example, we have added permanent magnet quadrupoles and additional space charge capabilities such as off-centered and rotated beams and bending magnets with space charge. We present the physics models for the upgrades as well as the software architecture supporting them.

 
 
MOPAN032 Eddy Current Effects in an Opposite-field Septum septum, injection, power-supply, optics 227
 
  • K. Fan
  • Y. Arakaki, I. Sakai
    KEK, Ibaraki
  A large aperture, thin septum, high field opposite-field septum magnet has been developed for the injection of 50GeV main ring of J-PARC. Due to the eddy current generated in septum conductor, magnet yoke and magnet end plate, the field distribution was degraded. In the paper, eddy current effects on both transverse field and longitudinal field distribution are calculated. Correction methods and experiment results are introduced.  
 
MOPAN045 Longitudinal Particle Tracking of J-PARC RCS for Synchronization emittance, synchrotron, extraction, acceleration 260
 
  • M. Yamamoto
  • S. Anami, E. Ezura, K. Hara, C. Ohmori, A. Takagi, M. Toda, M. Yoshii
    KEK, Ibaraki
  • K. Hasegawa, M. Nomura, A. Schnase, F. Tamura
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  We have performed particle tracking simulation of J-PARC RCS to study the synchronization process. A frequency offset is added to the nominal RF frequency pattern to shift the center of the bunch, under the condition of the offset value should be 'adiabatic' with respect to the synchrotron motion. Since the synchrotron frequency of the J-PARC RCS is substantially changed during acceleration, the particle tracking simulation helps to decide upper limit of the frequency offset which can be employed.  
 
MOPAN057 LabVIEW and MATLAB-Based Virtual Control System for Virtual Prototyping of Cyclotron controls, cyclotron, ion, ion-source 281
 
  • Y. Q. Xiong
  • M. Fan, B. Qin, M. J. Wu, J. Yang
    HUST, Wuhan
  Funding: This work is supported by National Nature Science Foundation of China under Grant 10435030

A virtual control system designed to control and monitor the process of a cyclotron virtual prototyping is presented in this paper. Based on the feature of cyclotron, a distributed control structure is proposed according to the knowledge of software engineering. LabVIEW is employed to develop human machine interface(HMI), sequential control, safety interlock, and MATLAB is used to implement analysis and simulation. Dynamic data exchange (DDE) supported by Win32 Platform SDK is adopted to process data exchanging by a Server/Client mode. Any additional functions can be extended easily in this system in future.

 
 
MOPAN087 Processing Magnet Geometry Measurements for Better Control of LHC Aperture laser, dipole, controls, collider 362
 
  • E. Y. Wildner
  • N. Emelianenko
    CERN, Geneva
  The axis of the Large Hadron Collider superconducting magnets are measured from both ends. These two redundant measurements are combined to get a reliable measurement result. When the two measurements are put together, we observe a 'saw tooth' effect due to the fact that the two measurements are, in general, not identical. This is expected from the accuracy of the two measurements. However the effect observed is larger than expected, in the vertical plane. Effects of temperature gradients in the cold bore tube during measurements have been observed and we show that this effect is the most probable explanation for the observations of the large differences in the measurements between the two sides. This work proposes an algorithmic approach to filter this effect to improve measurement results. Magnets are positioned with an accuracy of 0.1 mm, and the error in positioning coming from measurement errors due to the temperature effects can be up to 0.3 mm. Our analysis shows that by applying this correction we can insure the best positioning of the magnets in the tunnel in the vertical plane. Analysis is done for the 14 m long main dipoles, for which the effect is most visible.  
 
MOPAN088 A Large Aperture Superconducting Dipole for Beta Beams to Minimize Heat Deposition in the Coil dipole, ion, optics, multipole 365
 
  • E. Y. Wildner
  • C. Vollinger
    CERN, Geneva
  The aim of "beta beams" in a decay ring is to produce highly energetic pure electron neutrino and anti-neutrino beams coming from b-decay of 18Ne10+ and 6He2+ ion beams. The decay products, having different magnetic rigidities than the ion beam, are deviated inside the dipole. The aperture and the length of the magnet have to be optimized to avoid that the decay products hit the coil. The decay products are intercepted by absorber blocks inside the beam pipe between the dipoles to protect the following dipole. A first design of a 6T arc dipole using a cosine theta layout of the coil with an aperture of 80 mm fulfils the optics requirements. Heat deposition in the coil has been calculated using different absorber materials to find a solution to efficiently protect the coil. Aspects of impedance minimization for the case of having the absorbers inside the beam pipe have also been addressed.  
 
MOPAN089 Numerical Simulation Applied to the Air Temperature Control and Improvement at the TLS booster, storage-ring, controls, synchrotron 368
 
  • J.-C. Chang
  • M. Ke
    NTUT, Taipei
  • Z.-D. Tsai
    NSRRC, Hsinchu
  This paper presents the numerical simulation studies applied on the air temperature control and improvement at the Taiwan Light Source (TLS). To improve air temperature control and study the flow circulation in air conditioned areas, we had applied the computational fluid dynamic (CFD) scheme to the experimental hall, the storage ring tunnel, a technical zone and the booster area, respectively. We review those studies by examining the governing equations, the model construction, mesh generation, boundary conditions, convergence criterion and validation of simulations.  
 
MOPAN105 Static VAr Power Factor Correction for the ISIS Main Magnet Power Supply controls, power-supply, synchrotron, proton 410
 
  • M. C. Hughes
  • J. W. Gray
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  ISIS sited at the Rutherford Appleton Laboratory (RAL) is the worlds most powerful pulsed neutron source. Intense pulses of neutrons are produced at 50 Hz when a heavy metal target is bombarded with a beam of high energy (800MeV) protons. Energy is imparted to the protons by accelerating them in a synchrotron, the magnets of which are connected in a configuration known as a White Circuit*. This White Circuit suffers from problems arising from drifting values of capacitance and inductance which affect the resonant frequency. This paper focuses on the design, simulation, and implementation of a solution utilising Static VAr technology to regulate the resonant frequency of the White Circuit.

* M. G. White et al., A 3-BeV High Intensity Proton Synchrotron, The Princeton-Pennsylvania Accelerator, CERN Symp.1956 Proc., p525.

 
 
MOPAN114 A Linear MOSFET Regulator for Improving Performance of the Booster Ramping Power Supplies at the APS power-supply, controls, booster, injection 434
 
  • G. Feng
  • B. Deriy, J. Wang
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under Contract No. DE-AC02-06CH11357.

Due to the circuit topology of ramping power supplies used in the APS Booster ring, they are unable to follow the linear current ramp to the desired accuracy of 0.1%. In addition, those supplies are also sensitive to AC line perturbation. To improve the performance, a linear regulator using paralleled MOSFET devices in series with the power supply is proposed. The control algorithm uses a real-time current feedback loop to force the MOSFETs to work in the linear operation mode. By using this linear MOSFET regulator, the MOSFETs' drain to source voltage, and hence the voltage imposed on magnets can be regulated very quickly. As a result, the regulation of the magnet current can be improved significantly. So far the simulation results show that with the linear regulator the current regulation can be improved to better than 0.1%. Because of the high bandwidth of the linear regulator, it can reduce the harmonic content in the output current as well as the noises due to the AC line disturbance. A sextupole power supply has been set up to verify the proposed topology. This paper discusses the circuit topology, the regulation algorithm, and the experiment results.

 
 
MOPAN116 An FPGA-Based Bunch-to-Bunch Feedback System at the Advanced Photon Source feedback, damping, kicker, storage-ring 440
 
  • C. Yao
  • N. P. Di Monte, W. E. Norum
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

The Advanced Photon Source storage ring has several bunch fill patterns for user operation. The hybrids fill pattern consists of a single bunch with a charge of 16 mA and a bunch train of 56 bunches. Both horizontal and vertical instabilities are observed. Currently chromaticity correction is the only method available to overcome the instability. Beamlife time and injection efficiency suffer because of high sextupole currents. A bunch-to-bunch feedback system is designed to overcome beam instability and reduce the required chromaticity correction. The feedback system is based on an FPGA DSP processor. The signal filtering algorithm is based on the time-domain-least-square method developed at SPring-8. We have just completed the integration of the system. We report the system design and some test results.

 
 
MOPAN117 Magnet System for Helical Muon Cooling Channels emittance, dipole, quadrupole, lattice 443
 
  • S. A. Kahn
  • M. Alsharo'a, R. P. Johnson
    Muons, Inc, Batavia
  • V. Kashikhin, V. S. Kashikhin, K. Yonehara, A. V. Zlobin
    Fermilab, Batavia, Illinois
  Funding: Supported in part by STTR Grant DE-FG02-04ER86191.

A helical cooling channel consisting of a pressurized gas absorber imbedded in a magnetic channel that provides superimposed solenoidal, helical dipole and helical quadrupole fields has shown considerable promise in providing six-dimensional cooling of muon beams. The analysis of this muon cooling technique with both analytic and simulation studies has shown significant reduction of muon phase space. A particular channel that has been simulated is divided into four segments each with progressively stronger fields and smaller apertures to reduce the equilibrium emittance so that more cooling can occur. The fields in the helical channel are sufficiently large that the conductor for segments 1 and 2 can be Nb3Sn and the conductor for segments 3 and 4 may need to be high temperature superconductor. This paper will describe the magnetic specifications for the channel and two conceptual designs on how to implement the magnetic channel.

 
 
MOPAN118 High Field HTS Solenoid for Muon Cooling collider, emittance, luminosity, magnet-design 446
 
  • S. A. Kahn
  • M. Alsharo'a, R. P. Johnson, M. Kuchnir
    Muons, Inc, Batavia
  • R. C. Gupta, R. B. Palmer, P. Wanderer, E. Willen
    BNL, Upton, Long Island, New York
  • D. J. Summers
    UMiss, University, Mississippi
  Funding: Work supported by U. S. Department of Energy under Contract DE-AC02-98CH1088 and SBIR Grant DE-FG02-04ER86191

The ability of high temperature superconducting (HTS) conductor to carry high currents at low temperatures makes feasible the development of very high field magnets for uses in accelerators and beam-lines. A specific application of a very high field solenoid is to provide a very small beta region for the final cooling stages for a muon collider. This paper will describe a conceptual design of a 50 Tesla solenoid based on Bi-2223 HTS tape, where the magnet will be operated at 4.2 K to take advantage of the high current carrying capacity at that temperature. A 25 Tesla solenoid has been run using a 5 Tesla Bi-2212 insert. The current carrying capacity of the BSCCO wire has been measured to be 266 Amps/mm2 at 4.2 K at the NHFML. This paper will describe the technical issues associated with building this 50 Tesla magnet. In particular it will address how to mitigate the large Lorentz stresses associated with the high field magnet and how to design the magnet to reduce the compressive end forces.

 
 
MOPAS012 Magnets for the MANX 6-D Muon Cooling Demonstration Experiment quadrupole, emittance, dipole, beam-cooling 461
 
  • V. S. Kashikhin
  • R. P. Johnson, S. A. Kahn, T. J. Roberts
    Muons, Inc, Batavia
  • V. Kashikhin, M. J. Lamm, G. Romanov, K. Yonehara, A. V. Zlobin
    Fermilab, Batavia, Illinois
  Funding: Supported in part by DOE STTR grant DE-FG02-04ER86191

MANX is a 6-dimensional muon ionization-cooling experiment that has been proposed to Fermilab to demonstrate the use of a Helical Cooling Channel (HCC) for future muon colliders and neutrino factories. The HCC for MANX has solenoidal, helical dipole, and helical quadrupole magnetic components which diminish as the beam loses energy as it slows down in a liquid helium absorber inside the magnets. Two superconducting magnet system designs are described which use quite different approaches to providing the needed fields. Additional magnets that provide emittance matching between the HCC and upstream and downstream spectrometers are also described as are the results of G4Beamline simulations of the beam cooling behaviour of the complete magnet and absorber system.

 
 
MOPAS024 Fast Extraction Kicker for the Accelerator Test Facility kicker, impedance, extraction, closed-orbit 485
 
  • S. De Santis
  • T. Naito, J. Urakawa
    KEK, Ibaraki
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC0-05CH11231.

We present the final results of a study for the design of a fast extraction kicker to be installed in the Accelerator Test Facility ring at KEK. The purpose of this project is to test the technologies to be used in the design of the extraction kickers for the International Linear Collider damping rings. The kicker's rise and fall times are important parameters in the final configuration of the rings, since they constrain the minimum distance between bunches and ultimately define a lower limit for the rings length. We investigated a stripline kicker composed of several 65-cm long sections, grouped in two different locations in the ATF damping ring. An analytical study of the kicker's parameter and extensive computer simulations using Microwave Studio* point out the ambitious requirements on the pulsers, in order to be able to satisfy the design specifications. We also investigated the use of a single kicker module, together with a close orbit bump near the extraction septum.

* http://www.cst.com

 
 
MOPAS041 Design of Superferric Magnet for the Cyclotron Gas Stopper Project at the NSCL cyclotron, ion, induction, superconducting-magnet 524
 
  • S. Chouhan
  • E. Barzi
    Fermilab, Batavia, Illinois
  • G. Bollen, C. Guenaut, D. Lawton, F. Marti, D. J. Morrissey, J. Ottarson, G. K. Pang, S. Schwarz, B. Sherrill, A. Zeller
    NSCL, East Lansing, Michigan
  Funding: Michigan State University, Cyclotron-1, East Lansing, MI-48824

We present the design of a superferric cyclotron gas stopper magnet that has been proposed for use at the NSCL/MSU to stop the radioactive ions produced by fragmentation at high energies (~140 MeV/u). The magnet is a gradient dipole with three sectors ( B~2.7 T at the center and 2 T at the pole-edge. The magnet outer diameter is 3.8 m, with a pole radius of 1.1 m and B*rho=1.7 T-m). The field shape is obtained by extensive profiles in the iron. The coil cross-section is 64 cm*cm and peak field on the conductor is about 1.6 T. The upper and lower coils are in separate cryostat and have warm electrical connections. We present the coil winding and protection schemes. The forces are large and the implication on the support structure is presented.

 
 
MOPAS045 Fiber-Based, Spatially and Temporally Shaped Picosecond UV Laser for Advanced RF Gun Applications laser, electron, gun, scattering 533
 
  • M. Shverdin
  • S. G. Anderson, C. P.J. Barty, M. Betts, D. J. Gibson, F. V. Hartemann, J. Hernandez, M. Johnson, I. Jovanovic, D. P. McNabb, M. J. Messerly, J. A. Pruet, C. Siders, A. M. Tremaine
    LLNL, Livermore, California
  Funding: This work was performed under auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7504-Eng-48.

The fiber-based, spatially and temporally shaped, picosecond UV laser system described here has been specifically designed for advanced rf gun applications, with a special emphasis on the production of high-brightness electron beams for free-electron lasers and Compton scattering light sources. The laser pulse can be shaped to a flat-top in both space and time with a duration of 10 ps FWHM and rise and fall times under 1 ps. The pulse energy is 100 micro-joules at 261.75 nm and the spot size diameter of the beam at the photocathode measures 2 mm. A fiber oscillator and amplifier system generates a chirped pump pulse at 1047 nm; stretching is achieved in a chirped fiber Bragg grating. A single multi-layer dielectric grating based compressor recompresses the input pulse to 250 fs FWHM and a two stage harmonic converter frequency quadruples the beam. A custom-designed diffractive optic reshapes the input pulse to a flat-top. Temporal shaping is achieved with a Michelson-based ultrafast pulse stacking device with nearly 100% throughput. The integration of the system, as well as preliminary electron beam measurements will be discussed.

 
 
MOPAS049 Ceramic-Supported Traveling-Wave Structures for SNS Fast Beam Chopper linac, coupling, storage-ring, extraction 545
 
  • S. S. Kurennoy
  The current structure for the fast 2.5-MeV beam chopper for the Spallation Neutron Source (SNS) project was originally developed* to provide rise and fall times around 1 ns. The structure is based on the meander-folded notched strip line with low-dielectric-constant supports and metal separators. Since then the requirements of the chopper rise-time has been significantly relaxed, up to 10 ns, as a result of beam dynamics simulations and to simplify the voltage pulse generators. In addition, initial runs with the beam showed that this structure was prone to damage when accidental beam spills occurred. We suggest alternative meander structures for the SNS chopper that employ high-dielectric-constant substrate (e.g., alumina). Time-domain simulations show their electromagnetic performance to be well within the requirements, while their resistance to beam spills and thermal properties are expected to be much better and fabrication significantly simpler.

* S. S. Kurennoy and J. F. Power, EPAC 2000 (Vienna, Austria, 2000), 336.

 
 
MOPAS061 LCLS RF Gun Feedback Control controls, gun, resonance, klystron 572
 
  • C. H. Rivetta
  • R. Akre, P. Cutino, J. C. Frisch, K. D. Kotturi
    SLAC, Menlo Park, California
  Funding: Work supported by Department of Energy (USA) under contract # DE-AC02-76SF00515

The LCLC RF gun requires a water cooling thermal system to tune the resonance frequency of the cavity to 2856.03MHz. The RF system operates in pulsed mode with bursts of 2.5usec at a repetition rate of 30-120Hz. The thermal system operates in combination with the low-level RF system to set the operation point of the cavity. The Low-Level RF system controls the magnitude and phase of the cavity voltage and define slow signals to the thermal system. The thermal system operates by pre-heating / pre-cooling the water and mixing both channels to achieve the optimal temperature to control the cavity resonant frequency. The tune control of the RF gun include two systems with different dynamics. The dynamics of the thermal system is slow while the RF system is fast. Additionally, different actuators in the system present limits that introduce non-linearities to be taking into account during the start up process . Combining these characteristics, a controller is designed for the resulting hybrid system that allows convergence in large for all the operation conditions and achieve the performance in the magnitude and phase of the cavity voltage required around the operation point.

 
 
MOPAS062 Analysis of the Longitudinal Low-order Mode Beam Dynamics in PEP-II Rings at High Current Beams klystron, damping, feedback, impedance 575
 
  • T. Mastorides
  • J. D. Fox, C. H. Rivetta, D. Teytelman, D. Van Winkle
    SLAC, Menlo Park, California
  Funding: Work supported by Department of Energy (USA) under contract # DE-AC02-76SF00515

PEP-II operations will increase the beam currents to 4A for LER and 2.2A for HER to achieve the final goal in luminosity. These magnitudes are challenging in part because they will push toward the limit the longitudinal low-order mode (LOM) beam stability due to beam loading. To analyze the behavior of both rings at high currents and understand the limits in the longitudinal feedback systems a simulation tool has been developed at SLAC. This tool is based on a reduced model of the longitudinal LOM dynamics of the beam interacting with the effective impedance presented by RF station. Simulations and measurements of the longitudinal beam behavior in both rings have been performed to understand the ultimate limit of the system. These studies have defined the impact of control loop parameters in the longitudinal beam dynamics, identified the poor performance of RF devices affecting the optimal performance of the RF stations and quantified the behavior of the longitudinal LOM beam dynamics. Results of sensitivity to parameter variations in the beam dynamics and limits in the maximum current that LER/HER can achieve based on the longitudinal beam stability are reported in this paper.

 
 
MOPAS069 Analysis of a Compact Circular TE 01-Rectangular TE 02 Waveguide Mode Converter coupling, scattering, linear-collider, collider 587
 
  • M. Yeddulla
  • S. G. Tantawi
    SLAC, Menlo Park, California
  An analysis method for a three section mode transformer that converts a TE 01 circular waveguide mode to a TE 02 rectangular waveguide mode will be presented. Experimental results for this taper were earlier published in*. The middle section is a cylinder with a wall radius defined by rw = a(1 + d cos(2Θ)), where a is the radius of the circular guide and d is a design parameter. This cylinder is connected on either side to a circular waveguide and a rectangular waveguide section respectively, through tapered waveguide sections. In this analysis we used a perturbation technique where the rectangular waveguide section's wall radius is treated as a Fourier series expansion with a, the fundamental radius and d the perturbation parameter. By applying the proper boundary conditions we optimize the taper dimensions to minimize conversion into spurious modes.

*S. G. Tantawi et al., Physical Review Special Topics – Accelerator and Beams. 8, 042002 (2005)

 
 
MOPAS075 RF-Thermal-Structural Analysis of a Waveguide Higher Order Mode Absorber vacuum, higher-order-mode, radio-frequency, storage-ring 605
 
  • G. Cheng
  • E. Daly, R. A. Rimmer, M. Stirbet, L. Vogel, H. Wang, K. Wilson
    Jefferson Lab, Newport News, Virginia
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

For an ongoing high current cryomodule project, a total of 5 higher order mode (HOM) absorbers are required per cavity. The load is designed to absorb RF heat induced by HOMs in a 748.5MHz cavity. Each load is targeted at a 4 kW dissipation capability. Embedded cooling channels are employed to remove the heat generated in ceramic tiles and by surface losses on the waveguide walls. A sequentially coupled RF-thermal-structural analysis was developed in ANSYS to optimize the HOM load design. Frequency dependent dielectric material properties measured from samples and RF power spectrum calculated by the beam-cavity interaction codes were considered. The coupled field analysis capability of ANSYS avoided mapping of results between separate RF and thermal/structural simulation codes. For verification purposes, RF results obtained from ANSYS were compared to those from MAFIA, HFSS, and Microwave Studio. Good agreement was reached and this confirms that multiple-field coupled analysis is a desirable choice in analysis of HOM loads. Similar analysis could be performed on other particle accelerator components where distributed RF heating and surface current induced losses are inevitable.

 
 
MOPAS078 Digital RF Control for Spallation Neutron Source Accumulator Ring controls, beam-loading, feedback, linac 611
 
  • H. Ma
  • M. S. Champion, M. T. Crofford, T. W. Hardek, K.-U. Kasemir, M. F. Piller, Y. Zhang
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

The proposed upgrade plan for RF control of the Spallation Neutron Source (SNS) accumulator ring requires that the new digital field control module (FCM) support both the conventional narrow-band feed forward control and a new beam-based feed forward control. Both are necessary for compensating the heavy beam loading in SNS ring. The ring FCM also has the integrated control and monitoring features for the cavity bias, cavity resonance, and tetrode grid boost. A user-friendly Epics GUI for all these FCM functionalities is also a part of the requirement. The ring FCM under development is being implemented on the hardware of the proven FCM of SNS Linac. Both the controller architecture and the design code of the digital hardware for the Linac system will be largely reused in the ring system.

 
 
MOPAS080 A Digital Ring Transverse Feedback Low-Level RF Control System feedback, pick-up, damping, controls 617
 
  • A. K. Polisetti
  • S. Assadi, C. Deibele, J. C. Patterson
    ORNL, Oak Ridge, Tennessee
  • R. C. McCrady
    LANL, Los Alamos, New Mexico
  • M. J. Schulte
    UW-Madison, Madison, Wisconsin
  A digital wide-band system for damping ring instabilities in an accelerator is presented. With increased beam intensity, the losses of an accumulator ring tend to increase due to the onset of various instabilities in the beam. An analog feedback damper system has been implemented at Los Alamos National Laboratory. This analog system, while functional, has certain limitations and a lack of programmability, which can be overcome by a digital solution. A digital feedback damper system is being designed through a collaborative effort by researchers at Oakridge National Laboratory, Los Alamos National Laboratory, and the University of Wisconsin. This system, which includes analog-to-digital converters, field programmable gate arrays and digital-to-analog converters can equalize errors inherent to analog systems, such as dispersion due to amplifiers/cables, gain mismatches, and timing adjustments. The digital system features programmable gains and delays, and programmable equalizers that are implemented using digital FIR and comb filters. The flexibility of the digital system allows it to be customized to implement different configurations and extended to address other diagnostic problems.  
 
MOPAS084 SNS Ring Extraction Septum Magnet and its Interference with Adjacent Quadrupole extraction, shielding, septum, quadrupole 626
 
  • J.-G. Wang
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725.

3D computing simulations have been performed to study the magnetic field distribution of the SNS ring extraction Lambertson septum magnet. The magnetic field for extracted beams is fully characterized in all the aspects. The stray field on the circulating beam line and the effect of a shielding box up-stream and a shielding cap down-stream is investigated. In addition, the magnetic interference between the Lambertson and an adjacent quadrupole has been studied. The simulations have provided valuable information for the SNS ring commissioning and operation. This paper reports our simulation techniques and the major results.

 
 
MOPAS086 FPGA Based ILC Cavity Simulator controls, superconducting-RF, resonance, linear-collider 632
 
  • A. Grassellino
  • J. K. Keung, F. M. Newcomer
    University of Pennsylvania, Philadelphia, Pennsylvania
  • N. Lockyer
    TRIUMF, Vancouver
  In the proposed International Linear Collider (ILC) design, the Low Level RF (LLRF) control system plays the important role of maintaining the proper phase and amplitude information for the RF field inside the superconducting cavities. The high operational overhead of the high power cryogenic hardware and the risk of its damage during the control hardware tests make it necessary to have a LLRF test bed independent of the real hardware. Thus, we have developed a Real Time Simulator (RTS), an FPGA based ILC RF unit simulator, which will be useful for the testing and commissioning of the Low Level RF control system, including the exception handling capabilities, and possibly as a noiseless behavioral reference for each cryomodule during operation. The RTS has been implemented on a Lyrtech VHS-ADAC board. It includes effects such as Lorentz Detuning and presently an overall latency lower than 200 nanoseconds has been achieved. The status of the RTS and the conclusions derived from the simulations will be reported, along with LLRF interface tests results.  
 
MOPAS087 Ferroelectric Based Technologies for Accelerator Component Applications controls, coupling, plasma 634
 
  • A. Kanareykin
  • A. Dedyk
    Eltech University, St. Petersburg
  • E. Nenasheva
    Ceramics Ltd., St. Petersburg
  • V. P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  Funding: This work is supported by the US Department of Energy

We present recent results on development of a BST(M) ferroelectric composition synthesized for use in advanced technology components for X-band and Ka-band RF systems in high gradient accelerators and offer significant advantages for high power RF manipulation in the 300-1'000 MHz frequency range as well. These low loss ferroelectric materials can be used as key elements of both tuning and phase shifting components. We have identified BST ferroelectric-oxide compounds as suitable materials for a fast electrically-controlled 700 MHz, 50 kW tuner for ERL (BNL) and for high-power fast RF phase shifters to be used for SNS vector modulation applications. We have also developed large diameter (11 cm) BST(M)-based ferroelectric rings planned to be used at high average power (10 kW range) for L-band phase-shifters intended for the ILC. This phase shifter will allow coupling adjustment and control of the power consumption during the process of SC cavity filling.

 
 
MOPAS096 Simulations of the AGS MMPS Storing Energy in Capacitor Banks controls, power-supply, booster, pulsed-power 652
 
  • I. Marneris
  • S. V. Badea, R. Bonati, T. Roser, J. Sandberg
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the US Department of Energy

The Brookhaven AGS Main Magnet Power Supply (MMPS) is a thyristor control supply rated at 5500 Amps, ±9000 Volts. The peak magnet power is 50 MWatts. The power supply is fed from a motor/generator manufactured by Siemens. The generator is 3 phase 7500 Volts rated at 50 MVA. The peak power requirements come from the stored energy in the rotor of the motor/generator. The motor generator is about 45 years old and Siemens is not manufacturing similar machines in the future. We are therefore investigating different ways of storing energy for future AGS MMPS operation. This paper will present simulations of a power supply where energy is stored in capacitor banks. Two dc to dc converters will be presented. The switching elements would be IGCT's made by ABB. The simulation program used is called PSIM Version 6.1. The control system of the power supply will also be presented. The average power from the Long Island Power Authority (LIPA) into the power supply will be kept constant during the pulsing of the magnets at ±50 MW. The reactive power will also be kept constant below 1.5 MVAR. Waveforms will be presented.

 
 
MOPAS104 Large Scale Distributed Parameter Model of Main Magnet System and Frequency Decomposition Analysis coupling, dipole, power-supply, damping 670
 
  • W. Zhang
  • I. Marneris, J. Sandberg
    BNL, Upton, Long Island, New York
  Funding: Work performed under auspices of U. S. Department of Energy.

Large accelerator main magnet system consists of hundreds, even thousands, of dipole magnets. They are linked together under selected configurations to provide highly uniform dipole fields when powered. Distributed capacitance, insulation resistance, coil resistance, magnet inductance, and coupling inductance of upper and lower pancakes make each magnet a complex network. When all dipole magnets are chained together in a circle, they become a coupled pair of very high order complex ladder networks. In this study, a network of more than thousand inductive, capacitive or resistive elements are used to model an actual system. The circuit is a large scale network. Its equivalent polynomial form has several hundred degrees. Analysis of this high order circuit and simulation of the response of any or all components is often computationally infeasible. We present methods to use frequency decomposition approach to effectively simulate and analyze magnet configuration and power supply topologies.

 
 
MOPAS105 Analysis and Simulation of Main Magnet Transmission Line Effect dipole, coupling, impedance, power-supply 673
 
  • W. Zhang
  • I. Marneris, J. Sandberg
    BNL, Upton, Long Island, New York
  Funding: Wor performed under auspices of U. S. Departemnt of Energy.

A main magnet chain forms a pair of transmission lines. Pulse-reflection-caused voltage and current differentiation throughout the magnet chain can have adverse effect on main magnet field quality. This effect is associated with magnet system configuration, coupling efficiency, and parasitic parameters. A better understanding of this phenomenon will help us in new design and existing system upgrade. In this paper, we exam the transmission line effect due to different input functions as well as configuration, coupling, and other parameters.

 
 
TUOBKI01 Experimental Characterization of the Spallation Neutron Source Accumulator Ring Collimation System collimation, beam-losses, quadrupole, emittance 703
 
  • S. M. Cousineau
  • S. Assadi, J. A. Holmes, M. A. Plum
    ORNL, Oak Ridge, Tennessee
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725.

The SNS ring and associated transport lines, commissioned in January 2006, are designed to accumulate and deliver up to 1.5·1014, 1 GeV protons at 60 Hz to a liquid mercury target for neutron production. In order to control activation and to allow for routine hands-on maintenance of accelerator components, beam loss in most of the ring must remain below 1 W/m . For the full 1.4 MW beam, this translates to a fractional beam loss limit of 0.01%. Accomplishing this loss limit at full beam power will require successful utilization of the ring's two-stage betatron collimation system. In this paper we present the results of initial collimation experiments. We characterize the collimation-induced beam-loss pattern and compare our results with simulations. In addition, we discuss other existing beam-loss-related challenges in the ring.

 
slides icon Slides  
 
TUOBKI02 Low Emittance Muon Colliders emittance, collider, factory, RF-structure 706
 
  • R. P. Johnson
  • Y. S. Derbenev
    Jefferson Lab, Newport News, Virginia
  Funding: The work described here was supported in part by DOE SBIR/STTR grants DE-FG02-03ER83722, 04ER86191, 04ER84016, 05ER86252, 05ER86253 and 06ER86282.

Advances in ionization cooling, phase space manipulations, and technologies to achieve high brightness muon beams are stimulating designs of high-luminosity energy-frontier muon colliders. Simulations of Helical Cooling Channels (HCC) show impressive emittance reductions, new ideas on reverse emittance exchange and muon bunch coalescing are being developed, and high-field superconductors show great promise to improve the effectiveness of ionization cooling. Experiments to study RF cavities pressurized with hydrogen gas in strong magnetic fields have had encouraging results. A 6-dimensional HCC demonstration experiment is being designed and a 1.5 TeV muon collider is being studied at Fermilab. Two new synergies are that very cool muon beams can be accelerated in ILC RF structures and that this capability can be used both for muon colliders and for neutrino factories. These advances are discussed in the context of muon colliders with small transverse emittances and with fewer muons to ease requirements on site boundary radiation, detector backgrounds, and muon production.

 
slides icon Slides  
 
TUODKI03 Multi-batch Slip Stacking in the Main Injector at Fermilab injection, kicker, beam-losses, booster 742
 
  • K. Seiya
  • T. Berenc, B. Chase, J. E. Dey, P. W. Joireman, I. Kourbanis, J. Reid
    Fermilab, Batavia, Illinois
  The Main Injector (MI) is going to use slip stacking scheme for the NuMI neutrino experiment for effectively increasing proton intensity to the NuMI target by about a factor two in a MI cycle. The MI is going to accept 11 pluses at injection energy from the Booster and accelerate them to 120 GeV. By using Slip stacking, two of them are merged into one and sent to Anti-proton production and 9 of them, one single and four doubled density pulses, are going to be sent to the Numi beam line. We have been doing low intensity beam studies with 11 pulses injection and accelerated them with the total intensity of 3·1012 ppp to 120GeV. We discuss beam loss and technical issues on multi-batch slip stacking.  
slides icon Slides  
 
TUXAB01 Absolute Measurement of Electron Cloud Density electron, ion, background, quadrupole 754
 
  • M. Kireeff Covo
  • D. Baca, F. M. Bieniosek, B. G. Logan, P. A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • R. H. Cohen, A. Friedman, A. W. Molvik
    LLNL, Livermore, California
  • J. L. Vujic
    UCB, Berkeley, California
  Funding: This work was supported by the Director, Office of Science, Office of Fusion Energy Sciences, of the U. S. Department of Energy, LLNL and LBNL, under contracts No. W-7405-Eng-48 and DE-AC02-05CH11231.

Beam interaction with background gas and walls produces ubiquitous clouds of stray electrons that frequently limit the performance of particle accelerator and storage rings. Counterintuitively we obtained the electron cloud accumulation by measuring the expelled ions that are originated from the beam-background gas interaction, rather than by measuring electrons that reach the walls. The kinetic ion energy measured with a retarding field analyzer (RFA) maps the depressed beam space-charge potential and provides the dynamic electron cloud density. Clearing electrode current measurements give the static electron cloud background that complements and corroborates with the RFA measurements, providing an absolute measurement of electron cloud density during a 5 us duration beam pulse in a drift region of the magnetic transport section of the High-Current Experiment (HCX) at LBNL.*

* M. Kireeff Covo, A. W. Molvik, A. Friedman, J.-L. Vay, P. A. Seidl, G. Logan, D. Baca, and J. L. Vujic, Phys. Rev. Lett. 97, 054801 (2006).

 
slides icon Slides  
 
TUXAB03 Self-consistent 3D Modeling of Electron Cloud Dynamics and Beam Response electron, lattice, proton, cyclotron 764
 
  • M. A. Furman
  • C. M. Celata, M. Kireeff Covo, K. G. Sonnad, J.-L. Vay, M. Venturini
    LBNL, Berkeley, California
  • R. H. Cohen, A. Friedman, D. P. Grote, A. W. Molvik
    LLNL, Livermore, California
  • P. Stoltz
    Tech-X, Boulder, Colorado
  Funding: Work supported by the U. S. DOE under Contracts DE-AC02-05CH11231 and W-7405-Eng-48, and by the US-LHC Accelerator Research Project (LARP).

We present recent advances in the modeling of beam-electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation.

 
slides icon Slides  
 
TUOAAB01 Self-Consistent Simulations of Multipacting in Superconducting Radio Frequencies electron, vacuum, plasma, radio-frequency 769
 
  • C. Nieter
  • P. J. Mullowney, S. Ovtchinnikov, D. S. Smithe, P. Stoltz
    Tech-X, Boulder, Colorado
  Multipacting continues to be an important issue in Superconducting Radio Frequency (SRF) cavities, particularly near waveguide couplers. Most modern simulations of multipacting are not self-consistent, using the fields from a purely electromagnetic simulation to drive the motion of multipacting electrons. This approach works well for the onset on multipacting but as the electron density increases in the cavity it can have an effect on the cavity mode. Recently VORPAL* has demonstrated its ability to mode the electrodynamics of SRF cavities using finite difference time domain (FDTD) algorithms coupled with the Dey-Mittra** method for modeling conformal boundaries. The FDTD approach allows us to easily incorporate multipacting electrons as PIC particles in the simulations. To allow multipacting simulations to be done with EM-PIC we have been developing particle boundaries for the cut-cells. Recently we have added particle removal boundaries at the particle sinks which will correct the unphysical build up of image charge at the boundaries. Work has begun on incorporating secondary electron emission into these boundaries so VORPAL can model multipacting trajectories self-consistently.

* C. Nieter, J. R. Cary, J. Comp. Phys. 196 (2004) 448.** S. Dey, R. Mittra, IEEE Microwave and Guided Wave Letters 7 (1997) 273.

 
slides icon Slides  
 
TUOAAB02 Measurement and Simulation of Space-Charge Dependent Tune Separation in FNAL Booster coupling, space-charge, booster, quadrupole 772
 
  • D. O. McCarron
  • J. F. Amundson, W. Pellico, P. Spentzouris, R. E. Tomlin
    Fermilab, Batavia, Illinois
  • L. K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
  In recent years, a number of space-charge studies have been performed in the FNAL Booster. The Booster is the first circular accelerator in the Fermilab chain of accelerators, with an injection energy of 400 MeV. The combination of this relatively low injection energy and improving beam intensity for Booster's high intensity applications necessitates a study of space charge dynamics. Measurement and simulation of space charge coupling in the Booster will be presented. The coupling measurement was performed using a standard technique, albeit repeated for different injected beam intensities. The initial transverse tune separation was minimized (Qx=Qy=6.7), followed by a systematic skew quadrupole strength variation. Transverse beam oscillation frequencies were recorded while exciting the beam. These frequencies were recorded for a range of 1.0·1012 to 3.5·1012 particles. A linear increase in the measured tune separation with beam intensity was observed. For comparison, beam coupling was also simulated with the space-charge code Synergia. This code has successfully modeled the space-charge tune shift in the Booster*, and compares favorably to other space charge codes and analytic results.

* Synergia: A 3D Accelerator Modelling Tool with 3D Space Charge. Journal of Computational Physics, Volume 211, Issue 1 , 1 January 2006, Pages 229-248.

 
slides icon Slides  
 
TUOBAB01 Beam Dynamics of the 250 MeV Injector Test Facility emittance, space-charge, electron, linac 785
 
  • A. Adelmann
  • R. J. Bakker, C. Kraus, K. L. Li, B. S.C. Oswald, M. Pedrozzi, J.-Y. Raguin, T. Schietinger, F. Stulle, A. F. Wrulich
    PSI, Villigen
  • J. Qiang
    LBNL, Berkeley, California
  The PSI-FEL/LEG project aims for the development of a pulsed high-brightness, high-current electron source which is one of the cornerstones for a cost-efficient high-power laser-like X-ray light-source. Creating an ultra low emittance beam is a great challenge, transporting i.e. accelerating and compressing is equally difficult. We present a 3D start-to-end simulation of our planned 250 MeV injector test facility. The injector consists of a 2 cell standing wave l-band cavity followed by a ballistic bunching section. The following L-band and S-band structures accelerate the electron beam up to the final energy of 250 MeV. An X-band RF structure prepares the beam for the following bunch compressor in which the target current of 350 ampere is reached. The target value of the slice emittance is 0.10 [mm mrad] therefore precise beam dynamics simulations are needed. For the 3D simulations we use IMPACT-T, a time domain parallel particle tracking code in which the self fields are treated using electrostatic approximation . We discuss various issues such as projected and slice emittance preservation and shade light on some of the differences between an envelope and the 3D model.  
slides icon Slides  
 
TUOBAB02 Experimental Characterization of the Transverse Phase Space of a 60-MeV Electron Beam through a Compressor Chicane electron, linac, synchrotron, synchrotron-radiation 788
 
  • F. Zhou
  • R. B. Agustsson, G. Andonian, D. B. Cline, A. Y. Murokh, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • A. C. Kabel
    SLAC, Menlo Park, California
  • V. Yakimenko
    BNL, Upton, Long Island, New York
  Funding: U. S. DOE of Sciences

Space charge and coherent synchrotron radiation may deteriorate electron beam quality when the beam passes through a magnetic bunch compressor. This paper presents the transverse phase-space tomographic measurements for a compressed beam at 60 MeV, around which energy the first stage of magnetic bunch compression takes place in most advanced linacs. Transverse phase-space bifurcation of a compressed beam is observed at that energy, but the degree of the space charge-induced bifurcation is appreciably lower than the one observed at 12 MeV. The Trafic4 simulation confirms the observation.

The paper was published at PRST-AB, November 2006

 
slides icon Slides  
 
TUOCAB01 A New Code for Orbit Response Matrix Analysis lattice, quadrupole, booster, closed-orbit 804
 
  • L. Yang
  • X. Huang
    SLAC, Menlo Park, California
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
  • B. Podobedov
    BNL, Upton, Long Island, New York
  Funding: NSF PHY-0552389, DOE DE-FG02-92ER40747

The Orbit Response Matrix (ORM) has been successfully used extensively in accelerator modeling. However, in many cases, the existing codes can not find a correct model. We develop a new code that solve the convergence and coupling problems. We test our code by carrying out systematic study of accelerator models. Effects measurement errors and the completeness of information will be addressed in this study. Possible inclusion of phase information will be discussed.

 
slides icon Slides  
 
TUOCAB02 Measurements of Compression and Emittance Growth after the First LCLS Bunch Compressor Chicane emittance, dipole, quadrupole, electron 807
 
  • P. Emma
  • K. L.F. Bane, Y. T. Ding, J. C. Frisch, Z. Huang, H. Loos, G. V. Stupakov, J. Wu
    SLAC, Menlo Park, California
  • E. Prat
    DESY, Hamburg
  • F. Sannibale, K. G. Sonnad, M. S. Zolotorev
    LBNL, Berkeley, California
  Funding: U. S. Depertment of Energy contract #DE-AC02-76SF00515.

The Linac Coherent Light Source (LCLS) is a SASE x-ray free-electron laser project presently under construction at SLAC. The injector section from RF photocathode gun through the first bunch compressor chicane was installed during the Fall of 2006. The first bunch compressor chicane is located at 250 MeV and nominally compresses a 1-nC electron bunch from an rms length of about 1 mm to 0.2 mm. The degree of compression is highly adjustable using RF phasing and also chicane magnetic field variations. Transverse phase space and bunch length diagnostics are located immediately after the chicane. We present measurements and simulations of the longitudinal and transverse phase space after the chicane in various beam conditions, including extreme compression where coherent radiation effects are expected to be striking.

 
slides icon Slides  
 
TUZBAB02 The Extreme Value Theory to Estimate Beam Losses in High Power Linacs linac, beam-losses, quadrupole, beam-transport 815
 
  • R. Duperrier
  • D. Uriot
    CEA, Gif-sur-Yvette
  The influence of random perturbations of high intensity accelerator elements on the beam losses is considered. This influence is analyzed with the help of the Extreme Value Theory (EVT) to allow loss estimates for a very low fraction of the beam. Many fields of modern science and engineering have to deal with events which are rare but have significant consequences. EVT is considered to provide the basis for the statistical modeling of such extremes events (extreme variations of financial market for insurance companies or extreme wind speed for electric companies). To illustrate the application of this theory to beam losses estimates, the SPIRAL2 driver is used. This 5 mA deuteron accelerator is simulated from the output of the source to the target with high resolution PIC modelisations (up to 1.3 million macro-particles) using realistic external fields.  
slides icon Slides  
 
TUZBC01 Towards Simulation of Electromagnetics and Beam Physics at the Petascale gun, dipole, damping, coupling 889
 
  • Z. Li
  • V. Akcelik, A. E. Candel, L. Ge, A. C. Kabel, K. Ko, L. Lee, C.-K. Ng, E. E. Prudencio, G. L. Schussman, R. Uplenchwar, L. Xiao
    SLAC, Menlo Park, California
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

Under the support of the U. S. DOE SciDAC program, SLAC has been developing a suite of 3D parallel finite-element codes aimed at high-accuracy, high-fidelity electromagnetic and beam physics simulations for the design and optimization of next-generation particle accelerators. Running on the latest supercomputers, these codes have made great strides in advancing the state of the art in applied math and computer science at the petascale that enable the integrated modeling of electromagnetics, self-consistent Particle-In-Cell (PIC) particle dynamics as well as thermal, mechanical, and multi-physics effects. This paper will present 3D results of trapped mode calculations in an ILC cryomodule and the modeling of the ILC Sheet Beam klystron, shape determination of superconducting RF (SCRF) cavities and multipacting studies of SCRF HOM couplers, as well as 2D and preliminary 3D PIC simulation results of the LCLS RF gun.

 
slides icon Slides  
 
TUZBC02 SciDAC Frameworks and Solvers for Multi-physics Beam Dynamics Simulations space-charge, collective-effects, optics, electron 894
 
  • J. F. Amundson
  • D. R. Dechow
    Tech-X, Boulder, Colorado
  • J. Qiang, R. D. Ryne
    LBNL, Berkeley, California
  • P. Spentzouris
    Fermilab, Batavia, Illinois
  The need for realistic accelerator simulations is greater than ever before due to the needs of design projects such as the ILC and optimization for existing machines. Sophisticated codes utilizing large-scale parallel computing have been developed to study collective beam effects such as space charge, electron cloud, beam-beam, etc. We will describe recent advances in the solvers for these effects and plans for enhancing them in the future. To date the codes have typically applied to a single collective effect and included just enough of the single-particle dynamics to support the collective effect at hand. We describe how we are developing a framework for realistic multi-physics simulations, i.e., simulations including the state-of-the-art calculations of all relevant physical processes.  
slides icon Slides  
 
TUODC01 Detailed Photoemission Modeling Using the 3D Finite-Element PIC Code MICHELLE cathode, emittance, laser, vacuum 904
 
  • J. J. Petillo
  • K. Jensen, B. Levush
    NRL, Washington, DC
  • J. N. P. Panagos
    SAIC, Burlington, Massachusetts
  Funding: We gratefully acknowledge funding by the Joint Technology Office and the Office of Naval Research.

Low emittance, high current density sources are required to achieve the small beam size needed for high frequency vacuum electronic devices and for high power free electron lasers (FELs). Emission models are of particular importance in the emittance-dominated regime, where emission non-uniformity and surface structure of the cathode can have an impact on beam characteristics. We have been developing comprehensive time-dependent photoemission models for the simulation codes that account for laser and cathode material and surface characteristics. MICHELLE* is NRL's finite-element self-consistent electrostatic time-domain code: it has the ability to import an RF field, and has unique capabilities for modeling the emission and the self fields, near the cathode. In particular, some instances of surface irregularities and emission non-uniformity (due to work function variation) leading to such effects as beam emittance and high frequency oscillations are possible to model due to the code's conformal meshing capabilities. We will present results of the implementation of the 'next generation' photoemission models in the MICHELLE code for modeling surface roughness and non-uniformity.

* John Petillo, et al., "The MICHELLE Three-Dimensional Electron and Collector Modeling Tool: Theory and Design", IEEE Trans. Plasma Sci., vol. 30, no. 3, June 2002, pp. 1238-1264.

 
slides icon Slides  
 
TUODC02 Development of 3D Beam-Beam Simulation for the Tevatron impedance, collider, betatron, dipole 905
 
  • E. G. Stern
  • J. F. Amundson, P. Spentzouris, A. Valishev
    Fermilab, Batavia, Illinois
  • J. Qiang, R. D. Ryne
    LBNL, Berkeley, California
  We present status of development of a 3D Beam-Beam simulation code. The essential features of the code are 3D particle-in-cell Poisson solver, multi-bunch beam transport and interaction, chromaticity and machine impedance. The simulations match synchro-betatron oscillations measured at the VEPP-2M collider. The impedance model is compared to analytic expressions for instability growth.  
slides icon Slides  
 
TUODC03 Parallel Finite Element Particle-In-Cell Code for Simulations of Space-charge Dominated Beam-Cavity Interactions gun, space-charge, emittance, plasma 908
 
  • A. E. Candel
  • A. C. Kabel, K. Ko, L. Lee, Z. Li, C. Limborg-Deprey, C.-K. Ng, E. E. Prudencio, G. L. Schussman, R. Uplenchwar
    SLAC, Menlo Park, California
  Funding: U. S. DOE contract DE-AC002-76SF00515

Over the past years, SLAC's Advanced Computations Department (ACD) has developed the parallel finite element particle-in-cell code Pic3P (Pic2P) for simulations of beam-cavity interactions dominated by space-charge effects. As opposed to standard space-charge dominated beam transport codes, which are based on the electrostatic approximation, Pic3P (Pic2P) includes space-charge, retardation and boundary effects as it self-consistently solves the complete set of Maxwell-Lorentz equations using higher-order finite element methods on conformal meshes. Use of efficient, large-scale parallel processing allows for the modeling of photoinjectors with unprecedented accuracy, aiding the design and operation of the next-generation of accelerator facilities. Applications to the Linac Coherent Light Source (LCLS) RF gun are presented.

 
slides icon Slides  
 
TUPMN012 STARS - A Two-Stage High-Gain Harmonic Generation FEL Demonstrator electron, laser, free-electron-laser, acceleration 938
 
  • T. Kamps
  • M. Abo-Bakr, W. Anders, J. Bahrdt, P. Budz, K. B. Buerkmann-Gehrlein, O. Dressler, H. A. Duerr, V. Duerr, W. Eberhardt, S. Eisebitt, J. Feikes, R. Follath, A. Gaupp, R. Goergen, K. Goldammer, S. C. Hessler, K. Holldack, E. Jaeschke, S. Klauke, J. Knobloch, O. Kugeler, B. C. Kuske, P. Kuske, A. Meseck, R. Mitzner, R. Mueller, M. Neeb, A. Neumann, K. Ott, D. Pfluckhahn, T. Quast, M. Scheer, Th. Schroeter, M. Schuster, F. Senf, G. Wuestefeld
    BESSY GmbH, Berlin
  • D. Kramer
    GSI, Darmstadt
  • F. Marhauser
    JLAB, Newport News, Virginia
  Funding: Bundesministerium fur Bildung und Forschung and the Land Berlin

BESSY is proposing a demonstration facility, called STARS, for a two-stage high-gain harmonic generation free electron laser (HGHG FEL). STARS is planned for lasing in the wavelength range 40 to 70 nm, requiring a beam energy of 325 MeV. The facility consists of a normal conducting gun, three superconducting TESLA-type acceleration modules modified for CW operation, a single stage bunch compressor and finally a two-stage HGHG cascaded FEL. This paper describes the faciliy layout and the rationale behind the operation parameters.

 
 
TUPMN013 Dynamic Multipole Shimming of the APPLE Undulator UE112 undulator, multipole, permanent-magnet, dynamic-aperture 941
 
  • J. Bahrdt
  • W. Frentrup, A. Gaupp, M. Scheer, G. Wuestefeld
    BESSY GmbH, Berlin
  The dynamic off axis field integrals of the BESSY UE112 are of the order of 3 Tmm. They reduce the dynamic aperture significantly which is not tolerable for top-up operation. The dynamic multipoles have successfully been shimmed for the elliptical mode using distributed Fe-shims. In the inclined mode the multipoles are minimized actively with rotatable permanent magnets which are adjusted dependent on gap and phase position. The dynamic properties of the unshimmed and the shimmed device have been simulated using an analytic model for the field description and a generating function algorithm for tracking.  
 
TUPMN017 ''Jitter Free'' FEL Pulses for Pump and Probe Experiments radiation, electron, dipole, laser 953
 
  • G. Wuestefeld
  • R. Follath, A. Meseck
    BESSY GmbH, Berlin
  Funding: Bundesministerium fur Bildung und Forschung and the Land Berlin

The cascaded High Gain Harmonic Generation (HGHG) scheme proposed for the BESSY-FEL contains an inherent potential for providing jitter free radiation pulses for pump and probe experiments. In an HGHG stage an energy modulation is imprinted to the electron beam by a seeding radiation. A dispersive section converts this energy modulation to a spatial modulation which is optimized for a particular harmonic. The subsequent radiator is optimized for this harmonics and generates radiation with high power which is used as seeding radiation for the next stage. After passage through the modulator, the seeding radiation become redundant and can be separated from the prebunched electrons using a deflecting dispersive chicane. This radiation and the final FEL output will have a fixed temporal separation as the first one is the driving seeding radiation for the second one. Using the planned test facility for HGHG scheme at BESSY as an example, we present simulation studies for a sequences of two jitter free pump and probe pulses including the deflecting chicane and a suitable beam line.

 
 
TUPMN018 Dark Current Transport in the FLASH Linac gun, linac, electron, undulator 956
 
  • L. Froehlich
  The free electron laser facility FLASH at DESY Hamburg operates a low-emittance photoinjector and several acceleration modules with superconducting cavities to produce a high quality electron beam of up to 700 MeV. Since few months, the accelerator is routinely operated with its design RF pulse length of 800 μs instead of the prior length of 70-200 μs. As a result, the activation of components due to dark current emitted by the gun has reached critical proportions. To improve the understanding of dark current transport through the linac, simulations have been conducted with the Astra tracking code. The generated phase space distributions are compared against a detailed 3-dimensional aperture model of the machine with the newly developed ApertureLib toolkit. The results are in agreement with direct measurements of the dark current and with the observed activities.  
 
TUPMN034 Comparison Between SPARC E-Meter Measurements and Simulations emittance, cathode, vacuum, site 986
 
  • C. Ronsivalle
  • A. Bacci, A. R. Rossi, L. Serafini
    INFN-Milano, Milano
  • M. Boscolo, E. Chiadroni, M. Ferrario, D. Filippetto, V. Fusco, G. Gatti, M. Migliorati, A. Mostacci, C. Vaccarezza, C. Vicario
    INFN/LNF, Frascati (Roma)
  • A. Cianchi
    INFN-Roma II, Roma
  • L. Giannessi, M. Quattromini
    ENEA C. R. Frascati, Frascati (Roma)
  • M. Petrarca
    Universita di Roma I La Sapienza, Roma
  For the SPARC photoinjector commissioning the emittance compensation process has been studied experimentally under different beam conditions (variation of charge, spot size, beam shape…) by a novel device called "emittance-meter", consisting in a movable emittance measurement system based on the 1D pepper pot method scanning a region 1.2 m long downstream the RF-gun. The results of a detailed comparison between the measurements and beam dynamics simulations performed by the different codes(PARMELA, HOMDYN, TREDI) employed for SPARC design are presented and discussed here.  
 
TUPMN035 Generation of a Multipulse Comb Beam and a Relative Twin Pulse FEL electron, radiation, emittance, undulator 989
 
  • M. Boscolo
  • I. Boscolo, S. Cialdi, V. Petrillo
    INFN-Milano, Milano
  • F. Castelli
    Universita degli Studi di Milano, Milano
  • M. Ferrario, C. Vaccarezza
    INFN/LNF, Frascati (Roma)
  A radiofrequency electron gun joined to a compressor generates trains of THz subpicosecond electron pulses. Assuming a prompt electron emission, the laser train generates a train of electron disks at the cathode, then the disk train evolves towards a slug with a slight density modulation but also with a peculiar sawtooth energy modulation. This kind of energy modulation is transformed into a density modulation by a velocity bunching compressor recovering at a good extent the initial intensity beam profile. We study here through simulations the process looking to its characteristics as function peak and frequency characteristics of the laser and the parameters of the accelerator.  
 
TUPMN040 Drive Laser System for SPARC Photoinjector laser, emittance, cathode, electron 1004
 
  • C. Vicario
  • M. Bellaveglia, D. Filippetto, A. Gallo, G. Gatti, A. Ghigo
    INFN/LNF, Frascati (Roma)
  • S. Cialdi
    INFN-Milano, Milano
  • P. Musumeci, M. Petrarca
    INFN-Roma, Roma
  In this paper we report the progress of the SPARC photoinjector laser system. In the high brightness photoinjector the quality of the electron beam is directly related to the photocathode drive laser. In fact the 3D distribution of the electron beam is determined by the incoming laser pulse. The SPARC laser is a 10 Hz frequency-tripled TW-class Ti:Sa commercial system. To achieve the required flat top temporal shape we perform a manipulation of the laser spectrum in the fundamental wavelength and in the third harmonic. The optical transfer-line has been implemented to limit the pointing instabilities and to preserve to the cathode the temporal and spatial features of the laser pulse. We present the recorded performances in terms of time pulse shape and rf-to-laser synchronization.  
 
TUPMN042 Simulation Study of Resistive-wall Beam Breakup for ERLs focusing, vacuum, insertion-device, insertion 1010
 
  • N. Nakamura
  • H. Sakai, H. Takaki
    ISSP/SRL, Chiba
  For future ERL-based light sources, average beam current is required to be up to 100 mA. Such a high-current multi-bunch beam may generate and cumulate strong long-range wake-fields by interaction with accelerator components such as superconducting cavities and vacuum ducts, and as a result, strong beam breakup(BBU) may occur. Resistive-wall BBU due to narrow and resistive vacuum ducts has been hardly studied, though the effects of BBU due to HOMs of superconducting cavities were much investigated. Asymptotic expressions of transverse resistive-wall BBU were derived for a beam that passes through a uniform resistive pipe under uniform external focusing*. However the expressions are valid only for limited parameter ranges and initial conditions. Therefore we have developed a computer simulation program to study transverse multi-bunch resistive-wall BBU more minutely and generally. In this paper, we will present the simulation results obtained by the simulation program and also compare them with the asymptotic expressions.

* J. M. Wang and J. Wu, PRST-AB 7, 034402(2004)

 
 
TUPMN061 An Upgrade Proposal of Injection Bump System for HLS injection, kicker, emittance, storage-ring 1067
 
  • L. Wang
  • G. Feng, W. Li, L. Liu, H. Xu
    USTC/NSRL, Hefei, Anhui
  • S. C. Zhang
    USTC, Hefei, Anhui
  The current injection bump system of Hefei Light Source was designed eight years ago, and operated five years ago. In this paper, the advantages and shortcomings of current bump system were analyzed, and reasonalbe design objective was summed up. According to new design goal, a new physical design of bump system for HLS ring was completed. The acceptance of injected beam and perturbation on stored beam were analyzed. At same time, the ELEGANT software was used to simulate the injection process under new designed bump system. The results showed that, with new designed bump system, the injection rate would be higher than 90%, and the perturbation on orbit of stored beam would be small enough.  
 
TUPMN064 Experimental Approaches for the Beam Dynamics Study in the PC RF Gun at the PAL laser, gun, injection, emittance 1070
 
  • J. H. Park
  • J. Y. Huang, C. Kim, I. S. Ko, Y. W. Parc, S. J. Park
    PAL, Pohang, Kyungbuk
  • D. Xiang
    TUB, Beijing
  Funding: This work is supported in parts by the Center for High Energy Physics at the KNU and the Grant No. R01-2006-000-11309-0 from the Basic Research Program of the Korea Science and Engineering Foundation.

A high-brightness electron beam is emitted from a photo-cathode (PC) RF gun for use in the FIR (Far Infrared) facility being built at the Pohang Accelerator Laboratory (PAL). The beam dynamics study for the PAL XFEL injector is essencial to generate low emittance electron beam from the PC RF gun. The XFEL injector requires 1 nC beam with short bunch length and low emittance. This conditions are simulated with PARMELA code and then are realized on experimental conditions. The experimental conditions for the XFEL injector are measured with beam diagnostic devices such as ICT and Faraday cup for charge measurement, a spectrometer for beam energy measurement. In this article, we present the experimental approaches of the beam dynamics study for the XFEL injector.

wpjho@postech.ac.kr (Jangho Park)

 
 
TUPMN068 Modelling of Gradient Bending Magnets for the Beam Dynamics Studies at ALBA focusing, dipole, lattice, optics 1076
 
  • D. Einfeld
  • M. Belgroune, G. Benedetti, M. L. Lopes, J. Marcos, M. Munoz, M. Pont
    ALBA, Bellaterra (Cerdanyola del Valles)
  The performance of the ALBA light source will be strongly determined by the quality of the bending magnet. In the ALBA case, most of the vertical focusing takes place in the combined function bending magnet, and the contribution of the edge focusing is required to obtain a stable working point. Experience from other modern light sources using combined function magnets (CLS, ASP, Spear-III) shows that the usual hard model is not sufficient for an accurate modelling of the machine. In this paper, we review the methods to model the effect of the bending magnet, including fringe fields, and how to obtain a good model from the 3D magnetic model.  
 
TUPMN102 Electromagnetic Design of the RF Cavity Beam Position Monitor for the LCLS dipole, coupling, impedance, linac 1153
 
  • G. J. Waldschmidt
  • R. M. Lill, L. H. Morrison
    ANL, Argonne, Illinois
  Funding: Work supported by the U. S. Department of Energy under Contract Nos DE-AC02-06CH11357 and DE-AC03-76SF00515.

A high-resolution X-band cavity beam position monitor (BPM) has been developed for the LCLS in order to achieve micron-level accuracy of the beam position using a dipole mode cavity and a monopole mode reference cavity. The rf properties of the BPM will be discussed in this paper including output power, tuning, and issues of manufacturing. In addition, methods will be presented for improving the isolation of the output ports to differentiate between horizontal/vertical beam motion and to reject extraneous modes from affecting the output signal. The predicted simulation results will be compared to data collected from low-power experimental tests.

 
 
TUPMN108 Particle-in-Cell Calculations of the Electron Cloud in the ILC Positron Damping Ring Wigglers electron, wiggler, damping, positron 1164
 
  • C. M. Celata
  • M. A. Furman, J.-L. Vay
    LBNL, Berkeley, California
  • D. P. Grote
    LLNL, Livermore, California
  Funding: This work was supported by the Office of High Energy Physics of the U. S. Department of Energy under contract number No. DE-AC02-05CH11231.

Due to copious synchrotron radiation from the beam, electron cloud effects are predicted to be important in the wiggler sections of the ILC positron damping ring. In this area of the ring, the physics is inherently 3D. Moreover, a self-consistent calculation of the physics of the electron cloud/beam system is necessary for examining such phenomena as emittance growth in the beam. We present the first calculations of this system with the self-consistent 3D particle-in-cell code WARP/POSINST. The code includes self-consistent space charge for both species, mesh refinement, and detailed models of primary and secondary electron production. Interaction with electrons is assumed to occur only in the wigglers in this model– the beam is moved using maps between wiggler sections.

 
 
TUPMN112 ALS Top-off Simulation Studies for Radiation Safety photon, injection, radiation, vacuum 1173
 
  • H. Nishimura
  • R. J. Donahue, R. M. Duarte, D. Robin, F. Sannibale, C. Steier, W. Wan
    LBNL, Berkeley, California
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC03-76SF00098

We plan to commission top-off injection at the Advanced Light Source in the near future. In order to guarantee radiation safety, we have been simulating the injection process to exclude the possibility of injected electrons traveling down the user's photon beam lines. As the final stage of our simulation study, we use photon beam line CAD drawings to define the beam line's aperture in the phase space which electrons must not enter. Then we virtually inject electrons from within these phase spaces backwards into the storage ring to prove that such electrons can never get back to the real injection point under any possible scenario. This paper summarizes such inverse tracking studies.

 
 
TUPMN114 Simulation of the Microbunching Instability in Beam Delivery Systems for Free Electron Lasers laser, electron, space-charge, impedance 1179
 
  • I. V. Pogorelov
  • J. Qiang, R. D. Ryne, M. Venturini, A. Zholents
    LBNL, Berkeley, California
  • R. L. Warnock
    SLAC, Menlo Park, California
  In this paper, we examine the growth of the microbunching instability in the chain of linac sections and bunch compressor chicanes used in the electron beam delivery system of a free electron laser. We compare the results of two sets of simulations, one conducted using a direct Vlasov solver, the other using a particle-in-cell code Impact-Z with the number of simulation macroparticles ranging up to 100 million. The comparison is focused on the values of uncorrelated (slice) energy spread at different points in the lattice. In particular, we discuss the interplay between physical and numerical noise in particle-based simulations, and assess the agreement between the simulation results and theoretical predictions.  
 
TUPMN116 Numerical Study of Coulomb Scattering Effects on Electron Beam from a Nano-tip emittance, scattering, electron, space-charge 1185
 
  • J. Qiang
  • A. Adelmann
    PSI, Villigen
  • J. N. Corlett, S. M. Lidia, H. A. Padmore, W. Wan, A. Zholents, M. S. Zolotorev
    LBNL, Berkeley, California
  Funding: This work was supported by the U. S. Department of Energy under Contract no. DE-AC02-05CH11231.

Nano-tips with high acceleration gradient around the emission surface have been proposed to generate high brightness beams. However, due to the small size of the tip, the charge density near the tip is very high even for a small number of electrons. The Coulomb scattering near the tip can significantly degrade the beam quality and cause extra emittance growth and energy spread. In the paper, we present a numerical study of these effects using a direct relativistic N-body model. We found that emittance growth and energy spread, due to Coulomb scattering, can be significantly enhanced with respect to mean-field space-charge calculations in different parameter regimes.

 
 
TUPMS005 Quiet Start Method in HGHG Simulation bunching, radiation, electron, resonance 1200
 
  • Y. Hao
  • L.-H. Yu
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-FG02-92ER40747 and U. S NSF under contract No PHY-0552389

Quiet start scheme is broadly utilized in Self Amplified Spontaneous Radiation (SASE) FEL simulations, which is proven to be correct and efficient. Nevertheless, due to the existing of energy modulation effect and the dispersion section, the High Gain Harmonic Generation (HGHG) FEL simulation will not be improved by the traditional quiet start method. A new approach is presented to largely decrease the macro-particles per slice that can be implemented in both time-independent and time-dependent simulation, accordingly expedites the HGHG FEL simulation especially high order harmonic cascade case and makes the multi-parameter scanning be possible.

 
 
TUPMS007 NSLS VUV Ring Lifetime Study scattering, septum, closed-orbit, injection 1203
 
  • L. Yang
  • S. L. Kramer, B. Podobedov
    BNL, Upton, Long Island, New York
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
  Beam lifetime at VUV ring of National Synchrotron Light Source(NSLS) at BNL is limited by Touschek effect. This effect is affected by momentum acceptance and beam density. The geometry near injection septum, dynamic aperture and the RF acceptance all can limit the over all momentum acceptance. Extensive experiments including coupling, gas scattering, RF acceptance, have been done for understanding the lifetime, and the result is confirmed with theoretical predictions.  
 
TUPMS019 Ion Effects and Ion Elimination in the Cornell ERL ion, electron, linac, emittance 1218
 
  • G. Hoffstaetter
  • Ch. Spethmann, Y. Xie
    CLASSE, Ithaca
  Funding: Supported by Cornell University and NSF grant PHY 0131508

In an energy recovery linac (ERL) where beam-loss has to be minimal, and where beam positions and emittances have to be very stable in time, optic errors and beam instabilities due to ion effects have to be avoided. Here we explain why ion clearing electrodes are the least unattractive way of eliminating ions in an ERL and we present calculations of the remnant ion density and its effect on the beam. We also show a design of the clearing electrodes that should be distributed around the accelerator and illustrate their wake-field properties.

 
 
TUPMS022 Beam Breakup Simulations for the Cornell X-ray ERL linac, quadrupole, lattice, electron 1227
 
  • C. Song
  • G. Hoffstaetter
    CLASSE, Ithaca
  Funding: Supported by Cornell University and NSF grant PHY 0131508

Multi-pass, multi-bunch beam-breakup (BBU) can limit the current in linac-based recirculating accelerators. We have therefore made the computation of the transverse and longitudinal BBU-threshold current available in Cornell's main optics design and beam simulation library BMAD. The coupling of horizontal and vertical motion as well as time of flight effects are automatically contained. Subsequently we present a detailed simulation study of transverse and longitudinal BBU in the proposed 5GeV Energy Recovery Linac light source at Cornell University, including the use of frequency randomization, polarized cavities and optical manipulations to improve the threshold current.

 
 
TUPMS034 Seeded VISA: A 1064 nm Laser-Seeded FEL Amplifier at the BNL ATF electron, radiation, undulator, laser 1257
 
  • M. P. Dunning
  • G. Andonian, E. Hemsing, S. Reiche, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Babzien, V. Yakimenko
    BNL, Upton, Long Island, New York
  An experimental study of a seeded free electron laser (FEL) using the VISA undulator and a Nd:YAG seed laser will be performed at the Accelerator Test Facility at Brookhaven National Laboratory. The study is motivated by the demand for a short Rayleigh length FEL amplifier at 1 micron for high power transmission with minimal damage of transport optics. Planned measurements include transverse and longitudinal coherence, angular distribution, and wavelength spectrum of the FEL radiation. The effects of detuning the electron beam energy will be studied, with an emphasis on control of the radiation emission angles and increase of the amplifier efficiency. Results of start-to-end simulations will be presented with preliminary experimental results.  
 
TUPMS036 Characterization of Orbital Angular Momentum Modes in FEL Radiation undulator, coupling, radiation, laser 1263
 
  • E. Hemsing
  • G. Andonian, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • M. Babzien, V. Yakimenko
    BNL, Upton, Long Island, New York
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv
  Optical guiding of the radiation pulse through the source electron bunch in a free-electron laser is a well known phenomena that suppresses diffraction of the output radiation, and thus enhances the gain. The resulting radiation can be described by an expansion of orthogonal modes that are also composed of eigenstates of orbital angular momentum (OAM). In the VISA-FEL experiment at the ATF-BNL, gain guiding has been observed under self-amplified spontaneous emission conditions at 840 nm with a strongly chirped input electron beam. The resulting far-field transverse radiation profiles are observed to contain multiple modes in the angular intensity spectrum, and exhibit both hollow and spiral structures characteristic of single or multiply interfering OAM modes. Current efforts to characterize the transverse radiation profile both experimentally and through start-to-end simulations are presented.  
 
TUPMS038 Recent Upgrade to the Free-electron Laser Code Genesis 1.3 electron, undulator, radiation, coupling 1269
 
  • S. Reiche
  • K. Goldammer
    BESSY GmbH, Berlin
  • P. Musumeci
    Rome University La Sapienza, Roma
  The time-dependent code GENESIS 1.3 has be modified to address new problems in modeling Free-electron Lasers. The functionality has been extended to include higher harmonics and to allow for a smoother modeling of cascading FELs. The code has been also exported to a parallel computer architecture for faster execution using the MPI protocol.  
 
TUPMS039 Coherence Properties of the LCLS X-ray Beam electron, radiation, undulator, emittance 1272
 
  • S. Reiche
  Self-amplifying spontaneous radiation free-electron lasers, such as the LCLS or the European X-FEL, rely on the incoherent, spontaneous radiation as the seed for the amplifying process. Though this method overcomes the need for an external seed source one drawback is the incoherence of the effective seed signal. The FEL process allows for a natural growth of the coherence because the radiation phase information is spread out within the bunch due to slippage and diffraction of the radiation field. However, at short wavelengths this spreading is not sufficient to achieve complete coherence. In this presentation we report on the results of numerical simulations of the LCLS X-ray FEL. From the obtained radiation field distribution the coherence properties are extracted to help to characterize the FEL as a light source.  
 
TUPMS043 Design of a 2.1 GeV Electron Storage Ring emittance, impedance, dynamic-aperture, vacuum 1284
 
  • R. A. Bosch
  Funding: This research was supported by National Science Foundation Grant no. DMR-0537588.

A 2.1 GeV electron storage ring can serve as a third-generation light source for photon energies of 1-2000 eV. We design a ring with emittance of 1.5 nm-rad, circumference of 215 m, and twelve 5.5 m long straight sections. With a 100 MHz radiofrequency (rf) system, the computed Touschek current-lifetime product is 2800 mA-hr. Two passive fifth-harmonic cavities may be used to suppress parasitic coupled-bunch instabilities while increasing the bunchlength and lifetime by a factor of four. For stable operation with ring currents up to 600 mA, microwave-instability simulations indicate that the reduced longitudinal impedance should not exceed 1.5Ω.

 
 
TUPMS050 Simulation of Ultra-Short Pulses in a Storage Ring electron, shielding, lattice, synchrotron 1305
 
  • X. Huang
  Simulation study was performed with the tracking code Elegant [M. Borland, APS Report LS-287] to show beam quality evolution for a short, intense electron bunch after being injected to the SPEAR3 storage ring. The electron bunch with an intensity of 1mA (0.78nC) and a length of nearly 1ps (FWHM) is found to degrade rapidly due to coherent synchrotron radiation (CSR) which causes large uneven longitudinal phase space distortion. The bunch length remains short and the longitudinal line density remains smooth for about 10 turns. For such a beam to circulate in the ring, a total of 10MV rf power is needed to compensate for the energy loss.

* M. Borland, APS Report LS-287

 
 
TUPMS062 National High Magnetic Field Laboratory FEL Injector Design Consideration emittance, gun, radiation, electron 1323
 
  • P. Evtushenko
  • S. V. Benson, D. Douglas, G. Neil
    Jefferson Lab, Newport News, Virginia
  A Numerical study of beam dynamics was performed for two injector systems for the proposed National High Magnetic Field Laboratory at the Florida State University (FSU) Free Electron Laser (FEL) facility. The first considered a system consisting of a thermionic DC gun, two buncher cavities operated at 260 MHz and 1.3 GHz and two TESLA type cavities, and is very similar to the injector of the ELBE Radiation Source. The second system we studied uses a DC photogun (a copy of JLab FEL electron gun), one buncher cavity operated at 1.3 GHz and two TESLA type cavities. The study is based on PARMELA simulations and takes into account operational experience of both the JLab FEL and the Radiation Source ELBE. The simulations predict the second system will have a much smaller longitudinal emittance. For this reason the DC photo gun based injector is preferred for the proposed FSU FEL facility.  
 
TUPMS064 RF Gun Optimization Study emittance, gun, cathode, electron 1326
 
  • A. S. Hofler
  • P. Evtushenko
    Jefferson Lab, Newport News, Virginia
  • M. Krasilnikov
    DESY Zeuthen, Zeuthen
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

Injector gun design is an iterative process where the designer optimizes a few nonlinearly interdependent beam parameters to achieve the required beam quality for a particle accelerator. Few tools exist to automate the optimization process and thoroughly explore the parameter space. The challenging beam requirements of new accelerator applications such as light sources and electron cooling devices drive the development of RF and SRF photo injectors. RF and SRF gun design is further complicated because the bunches are space charge dominated and require additional emittance compensation. A genetic algorithm has been successfully used to optimize DC photo injector designs for Cornell* and Jefferson Lab**, and we propose studying how the genetic algorithm techniques can be applied to the design of RF and SRF gun injectors. In this paper, we report on the initial phase of the study where we model and optimize gun designs that have been benchmarked with beam measurements and simulation.

* I. Bazarov, et al., "Multivariate Optimization of a High Brightness DC Gun Photoinjector", PRST-AB 2005.** F. Hannon, et al., "Simulation and Optimisation of a 100 mA DC Photoinjector", EPAC 2006.

 
 
TUPMS077 Injection Simulations for NSLS-II Storage Ring injection, storage-ring, emittance, lattice 1350
 
  • I. Pinayev
  • J. Rose, T. V. Shaftan, L.-H. Yu
    BNL, Upton, Long Island, New York
  Operation of the NSLS-II storage ring in the top-up mode requires highly reliable injection with low losses. In this paper we provide results of the injection simulations for the storage ring. The alignment tolerances as well as requirements for the injected beam parameters are also discussed.  
 
TUPMS088 Efficiency Enhancement Experiment with a Tapered Undulator in a Single-pass Seeded FEL at the NSLS SDL undulator, electron, laser, radiation 1371
 
  • T. Watanabe
  • D. A. Harder, R. K. Li, J. B. Murphy, G. Rakowsky, Y. Shen, X. J. Wang
    BNL, Upton, Long Island, New York
  Funding: This work is supported by the Office of Naval Research under contract No. N0002405MP70325 and U. S. Department of Energy under contract No. DE-AC02-98CH1-886.

We report the experimental characterization of the FEL efficiency enhancement using a tapered undulator in a single-pass seeded FEL amplifier at the NSLS SDL. The last 3 m of the 10 m NISUS undulator was linearly tapered so that the magnetic field strength at the end of the undulator was reduced by 5 %. The FEL energy gain along the undulator was measured for both the tapered and un-tapered undulator. The FEL energy with the taper was measured to be about 3.2 times higher than that without the taper. We also experimentally characterized the spectrum and the transverse distribution of the FEL light for both the tapered and un-tapered undulator. The experimental results are compared with the numerical simulation code, GENESIS 1.3.

 
 
TUPMS089 Thermal Emittance Measurement Design for Diamond Secondary Emission electron, emittance, shielding, alignment 1374
 
  • Q. Wu
  • I. Ben-Zvi, A. Burrill, X. Chang, D. Kayran, T. Rao, J. Smedley
    BNL, Upton, Long Island, New York
  Thermal emittance is a very important characteristic of cathodes. A lower thermal emittance cathode has a better performance in limiting emittance for transport down the beam line. A diamond amplified photocathode, being a negative electron affinity (NEA) cathode, promises to deliver a very small thermal emittance. A carefully designed method of measuring the emittance of secondary emission from diamond is presented for the first time. Comparison of possible schemes is carried out by simulation, and the most accessible and accurate method and values are chosen. Systematic errors can be controlled within a very small range, and are carefully evaluated. Aberration and limitations of all equipment are taken into account.  
 
TUPMS092 GdfidL Simulations of Non-Linear Tapers for ILC Collimators impedance, emittance, insertion, luminosity 1380
 
  • J. D.A. Smith
  This paper summarises the GdfidL simulations relating to non-linear collimators, which offer the potential for improved wakefield performance at the ILC. Such collimators provide a further method for understanding the performance of simulation software in this challenging regime. Our results are compared with data from ESA at SLAC.  
 
TUPMS093 Computations of Wakefields in the ILC Collimators quadrupole, dipole, insertion, emittance 1383
 
  • J. D.A. Smith
  • C. J. Glasman
    UMAN, Manchester
  The collimators in the ILC serve the dual purpose of reducing the beam halo and as of a form of machine protection from potentially miss-steered beams. However, there is a significant wakefield in the immediate vicinity of the beam caused by their presence. It is important to be able to predict this short-range wakefield and the extent which it dilutes the emittance of the beam. We extend the previous analysis*, ** of wake-fields in collimators to realistic short bunches applicable to the ILC. We achieve these results using the finite difference code GdfidL. The angular wake is decomposed into its constituent components for rectangular collimators and compared with their circular collimator counterparts. Comparisons are made between these simulations, existing analytical models, and experimental results.

* C. Beard and R. M. Jones, EUROTeV-Report-2006-103** C. Beard and J. Smith, EPAC06 Proc. MOPLS070

 
 
TUPAN006 Design of Slug Tuners for the SPIRAL2 RFQ rfq, resonance, vacuum, ion 1398
 
  • A. France
  • O. Delferriere, M. Desmons, O. Piquet
    CEA, Gif-sur-Yvette
  Tuner parameters: number (or separation distance), diameter, position range, are determined in order to fit two main requirements: (1) compensation of construction errors specified between given bounds, and (2) compatibility with magnetic-field bead-pull measurements. Tuner slopes possibly derived from 2D or 3D simulations are compared. RFQ 4-wire transmission line model is used to calculate tuner position range required to compensate for given capacitance relative errors. The position of the bead guiding-wire is deduced from 3D field maps and magnetic-field-to-voltage calibration accuracy requirement.  
 
TUPAN012 High Intensity Heavy Ion Beam Emittance Measurements at the GSI UNILAC emittance, ion, quadrupole, heavy-ion 1413
 
  • W. B. Bayer
  • W. Barth, L. A. Dahl, P. Forck, P. Gerhard, L. Groening, I. Hofmann, S. Yaramyshev
    GSI, Darmstadt
  • D.-O. Jeon
    ORNL, Oak Ridge, Tennessee
  Funding: We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" programme (CARE, contract number RII3-CT-2003-506395).

The GSI UNILAC, a heavy ion linac originally dedicated for low current beam operation, together with the synchrotron SIS 18 will serve as an high current injector for FAIR (International Facility for Antiproton and Ion Research). The UNILAC post stripper accelerator consists of five Alvarez tanks with a final energy of 11.4 MeV/u. In order to meet the requirements of FAIR (15emA 238U28+, transverse normalised emittances of 0.8mm mrad and 2.5mm mrad) an UNILAC upgrade program is foreseen to increase the primary beam intensity as well as the beam brilliance. A detailed understanding of the beam dynamics during acceleration and transport of space charge dominated beams is necessary. For this purpose the study of the beam brilliance dependency on the phase advances in the Alvarez DTL is suited. Machine investigations were performed with various beam diagnostics devices established in the UNILAC. Measurements done in 2006 using an high intensity heavy ion beam coincide with the beam dynamics work package of the European JRA "High Intensity Pulsed Proton Injector" (HIPPI). Results of these measurements are presented as well as corresponding beam dynamics simulations.

 
 
TUPAN017 Development of a Coupled CH Structure for the GSI Proton Injector proton, coupling, linac, klystron 1428
 
  • G. Clemente
  • L. Groening
    GSI, Darmstadt
  • S. Minaev
    ITEP, Moscow
  • H. Podlech, U. Ratzinger, R. Tiede
    IAP, Frankfurt am Main
  Funding: CARE (contract No RIICT-2003-506-395), GSI, BMBF

The FAIR facility, under development at GSI, needs a new dedicated proton injector for the production of intense antiprotons secondary beams. This injector will accelerate protons from 3 to 70 MeV at a current of 70 mA, and due to the high voltage gain and shunt impedance will be based on CH cavities powered by a 2.5 MW, 325 MHz klystron. An innovative coupling cell containing one drift tube of length N-beta λ was developed to combine multicell drift tube modules of the CH-type (H210 mode).. In order to study this innovative coupling mechanism a scaled model of the second resonator of GSI Proton injector is under production at IAP. The according full scale prototype, 3 meter long coupled X MV resonator from MeV to MeV is under construction and will be power tested with a 2.5 MW klystron at GSI at the end of 2008. This paper describes in detail the coupled structure together with a general overview of the R&D results achieved on the CH-DTL's cavity.

 
 
TUPAN018 The Frankfurt Funneling Experiment rfq, ion, emittance, ion-source 1431
 
  • N. Mueller
  • U. Bartz, D. Ficek, P. Fischer, P. Kolb, A. Schempp, J. Thibus, M. Vossberg
    IAP, Frankfurt am Main
  Funneling is a procedure to multiply beam currents at low energies in several stages. The Frankfurt Funneling Experiment is a prototype of such a stage. Our experiment consists of two ion sources, a Two-Beam RFQ accelerator, a funneling deflector and a beam diagnostic system. The two beams from the ion sources are injected into two RFQ beam lines. These two beams are accelerated in a Two-Beam RFQ and combined to one beam axis with a funneling deflector. The last parts of the RFQ electrodes have been replaced to achieve a 3d focus at the crossing point of the two beam axis. The newly designed multigap deflector is adapted to the optimized funneling section. First results and beam measurements with the new setup will be presented.  
 
TUPAN019 The Superconducting Linac Approach for IFMIF linac, coupling, rfq, focusing 1434
 
  • H. Podlech
  • M. Busch, H. Klein, H. Liebermann, U. Ratzinger, A. C. Sauer, R. Tiede
    IAP, Frankfurt am Main
  The International Fusion Material Irradiation Facility (IFMIF) which is under design will be a high flux source of fast neutrons for the development of new materials needed for future fusion reactors. IFMIF will deliver 250 mA of 40 MeV deuterons. The duty cycle is 100% and the beam power on the lithium target is 10 MW. The beam will be accelerated by two 175 MHz linacs in parallel operation. Beside the room temperature Alvarez solution an alternative design using superconducting CH-structures has been proposed. In this paper we present the superconducting approach for IFMIF with the emphasis on the beam dynamics simulations. The simulations have been performed using the LORASR code. A new space charge routing has been added to the code to increase the number of macro particles to more than 1 million. Additionally a new routine allows the simulation of randomly distributed RF and alignment errors. The optimized linac layout including error and loss studies will be presented.  
 
TUPAN025 Selective Containment Measurements on Xe with the RF Charge Breeder Device BRIC ion, vacuum, electron, injection 1445
 
  • V. Variale
  • P. A. Bak, G. I. Kuznetsov, B. A. Skarbo, M. A. Tiunov
    BINP SB RAS, Novosibirsk
  • A. Boggia
    Universita e Politecnico di Bari, Bari
  • T. Clauser, V. Valentino
    INFN-Bari, Bari
  • A. C. Raino
    Bari University, Science Faculty, Bari
  Funding: INFN and UE contract no. 515768 EURISOL_DS (RIDS)

The Radioactive Ion Beam (RIB) production with ISOL technique should require a charge breeder device to increase the ion acceleration efficiency and reduce greatly the production cost. The "charge breeder" is a device designed to accept RIB with charge state +1 and in order to increase their charge state up to +n. Recently, at the INFN section of Bari first and at LNL (Italy) then, a new charge breeder device, based on an EBIS ion source called BRIC, has been developed. The new feature of BRIC, with respect to the classical EBIS, is given by the insertion, in the ion drift chamber, of a Radio Frequency (RF) - Quadrupole aiming to filtering the unwanted masses and then making a selective more efficient containment of the wanted ions. The RF test measurements for Ar gas confirm, as foreseen by simulation results* that the selective containment can be obtained. More measurements on the selective containment of heavier element ions (more close to the radioactive ion produced with ISOL technique) like Xe are needed to study with more details that effect. In this contribution new measurements on the rf selective containement in BRIC for Xe gas will be presented and discussed.

* V. Variale and M. Claudione, "BRICTEST: a code for charge breeding simulations in RF quadrupolar field", NIM in Phys. res. A 543 (2005) 403-414.

 
 
TUPAN031 Touschek Background and Beam Lifetime Studies for the DAFNE Upgrade background, optics, scattering, insertion 1454
 
  • M. Boscolo
  • M. E. Biagini, S. Guiducci, P. Raimondi
    INFN/LNF, Frascati (Roma)
  For the low energy collider DAFNE the machine induced backgrounds into the experiments as well as the beam lifetime are dominated by the Touschek effect. Many efforts have been put in its reduction: by adjusting optical parameters, by inserting additional collimators, as well as by simulating and tracking scattered particles in order to find the proper actions that allow reducing these effects. Studies on the distribution and trajectories of the Touschek particles along the ring are discussed here for the Siddarta run configuration with the crabbed waist scheme, together with an evaluation of the beam lifetime. Effectiveness of the scrapers installed in the two rings has been investigated with the new machine configuration and new optimized positions along the beam pipe have been found.  
 
TUPAN035 Reduction of the Non-Linearities in the DAPHNE Main Rings Wigglers wiggler, multipole, octupole, quadrupole 1463
 
  • S. Bettoni
  • S. Guiducci, M. A. Preger, P. Raimondi, C. Sanelli
    INFN/LNF, Frascati (Roma)
  The wigglers of the DAPHNE main rings have been the main source of non-linearities for the beam dynamics in the collider. This paper describes a method to reduce the integrated odd multipoles (the even ones tend to vanish for the periodicity of the magnet) by alternatively displacing the magnetic axis of the poles to compensate the integrated odd multipoles in each half-period of the wiggler. In order to check the effectiveness of this approach, tracking studies have been performed. Tracking results have been used to tune the MAD model of the wiggler.  
 
TUPAN037 Beam-Beam Simulations for Particle Factories with Crabbed Waist luminosity, sextupole, resonance, emittance 1469
 
  • M. Zobov
  • P. Raimondi
    INFN/LNF, Frascati (Roma)
  • D. N. Shatilov
    BINP SB RAS, Novosibirsk
  The recently proposed "crabbed waist" scheme for beam-beam collisions can substantially increase luminosity since it combines several potentially advantageous ideas. Large crossing angle together with small horizontal beam size allow having very small beta-functions at the interaction point (IP) and ordinary bunch length without incurring in the "hourglass" effect. The other main feature of such a collision scheme is the "crabbed waist" transformation, which is realized by two sextupoles placed in proper betatron phases around the IP. Such a transformation can strongly suppress the beam-beam betatron resonances induced in collisions with large Piwinski's angle, thus providing significant luminosity increase and opening much more room for choices of the working point. In this paper we present the results of beam-beam simulations performed in order to optimize the parameters of two currently proposed projects with the crabbed waist: the DAFNE upgrade and the Super B-factory project.  
 
TUPAN039 Profile Measurement and Transverse Matching in J-PARC Linac beam-losses, linac, electron, scattering 1472
 
  • H. Akikawa
  • Z. Igarashi, M. Ikegami, S. Lee
    KEK, Ibaraki
  • S. Sato, T. Tomisawa, A. Ueno
    JAEA/LINAC, Ibaraki-ken
  • G. B. Shen
    JAEA, Ibaraki-ken
  Beam commissioning of J-PARC linac has been performed since November 2006. In the beam commissioning, transverse matching has been performed by measurement of beam profiles and emittance with wire scanners. In this presentation, detail of wire scanners and the method of matching are described.  
 
TUPAN042 Synchroton Radiation Interferometer Calibration Check by Use of a Size Control Bump in KEKB coupling, sextupole, betatron, luminosity 1478
 
  • N. Iida
  • J. W. Flanagan, Y. Funakoshi, K. Oide
    KEK, Ibaraki
  KEKB B-Factory is one of the second generation lepton colliders. The energies of the two beams are 3.5 GeV for positron and 8 GeV for electron. Synchrotron Radiation Monitors(SRMs) are installed in the both rings and usually used for measuring beam sizes on real times. On the other hand, we use useful vertical bumps to control beam sizes of the beams. In this paper a method for calibrating the SRM by using the vertical bumps is described.  
 
TUPAN044 Acceleration Scheme in the AIA and its Control System acceleration, induction, injection, ion 1484
 
  • T. Iwashita
  • Y. Arakida, T. Kono, Y. Shimosaki, K. Takayama
    KEK, Ibaraki
  • T. S. Dixit
    GUAS/AS, Ibaraki
  • K. Okazaki
    Nippon Advanced Technology Co. Ltd., Ibaraki-prefecture
  An All Ion Accelerator (AIA), an injector-free induction synchrotron (IS) is proposed as a modification of the KEK booster*. The Booster is a rapid cycle synchrotron operating at a repetition rate of 20Hz. The AIA based on the booster requires more flexible trigger generation for the acceleration or confinement system than the one used for the IS POP experiment**. Assuming Ar+18 injection from a 200 kV ion source, the revolution period changes from 9.08usec to 333nsec at the end, and the required acceleration voltage changes from few tens of volts to 6.4kV at the middle of acceleration. Since a number of available acceleration cells is finite and their maximum pulse width and output voltage are limited to 500 nsec and 2 kV/cell, respectively, the dynamic allocation of acceleration cells in real time is indispensable, where a trade-off between the voltage amplitude and integrated pulse-length is realized. The acceleration scheme employing fast DSPs and a trigger control system is designed so as to meet the above requirement. Its whole story will be presented, including beam simulation results in the proposed AIA.

* E. Nakamura et al., in PAC07** K. Takayama et al., "Experimental Demonstration of the Induction Synchrotron" appeared in Phys. Rev. Lett. soon and in PAC07

 
 
TUPAN045 Beam Operation with Crab Cavities at KEKB luminosity, emittance, resonance, optics 1487
 
  • H. Koiso
  • T. Abe, T. A. Agoh, K. Akai, M. Akemoto, A. Akiyama, A. Arinaga, K. Ebihara, K. Egawa, A. Enomoto, J. W. Flanagan, S. Fukuda, H. Fukuma, Y. Funakoshi, K. Furukawa, T. Furuya, K. Hara, T. Higo, S. Hiramatsu, H. Hisamatsu, H. Honma, T. Honma, K. Hosoyama, T. Ieiri, N. Iida, H. Ikeda, M. Ikeda, S. Inagaki, S. Isagawa, H. Ishii, A. Kabe, E. Kadokura, T. Kageyama, K. Kakihara, E. Kako, S. Kamada, T. Kamitani, K.-I. Kanazawa, H. Katagiri, S. Kato, T. Kawamoto, S. Kazakov, M. Kikuchi, E. Kikutani, K. Kitagawa, Y. Kojima, I. Komada, T. Kubo, K. Kudo, N. K. Kudo, K. Marutsuka, M. Masuzawa, S. Matsumoto, T. Matsumoto, S. Michizono, K. Mikawa, T. Mimashi, S. Mitsunobu, K. Mori, A. Morita, Y. Morita, H. Nakai, H. Nakajima, T. T. Nakamura, H. Nakanishi, K. Nakao, S. Ninomiya, Y. Ogawa, K. Ohmi, Y. Ohnishi, S. Ohsawa, Y. Ohsawa, N. Ohuchi, K. Oide, M. Ono, T. Ozaki, K. Saito, H. Sakai, Y. Sakamoto, M. Sato, M. Satoh, K. Shibata, T. Shidara, M. Shirai, A. Shirakawa, T. Sueno, M. Suetake, Y. Suetsugu, R. Sugahara, T. Sugimura, T. Suwada, O. Tajima, S. Takano, S. Takasaki, T. Takenaka, Y. Takeuchi, M. Tawada, M. Tejima, M. Tobiyama, N. Tokuda, S. Uehara, S. Uno, Y. Yamamoto, Y. Yano, K. Yokoyama, Ma. Yoshida, M. Yoshida, S. I. Yoshimoto, K. Yoshino
    KEK, Ibaraki
  • E. Perevedentsev
    BINP SB RAS, Novosibirsk
  Beam operation with crab cavities is planned in early 2007 at KEKB. The crab crossing scheme is expected to increase the vertical beam-beam tune-shift parameter significantly. One crab cavity will be installed in each ring where conditions for beam optics are matched to compensate the beam crossing angle of 22 mrad. Operation results on collision tuning with the crab cavities will be presented.

For the KEKB Accelerator Group.

 
 
TUPAN048 Beam-beam Effects With an External Noise in LHC emittance, feedback, luminosity, betatron 1496
 
  • K. Ohmi
  • R. Calaga
    BNL, Upton, Long Island, New York
  • W. Hofle, R. Tomas, F. Zimmermann
    CERN, Geneva
  Proton beam do not have any damping mechanism for an incoherent betatron motion. A noise, which kicks beam particles in the transverse plane, gives a coherent betatron amplitude. Nonlinear force due to the beam-beam interactions causes a decoherence for the betatron motion with keeping an amplitude of each beam particle, with the result that an emittance growth arises. We focus fast transverse turn by turn noises caused by a bunch by bunch feedback system and a cavity phase zitter in crab collision.  
 
TUPAN061 Updated Simulation for the Nuclear Scattering Loss Estimation at the RCS Injection Area scattering, injection, beam-losses, space-charge 1526
 
  • P. K. Saha
  • H. Hotchi, Y. Irie, F. Noda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  • S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  We have updated the simulation for the realistic beam loss estimation at the RCS (Rapid Cycling Synchrotron) injection area of J-PARC(Japan Proton Accelerator Research Complex). At the injection area, beam loss caused by the nuclear scattering together with the multiple coulomb scattering at the charge-exchange foil is the dominant one and is an important issue for designing mainly the foil thickness and other beam elements like, the falling time of bump magnets after the injection is finished and so on. The simulation tool GEANT for the scattering effect and the real injection process have been employed together in order to estimate the beam loss turn by turn including identification of loss points too.  
 
TUPAN062 RF Amplitude and Phase Tuning of J-PARC SDTL linac, klystron, feedback 1529
 
  • G. B. Shen
  • H. Sako
    JAEA, Ibaraki-ken
  • S. Sato
    JAEA/LINAC, Ibaraki-ken
  In the beam commissioning of J-PARC Linac, RF phase and amplitude of SDTL (Separate-type Drift Tube Linac) cavities have been tuned with a phase-scan method based on the beam-energy measurement. The output beam energy is measured with two FCTs (Fast Current Transformer) using the TOF (Time-Of-Flight) method. The detailed results of RF tuning for SDTL cavity is presented.  
 
TUPAN077 Error Analysis of the PEFP 100 MeV Linac linac, controls, proton, quadrupole 1550
 
  • J.-H. Jang
  • Y.-S. Cho, K. Y. Kim, H.-J. Kwon
    KAERI, Daejon
  Funding: This work was supported by the 21C Frontier R&D program in Mnistry of Science and Technology of the Korean Government.

The 100 MeV Linac of the Proton Engineering Frontier Project (PEFP) consists of an ion source, a low energy beam transport (LEBT), a 3 MeV radio frequency quadrupole (RFQ), and an 100 MeV drift tube linac (DTL). The DTL is separated into two parts. The first part includes 4 tanks which accelerate 20 mA proton beams up to 20 MeV. The medium energy beam transport (MEBT) follows the 20 MeV accelerator in order to match proton beams into the next linac as well as to extract and supply 20 MeV proton beams to the user facilities. The second part of the DTL consists of 7 tanks to accelerate proton beams to 100 MeV. This work focuses on the error analysis of the designed 100 MeV linac in order to obtain the tolerance limit in the fabrication and alignment processes of the linac as well as to study the steering magnets which control the beam fluctuations and reduce the potential beam loss.

 
 
TUPAN079 Scheme for Flattening of Ion Density Distribution on a Target target, ion, quadrupole, octupole 1556
 
  • N. Yu. Kazarinov
  • G. Gulbekyan, V. I. Kazacha, V. N. Melnikov, V. I. Mironov
    JINR, Dubna, Moscow Region
  A scheme for flattening of the ion density distribution on a target is considered. The aim is to obtain the ion density distribution with deviation from the medium level not more than 5% on the target having rather big dimensions (up to ~60 cm in width and ~30 cm in height). Such kinds of targets are required for some technological purposes. The Xe ion beam extracted from a cyclotron has the following parameters: mass-to-charge ratio is 4.4, the kinetic energy is 4.2 MeV per nucleon, the beam current is 1 and the beam emittance is equal to 40 mm mrad. The ion beam line consists of quadrupoles doublet and oqtupole lens. After passimg through two quadrupoles the ion beam has big horizontal and small vertical dimensions. After that the oqtupole makes the horizontal ion beam density distribution on the target uniform withing the nessary demands. The geometry of the beam line, the quadrupole and oqtupole lens parameters are found during simulation. The simulated final beam density distribution on the target is also given.  
 
TUPAN080 Screening of Cyclotron Magnetic Field in C400 Axial Injection Beam-line cyclotron, injection, shielding, insertion 1559
 
  • N. Yu. Kazarinov
  • V. Aleksandrov, V. Shevtsov, A. Tuzikov
    JINR, Dubna, Moscow Region
  • Y. Jongen
    IBA, Louvain-la-Neuve
  The screening of the optical elements placed at the horizontal part of the axial injection beam-line of the C400 cyclotron for hadron therapy is performed. An influence of the injection channel shielding elements on magnetic field distribution in the median plane of the C400 cyclotron was studied. The 3D ANSYS model is used for this purpose.  
 
TUPAN083 Space-Charge Neutralization in Ion Undulator Linear Accelerator ion, undulator, acceleration, linac 1565
 
  • E. S. Masunov
  • S. M. Polozov
    MEPhI, Moscow
  RF undulator accelerator (UNDULAC-RF) is suggested as an initial part of high intensity ion linac*. Such accelerator can be realized in periodical IH structure where a field has no spatial harmonics in synchronism with the beam. Ion beam is accelerated by the combined field of two non-synchronous harmonics. Accelerating force value is proportional to squared particle charge. Transmission coefficient and accelerating gradient for low velocity ions with the identical sign of charge are the same as in RFQ. The limit beam current can be larger in this type accelerator. Its value was calculated earlier in paper **. But the beam intensity can be substantially increased in UNDULAC by using space charge neutralization of positive and negative charged ions. In UNDULAC positive and negative ions can be accelerated simultaneously within the same bunch. The process of acceleration and focusing of oppositely charged ions with the identical charge-to-mass ratio is discussed in this paper.

* E. S. Masunov, Technical Physics, V. 46, 11, 2001, pp. 1433-1436.**E. S. Masunov, S. M. Polozov, NIM., A 558, 2006, pp. 184-187.

 
 
TUPAN087 Scenarios for Beam Commissioning of the LHC Collimation System collimation, optics, proton, injection 1577
 
  • C. B. Bracco, C. B. Bracco
    EPFL, Lausanne
  • R. W. Assmann, S. Redaelli, G. Robert-Demolaize
    CERN, Geneva
  A complex system of collimators has been designed to protect the superconducting LHC magnets against quench and damage from the high intensity proton beams. The considerable number of collimators and the resulting number of degrees of freedom for their set-up requires a well prepared commissioning strategy. Efficiency studies for various implementations of the LHC collimation system have been performed, taking into account the evolution in optics and beam intensity according to the LHC commissioning schedule. This paper explains the present plans for the set-up sequence of collimators and discusses the relevant tolerances induced from the collimation system for the first years of the LHC operation.  
 
TUPAN091 LHC Beam-beam Compensation Using Wires and Electron Lenses optics, electron, emittance, feedback 1589
 
  • U. Dorda
  • W. Fischer
    BNL, Upton, Long Island, New York
  • V. D. Shiltsev
    Fermilab, Batavia, Illinois
  • F. Zimmermann
    CERN, Geneva
  We present weak-strong simulation results for a possible application of current-carrying wires and electron lenses to compensate the LHC long-range and head-on beam-beam interaction, respectively, for nominal and Pacman bunches. We show that these measures have the potential to considerably increase the beam-beam limit, allowing for a corresponding increase in peak luminosity  
 
TUPAN093 Simulation of the CERN PS Booster Performance with 160 MeV H- Injection from Linac4 injection, linac, emittance, space-charge 1595
 
  • F. Gerigk
  • M. Aiba, C. Carli, M. Martini
    CERN, Geneva
  • S. M. Cousineau
    ORNL, Oak Ridge, Tennessee
  The ultimate luminosity (2.3 x 1034 cm-2 s-1) in the LHC can only be reached or even exceeded if a major upgrade of the CERN proton injector complex takes place. The first identified bottleneck towards higher brightness beams is the 50 MeV proton injection of Linac2 into the PS booster (PSB). Doubling the intensity in the PSB can be achieved with a new linac (Linac4) which increases the injection energy to 160 MeV. Linac4 will provide H- ions and charge-exchange injection will be used in the PSB instead of using the present multi-turn proton injection scheme. The code ACCSIM is used to study the H- injection process and to determine if the requested intensities can be reached within the specified emittance budgets. The results are then compared with ORBIT simulations. In the longitudinal plane we use ESME to study various capture schemes.  
 
TUPAN095 Design and Performance of the CNGS Secondary Beam Line target, proton, secondary-beams, extraction 1601
 
  • E. Gschwendtner
  • L. Bruno, K. Elsener, A. Ferrari, M. Meddahi, A. Pardons, S. Rangod
    CERN, Geneva
  • A. Guglielmi
    INFN/LNL, Legnaro, Padova
  • P. R. Sala
    INFN-Milano, Milano
  An intense muon-neutrino beam (1017 nu-mu/day) is generated at CERN and directed towards the Gran Sasso National Laboratory, LNGS, in Italy, 732 km away from CERN. The muon-neutrinos are produced in association with muons in the decay of the pions and kaons created in the target. In the presently approved physics programme, it is foreseen to run the CNGS facility with 4.5 · 1019 protons/year for five years. During a CNGS cycle, i.e. every 6s, two nominal SPS extractions of 2.4 ·1013 protons each at 400GeV/c are sent down the proton beam line to the target. The CNGS secondary beam line, starting with the target, has to cope with this situation, which pushes the beam line equipment and instrumentation to the limits of radiation hardness, mechanical stresses, etc. during the CNGS operation. An overview of the CNGS secondary beam line will be shown. Emphasis will be on the target, the magnetic focusing lenses (horn and reflector) and the muon monitors. The performance of the secondary beam line during beam commissioning and physics operation will be discussed and measurements compared with simulations.  
 
TUPAN097 Studies of Beam Losses from Failures of SPS Beam Dump Kickers kicker, extraction, target, beam-losses 1607
 
  • T. Kramer
  • G. Arduini, O. E. Berrig, E. Carlier, L. Ducimetiere, B. Goddard, A. Koschik, J. A. Uythoven
    CERN, Geneva
  The SPS beam dump extraction process was studied in detail to investigate the possibility of operation with reduced kicker voltage and to fully understand the trajectory and loss pattern of the mis-kicked beams. This paper briefly describes the SPS beam dump process, and presents the tracking studies carried out for failure cases. The simulation results are compared to the results of measurements made with low intensity beams.  
 
TUPAN100 Performance Reach of the collimation, proton, injection, insertion 1613
 
  • G. Robert-Demolaize
  • R. W. Assmann, C. B. Bracco, S. Redaelli, Th. Weiler
    CERN, Geneva
  State-of-the-art tracking tools have been developed for detailed LHC collimation and beam loss studies. This includes full chromatic treatment of both beam lines and error models. This paper reviews the main results on the performance reach of the multi-stage LHC collimation system that is being installed in the LHC. Limitations on the allowed proton loss rates and the stored intensity can be derived from the comparison of local losses with estimated quench limits for the superconducting magnets. The origins of the cleaning-related performance limitations are presented and possible improvements are discussed.  
 
TUPAN101 Tracking Studies with Variable Magnetic Field to Characterize Quadrupole Failures in LHC quadrupole, beam-losses, resonance, injection 1616
 
  • A. Gomez Alonso
  • R. Schmidt
    CERN, Geneva
  During LHC operation, energies up to 360 MJ will be stored in each proton beam and more than 10 GJ in the superconducting magnets. With these energies, a magnet failure can lead to important equipment damage if the beam is not extracted in time. The machine protection systems should detect such failures and trigger the beam extraction system. In order to characterize the beam response after magnet failures, tracking simulations have been performed with MAD-X. The magnetic field was set to change with time according to realistic current changes in the electrical circuits with the magnets after a powering failure. The effect on the beam of powering failures in the normal conducting quadrupoles has been studied. For fast failures (beam lost in less than 100 ms) the nonlinear effects are negligible. For slower failures, higher order resonances may lead to beam losses of up to ~8% of the beam.  
 
TUPAN102 Numerical Study of the Very Forward Background from the Proton-Proton Collisions in the Experimental Insertions of the LHC background, hadron, insertion, luminosity 1619
 
  • V. Talanov
  • H. Burkhardt, D. Macina, E. Tsesmelis
    CERN, Geneva
  The results from the numerical DPMJET-FLUKA simulation of the background in the experimental IR's of the LHC are presented. DPMJET3 is used for the generation and analysis of the products from the p-p collision leaving the interaction point in the very forward region. A multi-particle transport code FLUKA is used for the simulation of the resulting secondary cascades in the structure of the LHC long straight sections. The background formation is estimated and analyzed in the LSS's at the locations of the TAN absorber, Roman Pot stations and Beam Loss Monitors, for the purposes of the machine protection and planning of the operation of the detectors.  
 
TUPAN113 Injection Studies on the ISIS Synchrotron injection, space-charge, emittance, lattice 1640
 
  • B. Jones
  • D. J. Adams, C. M. Warsop
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  The ISIS Facility at the Rutherford Appleton Laboratory in the UK produces intense neutron and muon beams for condensed matter research. It is based on a 50 Hz proton synchrotron which, once the commissioning of a new dual harmonic RF system is complete, will accelerate about 3.5·1013 protons per pulse from 70 to 800 MeV, corresponding to mean beam powers of 0.2 MW. The multi-turn charge-exchange injection process strongly affects transverse beam distributions, space charge forces, beam loss and therefore operational intensity. The evolution of longitudinal distributions and subsequent trapping efficiency is also intimately linked with injection. Optimising injection is therefore a key consideration for present and future upgrades. Work is now under way looking at this process in more detail, and relates closely to other transverse space charge studies on the ring. This paper presents work including: space charge simulations of the present machine and comparison with observations; assessment of related loss mechanisms; and study of optimal painting schemes. Plans and preparations for more detailed experimental work are also summarised.  
 
TUPAN115 Comparative Study of Beam Dynamics in LINAC4 using CERN and RAL MEBT (Medium Energy Beam Transport) Lines linac, emittance, quadrupole, beam-transport 1646
 
  • D. C. Plostinar
  • E. Zh. Sargsyan
    CERN, Geneva
  Funding: We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 "Structuring the European Research Area" program (CARE, Contract No. RII3-CT-2003-506395).

CERN and RAL are working in parallel to develop Front Ends for future particle accelerators. At CERN the Front End will be part of LINAC4, a potential replacement for the Linac2 accelerator, whilst at RAL the Front End is intended to demonstrate that a high current, high quality chopped beam is achievable and that the design could be used as part of a Proton Driver for a future Neutrino Factory. The two Front End designs have many similarities and basically consist of four main components: an H- ion source, a Low Energy Beam Transport (LEBT) matching into a Radio-Frequency Quadrupole (RFQ) and a Medium Energy Beam Transport (MEBT) line with a fast beam chopper. The beam choppers are different in the two designs and it is important to compare the effectiveness of the two methods of operation. This paper describes a simulation study of high intensity beam dynamics and beam transport when the RAL and CERN MEBT designs are each fed into the same CERN structure for LINAC4.

 
 
TUPAS001 Studies of Space Charge Loss Mechanisms on the ISIS Synchrotron resonance, space-charge, emittance, synchrotron 1652
 
  • C. M. Warsop
  • D. J. Adams, B. G. Pine
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  The ISIS Facility is the pulsed neutron and muon source based at the Rutherford Appleton Laboratory in the UK. Operation centres on the 50 Hz Synchrotron, which accelerates ~3·1013 protons per pulse from 70 to 800 MeV, providing a mean power of about 0.2 MW. As commissioning of a second harmonic RF system is completed, it is expected that the main loss mechanisms will be related to transverse space charge forces, which are particularly strong during the multi-turn injection and trapping processes. Here, we describe progress in ongoing studies to understand more about what drives loss and thus limits intensity. Results from simulations and application of relevant theory are presented, concentrating on the effects thought most important for the ISIS ring. Progress on work looking at the half integer resonance and image effects in the rectangular vacuum vessels is reported, along with work for experimental studies.  
 
TUPAS002 RFQ Cold Model RF Measurements and Waveguide-to-Coaxial line Transition Design for the Front-End Test Stand at RAL rfq, klystron, quadrupole, factory 1655
 
  • Y. A. Cheng
  • A. Kurup, P. Savage
    Imperial College of Science and Technology, Department of Physics, London
  • A. P. Letchford
    STFC/RAL/ISIS, Chilton, Didcot, Oxon
  • J. K. Pozimski
    STFC/RAL, Chilton, Didcot, Oxon
  A 324MHz four vane RFQ cold model has been built, as part of the development of a proton driver front end test stand at the Rutherford Appleton Laboratory (RAL) in the UK. This paper will present the results of RF measurements performed on the cold model, which include analysis of resonant modes, Q-value measurements and electric field profile measurements using a bead-pull perturbation method. These measurements were done before and after brazing of the four vanes and the results were compared to Microwave Studio simulations. Additionally a tuner has been designed, built and tested and the results will be presented together with the electromagnetic design of waveguide-to-coaxial line transition structures for the four vane RFQ.  
 
TUPAS004 A Driver LINAC for the Advanced Exotic Beam Laboratory: Physics Design and Beam Dynamics Simulations linac, beam-losses, emittance, lattice 1661
 
  • P. N. Ostroumov
  • B. Mustapha, J. A. Nolen
    ANL, Argonne, Illinois
  Funding: This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357

The Advanced Exotic Beam Laboratory (AEBL) being developed at ANL consists of an 833 MV heavy-ion driver linac capable of producing uranium ions up to 200 MeV/u and protons to 580 MeV with 400 kW beam power. We have designed all accelerator components including a two charge state LEBT, an RFQ, a MEBT, a superconducting linac, a stripper section and beam switchyard. We present the results of an optimized linac design and end-to-end simulations which include possible machine errors.

 
 
TUPAS007 The Investigation of Injection Timing for the IPNS RCS injection, proton, space-charge, acceleration 1667
 
  • S. Wang
  • F. R. Brumwell, J. C. Dooling, R. Kustom, G. E. McMichael, M. E. Middendorf
    ANL, Argonne, Illinois
  Funding: This work is supported by the U. S. Department of Energy under contract no. W-31-109-ENG-38.

The Intense Pulsed Neutron Source (IPNS) Rapid Cycling Synchrotron (RCS) accelerates 3.2x 1012 protons from 50 MeV to 450 MeV at 30 Hz. During the 14.2 ms acceleration period, the RF frequency varies from 2.21 MHz to 5.14 MHz. In order to improve capture efficiency, we varied the injection timing and the early RF voltage profiles. The experimental results are compared with similar studies at ISIS and calculation done with the 1-D tracking code, Capture-SPC. This allowed us to optimize injection time and the RF voltage profile for better capture efficiency. An optimized injection time and RF voltage profile was found that resulted in raising the capture efficiency from 85.1% to 88.6%. These studies have now also been expanded to included 2nd harmonic RF during the capture and initial acceleration cycle in the RCS.

 
 
TUPAS012 Start-to-End Simulations for the Proposed Fermilab High Intensity Proton Source quadrupole, emittance, lattice, collimation 1676
 
  • J.-P. Carneiro
  • D. E. Johnson
    Fermilab, Batavia, Illinois
  A High Intensity Proton Source consisting in an 8 GeV superconducting H-minus linac and transfer line to the Main Injector has been proposed. The primary mission is to increase the intensity of the Fermilab Main Injector for the production of neutrino superbeams. Start-to-end simulations from the RFQ to the stripping foil using the simulation code TRACK (ANL) will be presented in this paper. In particular, we will study the impact of errors (jitters and alignments) on the H- phase space at the entrance of the stripping foil.  
 
TUPAS014 Fast Beam Stacking using RF Barriers injection, booster, proton, acceleration 1682
 
  • W. Chou
  • D. Capista, E. Griffin, K. Y. Ng, D. Wildman
    Fermilab, Batavia, Illinois
  Funding: Work supported by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U. S. Dept. of Energy.

Two barrier rf systems were fabricated, tested and installed in the Fermilab Main Injector.* Each can provide 8-10 kV rectangular pulses (the rf barriers) at 90 kHz. When a stationary barrier is combined with a moving barrier, injected beams from the Booster can be continuously deflected, folded and stacked in the Main Injector (MI), which leads to doubling of the beam intensity. This paper gives a report on the beam experiment using this novel technology.

* W. Chou, D. Wildman and A. Takagi, "Induction Barrier RF and Applications in Main Injector," Fermilab-Conf-06-227 (2006).

 
 
TUPAS016 Collimation System Design for Beam Loss Localization with Slipstacking Injection in the Fermilab Main Injector injection, collimation, beam-losses, proton 1688
 
  • A. I. Drozhdin
  • B. C. Brown, D. E. Johnson, I. Kourbanis, N. V. Mokhov, I. Rakhno, V. Sidorov
    Fermilab, Batavia, Illinois
  • K. Koba
    KEK, Ibaraki
  Results of modeling with the STRUCT and MARS15 codes of beam loss localization and related radiation effects are presented for the slipstacking injection to the Fermilab Main Injector. Simulations of proton beam loss are done using multi-turn tracking with realistic accelerator apertures, nonlinear fields in the accelerator magnets and time function of the RF manipulations to explain the results of beam loss measurements. The collimation system consists of one primary and four secondary collimators. It intercepts a beam power of 1.6 kW at a total scraping rate of 5%, with a beam loss rate in the ring outside the collimation region of 1 W/m or less. Based on thorough energy deposition and radiation modeling, a corresponding collimator design was developed that satisfies all the radiation and engineering constraints.  
 
TUPAS018 A Conceptual Design of an Internal Injection Absorber of 8 GeV H- Injection into the Fermilab Main Injector injection, proton, linac, dipole 1694
 
  • D. E. Johnson
  • A. Z. Chen, I. Rakhno
    Fermilab, Batavia, Illinois
  Funding: Work supported by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U. S. Dept. of Energy.

A 8 GeV H- superconducting linac has been proposed as an alternative injector for the Main Injector to support a 2 MW Neutrino program. An injection absorber is required to accept protons generated after the secondary stripping foil which will intercept the un-stripped H- and H0 particles after the MI primary foil injection point. The motivations underlying the choice of a compact internal absorber over an external absorber will be discussed. We show that using a high-Z material (tungsten) for the inner shielding allows the construction a compact absorber that can take a very intense beam and fits within the existing enclosure. The absorber requirements and a shielding design and the results of energy deposition calculations are presented.

 
 
TUPAS020 An 8 GeV H- Multi-turn Injection System for the Fermilab Main Injector injection, proton, linac, dipole 1700
 
  • D. E. Johnson
  • J. Beebe-Wang, C. J. Liaw, D. Raparia
    BNL, Upton, Long Island, New York
  Funding: Work supported by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U. S. Dept. of Energy.

The technique for H- charge exchange for multi-turn injection utilizing stripping foils in the energy range of a few hundred MeV has been used at many labs for decades and most recently up to 1 GeV at the SNS. Utilization the beam from the proposed Proton Driver* would permit the extension of this technique up to 8 GeV. The injection layout and required accelerator modifications are discussed. Results from transverse and longitudinal simulations are presented.

* W. G. Foster and J. A. MacLachlan, "A Multi-mission 8 GeV Injector Linac as a Fermilab Booster Replacement", Proc. Of LINAC-2002, Gyeongju, Korea, p.86.

 
 
TUPAS024 Experimental and Simulation Studies of Beam-Beam Compensation with Tevatron Electron Lenses proton, electron, antiproton, beam-beam-effects 1703
 
  • V. Kamerdzhiev
  • Y. Alexahin, V. D. Shiltsev, A. Valishev, X. Zhang
    Fermilab, Batavia, Illinois
  • D. N. Shatilov
    BINP SB RAS, Novosibirsk
  Initially the Tevatron Electron Lenses (TELs) were intended for compensation of the beam-beam effect on the antiproton beam. Owing to recent increase in the number of antiprotons and reduction in their emittance, it is the proton beam now that suffers most from the beam-beam effect. We present results of beam studies, compare them with the results of computer simulations using LIFETRAC code and discuss possibilities of further improvements of the Beam-Beam Compensation efficiency in the Tevatron.  
 
TUPAS042 Transition Crossing Simulation at the Fermilab Booster space-charge, booster, emittance, beam-losses 1739
 
  • A. I. Drozhdin
  • W. Pellico, X. Yang
    Fermilab, Batavia, Illinois
  The demand in high intensity and low emittance of the beam extracted from the Booster requires a better control over the momentum spread growth and bunch length shortening at transition, in order to prevent beam loss and coupled bunch instability. Since the transition crossing involves both longitudinal and transverse dynamics, the recently modified 3-D STRUCT code provides an opportunity to numerically investigate different transition schemes in the machine environment, and apply the results of simulation to minimize the beam loss and emittance growth operationally.  
 
TUPAS046 Uniform Beam Intensity Redistribution in the LENS Nonlinear Transport Line octupole, target, proton, beam-transport 1748
 
  • A. Bogdanov
  • V. Anferov, M. Ball, D. V. Baxter, V. P. Derenchuk, A. V. Klyachko, T. Rinckel, K. A. Solberg
    IUCF, Bloomington, Indiana
  Funding: The LENS project is supported by the NSF (grants DMR-0220560, DMR-0242300), the 21st Century Science and Technology fund of Indiana, Indiana University, and the Department of Defense

The Low Energy Neutron Source (LENS) at Indiana University is producing neutrons by using a 7 MeV proton beam incident on a Beryllium target. The Proton Delivery System is currently being upgraded. A new DTL section will be added to increase proton beam energy from 7 to 13 MeV. A 3 MeV RFQ and 13 MeV DTL will be powered by 1 MW klystrons. The goal of this upgrade is a 13 MeV, 20 mA proton beam with duty factor more than 1%. At this power level it becomes increasingly important to make a proton beam that is uniformly distributed to prevent excessive thermal stress at the surface of the Be target. To achieve this goal two octupole magnets are being implemented in the LENS beam transport line. In this paper we discuss the experimental results of the beam intensity redistribution as well as some features inherent in tuning of the nonlinear beamline and our operational experience.

 
 
TUPAS049 50 Tesla Superconducting Solenoid for Fast Muon Cooling Ring collider, controls, target, background 1757
 
  • P. M. McIntyre
  • R. Romero, A. Sattarov
    Texas A&M University, College Station, Texas
  Funding: DOE grant #DE-FG02-06ER41405

A conceptual design is presented for the 50 Tesla superconducting solenoids that are required for an optimized fast cooling ring in current designs for multi-TeV muon colliders. The solenoid utilizes high-performance multi-filament Bi-2212/Ag round strand. The conductor is a cable-in-conduit consisting of six such strands cabled around a thin-wall spring tube then drawn within an outer sheath. The spring tube and the sheath are made from high-strength superalloy Inconel. The solenoid coil comprises 5 concentric shells supported independently in the conventional manner. Each shell consists of a winding of the structured cable, impregnated in the voids between cables but empty inside so that the spring tubes decouple stress so that it cannot strain-degrade the fragile strands, and a high-modulus overband. An expansion bladder is located between the winding and the overband, and is pressurized and then frozen to provide hydraulic compressive preload to each shell. This approach makes it possible to accommodate ~10 T field contribution from each shell without degradation, and provides distributed refrigeration so that heat is removed throughout the windings.

 
slides icon Slides  
 
TUPAS050 Determination of Component Activation and Radiation Environment in the Second Stripping Region of a High-Power Heavy-Ion Linear Accelerator radiation, ion, quadrupole, radioactivity 1760
 
  • I. Baek
  • R. Remec
    ORNL, Oak Ridge, Tennessee
  • R. M. Ronningen, X. Wu, A. Zeller
    NSCL, East Lansing, Michigan
  Funding: U. S. Department of Energy under Grant No. DE-FG02-04ER41313

In supporting pre-conceptual research and development of the Rare-Isotope Accelerator facility or similar next-generation exotic beam facilities, one critical focus area is to estimate the level of activation and radiation in the linear accelerator second stripping region and to determine if remote handling is necessary in this area. A basic geometric layout of the second stripping region having beamline magnets, beam pipes and boxes, a stripper foil, beam slits, and surrounding concrete shielding was constructed for Monte Carlo simulations. Beam characteristics were provided within the stripping region based on this layout. Radiation fields, radioactive inventories, levels of activation, heat loads on surrounding components, and prompt and delayed radiation dose rates were simulated using Monte-Carlo radiation transport code PHITS. Preliminary results from simulations using a simplified geometry show that remote handling of foils and slits will be necessary. Simulations using a realistic geometry are underway and the results will be presented.

 
 
TUPAS051 Radiation Simulations for a Pre-Separator Area for Rare Isotope Production via Projectile Fragmentation quadrupole, target, radiation, dipole 1763
 
  • I. Baek
  • G. Bollen, M. Hausmann, D. Lawton, R. M. Ronningen, A. Zeller
    NSCL, East Lansing, Michigan
  Funding: U. S. Department of Energy under Grant No. DE-FG02-04ER41313

To support pre-conceptual research and development for rare isotope beam production via projectile fragmentation at the Rare-Isotope Accelerator facility or similar next-generation exotic beam facilities, the interactions between primary beams and beryllium and liquid-lithium production targets in the fragment pre-separator area were simulated using the Monte-Carlo radiation transport code PHITS. The purpose of this simulation is to determine the magnitude of the radiation fields in the pre-separator area so that levels of hadron flux and energy deposition can be obtained. It was of particular interest to estimate the maximum radiation doses to magnet coils and other components such as the electromagnetic pump for a liquid-lithium loop, and to estimate component lifetimes. We will show a detailed geometry of the pre-separator area developed for these simulations. We will provide verification that trajectories of beams and fragments when transported in the PHITS simulations agree with results from standard ion-optics calculations. We will present estimates of radiation doses to pre-separator components and give estimates for component lifetimes.

 
 
TUPAS053 Beam Dynamics Studies for the Reacceleration of Low Energy RIBs at the NSCL linac, rfq, emittance, target 1769
 
  • X. Wu
  • G. Bollen, M. Doleans, T. L. Grimm, F. Marti, S. Schwarz, R. C. York, Q. Zhao
    NSCL, East Lansing, Michigan
  Funding: This work is supported by the U. S. Department of Energy

Rare Isotope Beams (RIBs) are created at the National Superconducting Cyclotron Laboratory (NSCL) by the in-flight particle fragmentation method. A novel system is proposed to stop the RIBS in a helium filled gas system followed by reacceleration that will provide opportunities for an experimental program ranging from low-energy Coulomb excitation to transfer reaction studies of astrophysical reactions. The beam from the gas stopper will first be brought into a Electron Beam Ion Trap (EBIT) charge breeder on a high voltage platform to increase its charge state and then accelerated initially up to about 3 MeV/u by a system consisting of an external multi-harmonic buncher and a radio frequency quadrupole (RFQ) followed a superconducting linac. The superconducting linac will use quarter-wave resonators with bopt of 0.047 and 0.085 for acceleration and superconducting solenoid magnets for transverse focusing. The paper will discuss the accelerator system design and present the end-to-end beam dynamics simulations.

 
 
TUPAS055 End-to-End Beam Dynamics Simulations of the ISF Driver Linac linac, emittance, ion, alignment 1775
 
  • Q. Zhao
  • M. Doleans, T. L. Grimm, F. Marti, S. O. Schriber, X. Wu, R. C. York
    NSCL, East Lansing, Michigan
  A proposed Isotope Science Facility (ISF), a major upgrade from the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL), will provide the nuclear science community with world-class beams of rare isotopes. The ISF driver linac will consist of a front-end and three acceleration segments of superconducting cavities separated by two charge-stripping sections, and will be capable of delivering primary beams ranging from protons to uranium with variable energies of ≥200 MeV/nucleon. The results of end-to-end beam simulation studies including physical misalignments, dynamic rf amplitude and phase errors, and variations in the stripping foil thickness, will be performed to evaluate the driver linac overall performances and beam loss, even for the challenging case of the uranium beam with multiple charge states using the newly-developed RIAPMTQ/IMPACT codes. The paper will discuss ISF beam dynamics issues and present the end-to-end beam simulation results.  
 
TUPAS057 Injector Particle Simulation and Beam Transport in a Compact Linear Proton Accelerator proton, electron, extraction, beam-transport 1781
 
  • D. T. Blackfield
  • Y.-J. Chen, J. R. Harris, S. D. Nelson, A. Paul, B. R. Poole
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

A compact Dielectric Wall Accelerator (DWA), with field gradient up to 100 MV/m, is being developed to accelerate proton bunches for use in cancer therapy treatment. The injector first generates a few nanosecond long and 40 pQ proton bunch, which is then compressed in the compression section at the end of the injector. Finally the bunch is accelerated in the high-gradient DWA accelerator to energy up to 70 - 250 MeV. The Particle-In-Cell (PIC) code LSP is used to model several aspects of this design. First, we use LSP to determine the needed voltage waveform in the A-K gap that will produce a proton bunch with the requisite charge. We then model pulse compression and shaping in the section between the A-K gap and the DWA. We finally use LSP to model the beam transport through the DWA.

 
 
TUPAS058 Electromagnetic Simulations of Linear Proton Accelerator Structures Using Dielectric Wall Accelerators proton, acceleration, impedance, controls 1784
 
  • S. D. Nelson
  • G. J. Caporaso, B. R. Poole
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy, the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

Proton accelerator structures for medical applications using Dielectric Wall Accelerator (DWA) technology allows for the utilization of high field gradients on the order of 100 MV/m to accelerate the proton bunch. Medical applications involving cancer therapy treatment usually desire short bunch lengths on the order of hundreds of picoseconds in order to limit the extent of the energy deposited in the tumor site (in 3D space, time, and deposited proton charge). Electromagnetic simulations of the DWA structure, in combination with injections of proton bunches, have been performed using 3D finite difference codes in combination with particle pushing codes. Electromagnetic simulations of DWA structures includes these effects and also includes the details of the switch configuration and how that switch time affects the electric field pulse which accelerates the particle beam. Design trade-offs include the driving switch effects, layer-to-layer coupling analysis and its affect on the pulse rise time.

 
 
TUPAS059 Compact Proton Accelerator for Cancer Therapy proton, focusing, extraction, radiation 1787
 
  • Y.-J. Chen
  • A. Paul
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy, the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

An investigation is being made into the feasibility of making a compact proton accelerator for medical radiation treatment. The accelerator is based on high gradient insulation (HGI) technology. The beam energy should be tunable between 70 and 250 MeV to allow the Bragg peak to address tumors at different depths in the patient. The desired radiation dose is consistent with a beam charge of 40 pico-coulombs. The particle source is a small 2 mm plasma device from which a several nano-second pulse can be extracted. The beam current is selectable by the potential of the extraction electrode and is adjustable in the range of 10-100 milli-Amperes. This beam is then accelerated and focused by the next three electrodes forming a Accel-Deaccel-Accel (ADA) structure leading to the DWA accelerator block. The spot size is adjustable over 2 to 10 mm. A transparent grid terminates the injector section and prevents the very high gradient of the HGI structure from influencing the overall focusing of the system. The beam energy is determined by the length of the DWA structure that is charged. This give independent selection of beam dose, size and energy.

 
 
TUPAS060 Particle Simulations of a Linear Proton Dielectric Wall Accelerator injection, proton, acceleration, focusing 1790
 
  • B. R. Poole
  • D. T. Blackfield, S. D. Nelson
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy, the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

The dielectric wall accelerator (DWA) is a compact induction accelerator structure that incorporates the accelerating mechanism, pulse forming structure, and switch structure into an integrated module. The DWA consists of stacked stripline Blumlein assemblies, which can provide accelerating gradients in excess of 100 MeV/meter. Blumleins are switched sequentially according to a prescribed acceleration schedule to maintain synchronism with the proton bunch as it accelerates. A finite difference time domain code (FDTD) is used to determine the applied acceleration field to the proton bunch. Particle simulations are used to model the injector as well as the accelerator stack to determine the proton bunch energy distribution, both longitudinal and transverse dynamic focusing, and emittance associated with various DWA configurations.

 
 
TUPAS061 Electromagnetic and Thermal Simulations for the Switch Region of a Compact Proton Accelerator proton, induction 1793
 
  • L. Wang
  • G. J. Caporaso, S. Sullivan
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy, the University of California, Lawrence Livermore National Laboratory under Contract No. W-7405-Eng-48.

A compact proton accelerator for medical applications is being developed at Lawrence Livermore National Laboratory. The accelerator architecture is based on the dielectric wall accelerator (DWA) concept. One critical area to consider is the switch region. Electromagnetic field simulations and thermal calculations of the switch area were performed to help determine the operating limits of the SiC switches. Different geometries were considered for the field simulation including the shape of the thin indium solder meniscus between the electrodes and SiC, and possible misalignment of electrodes and SiC during manufacturing. Electromagnetic field simulations were also utilized to demonstrate how the field stress could be reduced. Both transient and steady-state thermal simulations were analyzed to find the average power capability of the switches.

 
 
TUPAS063 A New Bunching Scheme for Increasing the LANSCE WNR Peak Beam Current ion, ion-source, bunching, linac 1799
 
  • L. Rybarcyk
  • J. T.M. Lyles
    LANL, Los Alamos, New Mexico
  Funding: This work is supported by the U. S. Department of Energy, Contract DE-AC52-06NA25396.

The LANSCE linac simultaneously provides both H+ and H- beams to several user facilities. The Weapons Neutron Research (WNR) user facility is configured to accept the H- beam with a typical pulse pattern of one linac micro-pulse every 1.8 microseconds. To produce this pulse spacing a slow-wave chopper located in the 750 keV injector beam transport is employed to intensity modulate the beam. The beam is subsequently bunched at both 16.77 MHz and 201.25 MHz prior to entering the 100 MeV drift tube linac. One downside of the chopping process is that the majority of the beam produced by the ion source during the WNR macro-pulses is discarded. By applying a longitudinal bunching action immediately following the ion source, simulations have shown that some of this discarded beam can be used to increase the charge in these micro-pulses. Recently, we began an effort to develop this buncher by superimposing 16.77 MHz RF voltage on one of the HVDC electrodes in the 80 kV column located inside H- Cockcroft-Walton dome. This paper describes the beam dynamics simulations, design and implementation of the rf hardware and the results of tests performed with the system.

 
 
TUPAS067 Electron Cloud in the Wigglers of The Positron Damping Ring of the International Linear Collider electron, wiggler, dipole, damping 1808
 
  • L. Wang
  • F. Zimmermann
    CERN, Geneva
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515

The ILC positron damping ring comprises hundreds of meters of wiggler sections, where many more photons than in the arcs are emitted, and with the smallest beam-pipe aperture of the ring. A significant electron-cloud density can therefore be accumulated via photo-emission and via beam-induced multipacting. In field-free regions the electron-cloud build up may be suppressed by adding weak solenoid fields, but the electron cloud remaining in the wigglers as well as in the arc dipole magnets can still drive single-bunch and multi-bunch beam instabilities. This paper studies the electron-cloud formation in an ILC wiggler section for various scenarios, as well as its character, and possible mitigation schemes.

 
 
TUPAS078 Status of FAR-TECH's ECR Ion Source Optimization Modeling ion, plasma, extraction, electron 1829
 
  • J. S. Kim
  • I. N. Bogatu, B. Cluggish, S. Galkin, L. Zhao
    Far-Tech, Inc., San Diego, California
  • R. C. Pardo
    ANL, Argonne, Illinois
  • V. Tangri
    UW-Madison/PD, Madison, Wisconsin
  Funding: Work supported by the US Department of Energy, under a SBIR grant No. DE-FG02-04ER83954.

The electron cyclotron-resonance ion source (ECRIS) is one of the most efficient ways to provide high-quality, high-charge-state ion beam for research and development of particle accelerators and atomic physics experiments. For ECR ion source performance optimization, FAR-TECH Inc. is developing an integrated suite of computer codes: the Generalized ECRIS plasma Modeling code (GEM), the MCBC (Monte Carlo Beam Capture) module, to study beam capture and charge-breeding processes in ECRIS, and the extraction section code. Our recent progress includes the following: algorithm update of Coulomb collision in MCBC for more accurate calculations of the beam capture efficiency, which depends on beam energy and the background plasma, 2D extension of GEM by adding the radial dimension, and the ion extraction section modeling using an adaptive technique.

 
 
TUPAS080 High-Current Proton and Deuterium Extraction Systems extraction, plasma, ion, proton 1835
 
  • J. D. Sherman
  The PBGUNS code* is used to explore and optimize high-current extraction system designs for hydrogen and deuterium plasmas. Two subjects are explored: first, the PBGUNS simulations are used to evaluate an analytic procedure** for determining suitable plasma electrode shapes for hydrogen-ion beams. Experimental confirmation for this procedure was found in the high-current proton Low-Energy Demonstration Accelerator*** project at Los Alamos. A second subject is to determine via numerical simulations an initial design for a high-quality deuterium ion beam that could be extracted from a microwave ion source. This work builds on many years experience in design and testing of high-current extraction systems for proton and H- injectors. *Steve Bell, Thunderbird Simulations, www.thunderbirdsimulations.com. **J. David Schneider, these Conference proceedings. ***J. D. Sherman, et. al., Rev. of Sci. Instrum. 73(2), 917(2002).  
 
TUPAS082 A Method For Calculating Near-Optimum Ion-Extractor Profiles extraction, space-charge, ion, plasma 1841
 
  • J. D. Schneider
  A process and program have been developed to interactively calculate the near-optimum electrode profiles for high-perveance ion-extraction systems. A MathCad program determines the near-optimum electrode profiles for high-current (high-perveance) high-quality beams. The program input starts with key parameters: plasma density, estimated mix of ions, extraction voltage, total current, plus desired output beam size and divergence. The computations simulate a spherically convergent extraction system that simultaneously minimizes the aberrations from the exit aperture while directly compensating for both the exit aperture de-focusing lens, and internal space charge in the beam. The program outputs cylindrical (r,z) coordinates of the emission and extractor electrodes, plus displays the beam perveance and output beam size and divergence. This paper will describe this process in some detail and will show examples of its successful use. This technique was used successfully in multiple projects over the past 25 years. Electrode shapes used in past hardware tests are examined with the successive over relaxation code PBGUNS in an accompanying paper.*

* J. D. Sherman, these conference proceedings.

 
 
TUPAS085 RHIC Spin Flipper dipole, proton, resonance, betatron 1847
 
  • M. Bai
  • A. U. Luccio, Y. Makdisi, P. H. Pile, T. Roser
    BNL, Upton, Long Island, New York
  Funding: The work was performed under the auspices of the US Department of Energy.

Full spin flip in the presence of full Siberian snake has been achieved by using an rf dipole or solenoid as spin flipper at IUCF and COSY. This technique requires one to change the snake configuration to move the spin tune away from half integer. However, this is not practical for an operational high energy polarized proton collider like RHIC where beam lifetime is sensitive to small betatron tune change. An new technique of achieving full spin flip with the spin tune staying at half integer is proposed. This paper presents the design of RHIC spin flipper along with simulation results.

 
 
TUPAS089 Small Angle Crab Compensation for LHC IR Upgrade emittance, coupling, luminosity, damping 1853
 
  • R. Calaga
  • K. Akai, K. Ohmi, K. Oide
    KEK, Ibaraki
  • U. Dorda, R. Tomas, F. Zimmermann
    CERN, Geneva
  Funding: This work is partially supported by the U. S. DOE

A small angle (< 1mrad) crab scheme is an attractive option for the LHC luminosity upgrade to recover the geometric luminosity loss from the finite crossing angle, which steeply increases to unacceptable levels as the IP beta function is reduced below its nominal value. The crab compensation in the LHC can be accomplished using only two sets of deflecting rf cavities, placed in collision-free straight sections of LHC to nullify the crossing angles at IP1 & IP5. We present IR optics configurations with low-angle crab crossing, study the beam-beam performance and proton-beam emittance growth in the presence of crab compensation, lattice errors, crab RF noise sources. We also explore a 400MHz superconducting cavity design and discuss the pertinent RF challenges.

 
 
TUPAS094 Transverse Beam Transfer Functions of Colliding Beams in RHIC proton, coupling, damping, luminosity 1856
 
  • W. Fischer
  • M. Blaskiewicz, R. Calaga, P. Cameron, Y. Luo
    BNL, Upton, Long Island, New York
  • T. Pieloni
    CERN, Geneva
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886.

We use transverse beam transfer functions to measure tune distributions of colliding beams in RHIC. The tune has a distribution due to the beam-beam interaction, nonlinear magnetic fields – particularly in the interaction region magnets, and non-zero chromaticity in conjunction with momentum spread. The measured tune distributions are compared with calculations.

 
 
TUPAS095 Experiments with a DC Wire in RHIC beam-losses, emittance, proton, beam-beam-effects 1859
 
  • W. Fischer
  • N. P. Abreu, R. Calaga, G. Robert-Demolaize
    BNL, Upton, Long Island, New York
  • U. Dorda, J.-P. Koutchouk, F. Zimmermann
    CERN, Geneva
  • A. C. Kabel
    SLAC, Menlo Park, California
  • H. J. Kim, T. Sen
    Fermilab, Batavia, Illinois
  • J. Qiang
    LBNL, Berkeley, California
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886.

A DC wire has been installed in RHIC to explore the long-range beam-beam effect, and test its compensation. We report on experiments that measure the effect of the wire's electro-magnetic field on the beam's lifetime and tune distribution, and accompanying simulations.

 
 
TUPAS097 Studies of Electron-Proton Beam-Beam Interactions in eRHIC electron, proton, emittance, beam-losses 1865
 
  • Y. Hao
  • V. Litvinenko, C. Montag, E. Pozdeyev, V. Ptitsyn
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886, DE-FG02-92ER40747 and U. S. NSF under contract PHY-0552389.

Beam-beam effects present one of major factors limiting the luminosity of colliders. In the linac-ring option of eRHIC design, an electron beam accelerated in a superconducting energy recovery linac collides with a proton beam circulating in the RHIC ring. There are some features of beam-beam effects which require careful examination in linac-ring configuration. First, the beam-beam interaction can induce specific head-tail type instability of the proton beam referred to as kink instability. Thus, beam stability conditions should be established to avoid proton beam loss. Also, the electron beam transverse disruption by collisions has to be evaluated to ensure beam quality is good enough for the energy recovery pass. In addition, fluctuations of electron beam current and/or electron beam size, as well as transverse offset, can cause proton beam emittance growth. The tolerances for those factors should be determined and possible countermeasures should be developed to mitigate the emittance growth. In this paper, a soft Gaussian strong-strong simulation is used to study all of mentioned beam-beam interaction features and possible techniques to reduce the emittance growth.

 
 
TUPAS102 End-to-End Simulation for the EBIS Preinjector ion, rfq, booster, emittance 1874
 
  • D. Raparia
  • J. G. Alessi, A. Kponou, A. I. Pikin, J. Ritter
    BNL, Upton, Long Island, New York
  • S. Minaev, U. Ratzinger, A. Schempp, R. Tiede
    IAP, Frankfurt am Main
  Funding: This manuscript has been authored by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH1-886 with the U. S. Department of Energy. .

The EBIS (Electron Beam Ion Source) Project at Brookhaven National Laboratory is in the second year of a four-year project. It will replace the Tandem Van de Graaff accelerators with an EBIS, an RFQ, and one IH Linac cavity as the heavy ion preinjector for the Relativistic Heavy Ion Collider (RHIC), and for the NASA Space Radiation Laboratory (NSRL). The preinjector will provide all ions species, He to U, (Q/m>0.16) at 2 MeV/amu at a repetition rate of 5 Hz, pulse length of 10–40 μs, and intensities of ~2.0 mA. End-to-end simulations (from EBIS to the Booster injection) as well as error sensitivity studies will be presented and physics issues will be discussed.

#Raparia@bnl.gov

 
 
WEXKI02 Demonstration of Optical Microbunching and Net Acceleration at 0.8 microns laser, acceleration, electron, undulator 1894
 
  • C. M.S. Sears
  • R. L. Byer, T. Plettner
    Stanford University, Stanford, Califormia
  • E. R. Colby, R. Ischebeck, C. Mcguinness, R. Siemann, J. E. Spencer, D. R. Walz
    SLAC, Menlo Park, California
  Formation, diagnosis, and acceleration of electron microbunches from an rf linac generated beam is presented. A PM-EM hybrid IFEL/chicane buncher was designed and commissioned to produce optical bunch trains suitable for injection into solid-state laser accelerators. Microbunching is independently diagnosed via coherent optical tranisition radiation (COTR). Net acceleration is obtained by splitting the laser power between the IFEL and an inverse transition radiation (ITR) accelerator.  
slides icon Slides  
 
WEXKI03 Survey of Advanced Dielectric Wakefield Accelerators electron, acceleration, gun, linac 1899
 
  • M. E. Conde
  Funding: Work supported by the US Department of Energy under contract # DE-AC02-06CH11357.

There has been continued interest in the development of dielectric-loaded wakefield structures that can be used to accelerate particle beams. The present search for materials able to withstand very intense RF fields has renewed this interest. Recent experiments at the Argonne Wakefield Accelerator have generated short RF pulses with accelerating fields in excess of 80 MV/m. These experiments used ceramic-lined cylindrical waveguides, operating at frequencies between 10 and 15 GHz. Other important experiments, at different RF frequencies and using planar or cylindrical geometries, have been carried out at various other facilities. A number of new experiments are planned in the near future to explore the capabilities of this class of structures. This presentation will provide an up-to-date survey of the activities in this area of research.

 
slides icon Slides  
 
WEYKI02 Experimental Demonstration of 1 GeV Energy Gain in a Laser Wakefield Accelerator laser, electron, plasma, injection 1911
 
  • A. J. Gonsalves
  • D. L. Bruhwiler, J. R. Cary
    Tech-X, Boulder, Colorado
  • E. Cormier-Michel
    University of Nevada, Reno, Reno, Nevada
  • E. Esarey, C. G.R. Geddes, W. Leemans, K. Nakamura, C. B. Schroeder, C. Toth
    LBNL, Berkeley, California
  • S. M. Hooker
    OXFORDphysics, Oxford, Oxon
  GeV-class electron accelerators have a broad range of uses, including synchrotron facilities, free electron lasers, and high-energy particle physics. The accelerating gradient achievable with conventional radio frequency (RF) accelerators is limited by electrical breakdown within the accelerating cavity to a few tens of MeV, so the production of energetic beams requires large, expensive accelerators. One promising technology to reduce the cost and size of these accelerators (and to push the energy frontier for high-energy physics) is the laser-wakefield accelerator (LWFA), since these devices can sustain electric fields of hundreds of GV/m. In this talk, results will be presented on the first demonstration of GeV-class beams using an intense laser beam. Laser pulses with peak power ranging from 10-40TW were guided in a 3.3 cm long gas-filled capillary discharge waveguide, allowing the production of high-quality electron beams with energy up to 1 GeV. The electron beam characteristics and laser guiding, and their dependence on laser and plasma parameters will be discussed and compared to simulations.  
slides icon Slides  
 
WEOBKI01 Stable Electron Beams with Low Absolute Energy Spread from a Laser Wakefield Accelerator with Plasma Density Ramp Controlled Injection laser, plasma, electron, injection 1916
 
  • C. G.R. Geddes
  • J. R. Cary
    Tech-X, Boulder, Colorado
  • E. Cormier-Michel
    University of Nevada, Reno, Reno, Nevada
  • E. Esarey, W. Leemans, K. Nakamura, D. Panasenko, G. R.D. Plateau, C. B. Schroeder, C. Toth
    LBNL, Berkeley, California
  Funding: Supported by DOE, including grant DE-AC02-05CH11231, DARPA, and by an INCITE computational award.

Laser wakefield accelerators produce accelerating gradients up to hundreds of GeV/m and narrow energy spread, and have recently demonstrated energies up to GeV and improved stability [*,**] using electrons self trapped from the plasma. Controlled injection and staging can further improve beam quality by circumventing tradeoffs between energy, stability, and energy spread/emittance. We present experiments demonstrating production of a stable electron beam near 1 MeV with 100 keV level energy spread and central energy stability by using the plasma density profile to control self injection, and supporting simulations. A 10 TW laser pulse was focused near the downstream edge of a mm-long hydrogen gas jet. The plasma density near focus is decreasing in the laser propagation direction, which changes the wake phase velocity and reduces the trapping threshold. This allows stable self trapping and low absolute energy spread. Simulations indicate that such beams can be post accelerated to form high energy, high quality, stable beams, and experiments are under investigation.

* Geddes et al, Nature v431 no7008, 538 (2004).** Leemans et al, Nature Physics v2 no10, p696 (2006)

 
slides icon Slides  
 
WEOCKI03 Status of the R&D Towards Electron Cooling of RHIC electron, emittance, ion, gun 1938
 
  • I. Ben-Zvi
  • D. T. Abell, G. I. Bell, D. L. Bruhwiler, R. Busby, J. R. Cary, D. A. Dimitrov, P. Messmer, V. H. Ranjbar, D. S. Smithe, A. V. Sobol, P. Stoltz
    Tech-X, Boulder, Colorado
  • J. Alduino, D. S. Barton, D. Beavis, M. Blaskiewicz, J. M. Brennan, A. Burrill, R. Calaga, P. Cameron, X. Chang, K. A. Drees, A. V. Fedotov, W. Fischer, G. Ganetis, D. M. Gassner, J. G. Grimes, H. Hahn, L. R. Hammons, A. Hershcovitch, H.-C. Hseuh, D. Kayran, J. Kewisch, R. F. Lambiase, D. L. Lederle, V. Litvinenko, C. Longo, W. W. MacKay, G. J. Mahler, G. T. McIntyre, W. Meng, B. Oerter, C. Pai, G. Parzen, D. Pate, D. Phillips, S. R. Plate, E. Pozdeyev, T. Rao, J. Reich, T. Roser, A. G. Ruggiero, T. Russo, C. Schultheiss, Z. Segalov, J. Smedley, K. Smith, T. Tallerico, S. Tepikian, R. Than, R. J. Todd, D. Trbojevic, J. E. Tuozzolo, P. Wanderer, G. Wang, D. Weiss, Q. Wu, K. Yip, A. Zaltsman
    BNL, Upton, Long Island, New York
  • A. V. Aleksandrov, D. L. Douglas, Y. W. Kang
    ORNL, Oak Ridge, Tennessee
  • H. Bluem, M. D. Cole, A. J. Favale, D. Holmes, J. Rathke, T. Schultheiss, J. J. Sredniawski, A. M.M. Todd
    AES, Princeton, New Jersey
  • A. V. Burov, S. Nagaitsev, L. R. Prost
    Fermilab, Batavia, Illinois
  • Y. S. Derbenev, P. Kneisel, J. Mammosser, H. L. Phillips, J. P. Preble, C. E. Reece, R. A. Rimmer, J. Saunders, M. Stirbet, H. Wang
    Jefferson Lab, Newport News, Virginia
  • V. V. Parkhomchuk, V. B. Reva
    BINP SB RAS, Novosibirsk
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
  Funding: Work done under the auspices of the US DOE with support from the US DOD.

The physics interest in a luminosity upgrade of RHIC requires the development of a cooling-frontier facility. Detailed cooling calculations have been made to determine the efficacy of electron cooling of the stored RHIC beams. This has been followed by beam dynamics simulations to establish the feasibility of creating the necessary electron beam. Electron cooling of RHIC at collisions requires electron beam energy up to about 54 MeV at an average current of between 50 to 100 mA and a particularly bright electron beam. The accelerator chosen to generate this electron beam is a superconducting Energy Recovery Linac (ERL) with a superconducting RF gun with a laser-photocathode. An intensive experimental R&D program engages the various elements of the accelerator: Photocathodes of novel design, superconducting RF electron gun of a particularly high current and low emittance, a very high-current ERL cavity and a demonstration ERL using these components.

 
slides icon Slides  
 
WEYAB02 Availability and Reliability Issues for ILC power-supply, luminosity, klystron, linac 1966
 
  • T. M. Himel
  • J. Nelson, N. Phinney
    SLAC, Menlo Park, California
  • M. C. Ross
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy under contract number DE-AC03-76SF00515.

The International Linear Collider will be the largest most complicated accelerator ever built. For this reason extensive work is being done early in the design phase to ensure that it will be reliable enough. This includes gathering failure mode data from existing accelerators and simulating the failures and repair times of the ILC. This simulation has been written in a general fashion using MATLAB and could be used for other accelerators. Results from the simulation tool have been used in making some of the major ILC design decisions and an unavailability budget has been developed.

 
slides icon Slides  
 
WEOAC02 A New Type of Distributed Enamel Based Clearing Electrode impedance, electron, vacuum, coupling 2000
 
  • F. Caspers
  • F.-J. Behler
    Eisenwerke Fried. Wilh. Dueker GmbH & Co. KGaA, Laufach
  • P. P. Hellmold
    Clausthal, Inst für Nichtmetall. Werkstoffe, Clausthal-Zellerfeld
  • T. Kroyer, E. Metral, F. Zimmermann
    CERN, Geneva
  • J. Wendel
    Wendel GmbH, Dillenburg
  A practical technology for implanting thin strip-like enamel structures in metallic beam-pipes, to be used for e-cloud clearing, has been developed. We discuss the technical and technological issues of this method. Parameters of particular interest are the beam coupling impedance as a function of the conductive coating resistivity and also the secondary electron yield. A test-stand for multipactoring measurements on a first prototype using the coaxial resonator method is described.  
slides icon Slides  
 
WEOAC04 Impedance Minimization by Nonlinear Tapering impedance 2006
 
  • B. Podobedov
  • I. Zagorodnov
    DESY, Hamburg
  There exist analytical approximations that express the transverse geometric impedance of tapered transitions in the inductive regime as a functional of the transition boundary and its derivatives. Assuming the initial and final cross-sections and the transition length are fixed, one can minimize these functionals by appropriate choice of the boundary variation with the longitudinal coordinate. In this paper we numerically investigate how well this works for the cases of optimized tapered transitions in circular, elliptical and rectangular geometry by running ABCI, ECHO, and GDFIDL EM field solvers. We show that a significant reduction of impedance for optimized boundary compared to that of a linear taper is indeed possible in some cases, and then we compare this reduction to analytical predictions.  
slides icon Slides  
 
WEYC02 Stochastic Cooling of High-Energy Bunched Beams pick-up, kicker, emittance, ion 2014
 
  • M. Blaskiewicz
  • J. M. Brennan, F. Severino
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH1-886

Stochastic cooling of 100 GeV/nucleon bunched beams has been achieved in the Relativistic Heavy Ion Collider (RHIC). The physics and technology of the longitudinal cooling system are discussed, and plans for a transverse cooling system are outlined.

 
slides icon Slides  
 
WEZC01 Phase Space Tomography of Beams with Extreme Space Charge space-charge, quadrupole, emittance, electron 2025
 
  • D. Stratakis
  • S. Bernal, R. B. Fiorito, I. Haber, R. A. Kishek, P. G. O'Shea, C. Papadopoulos, M. Reiser, J. C.T. Thangaraj, K. Tian, M. Walter
    UMD, College Park, Maryland
  Funding: This work is funded by US Dept. of Energy grant numbers DE-FG02-94ER40855 and DE-FG02-92ER54178, and the office of Naval Research grant N00014-02-1-0914.

A common challenge for accelerator systems is to maintain beam quality and brightness over the usually long distance from the source to the target. In order to do so, knowledge of the beam distribution in both configuration and velocity space along the beam line is needed. However, measurement of the velocity distribution can be difficult, especially for beams with strong space charge. Here we present a simple and portable tomographic method to map the beam phase space, which can be used in the majority of accelerators. The tomographic reconstruction process has first been compared with results from simulations using the particle-in-cell code WARP. Results show excellent agreement even for beams with extreme space charge and exotic distributions. Our diagnostic has also been successfully demonstrated experimentally on the University of Maryland Electron Ring, a compact ring designed to study the transverse dynamics of beams in both emittance and space charge dominated regimes. Special emphasis is given to intense beams where our phase space tomography diagnostic is used to shed light on the consequences of the space charge forces on the transport of these beams.

 
slides icon Slides  
 
WEZC02 Extreme Compression of Heavy Ion Beam Pulses: Experiments and Modeling plasma, acceleration, ion, focusing 2030
 
  • A. B. Sefkow
  • J. J. Barnard
    LLNL, Livermore, California
  • J. E. Coleman, P. K. Roy, P. A. Seidl
    LBNL, Berkeley, California
  • R. C. Davidson, P. Efthimion, E. P. Gilson, I. Kaganovich
    PPPL, Princeton, New Jersey
  • D. R. Welch
    Voss Scientific, Albuquerque, New Mexico
  Funding: Research supported by the U. S. Department of Energy.

Intense heavy ion beam pulses need to be compressed in both the transverse and longitudinal directions for warm dense matter and heavy ion fusion applications. Previous experiments and simulations utilized a drift region filled with high-density plasma in order to neutralize the space-charge and current of a 300 keV K+ beam, and achieved transverse and longitudinal focusing separately to a radius < 2 mm and pulse width < 5 ns, respectively. To achieve simultaneous beam compression, a strong solenoid is employed near the end of the drift region in order to transversely focus the beam to the longitudinal focal plane. Simulations of near-term experiments predict that the ion beam can be focused to a sub-mm spot size coincident with the longitudinal focal plane, reaching a peak beam density in the range 1012 - 1013 cm-3, provided that the plasma density is large enough for adequate neutralization. Optimizing the compression under the appropriate experimental constraints offers the potential of delivering higher intensity per unit length of accelerator to the target, thereby allowing more compact and cost-effective accelerators and transport lines to be used as ion beam drivers.

 
slides icon Slides  
 
WEOCC03 Halo Estimates and Simulations for Linear Colliders scattering, linac, electron, photon 2041
 
  • H. Burkhardt
  • I. V. Agapov, G. A. Blair
    Royal Holloway, University of London, Surrey
  • F. Jackson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • A. Latina, L. Neukermans, D. Schulte
    CERN, Geneva
  Funding: This work is supported by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

Halo simulations and estimates are important for the design of future linear accelerators. We present simulations performed for the ILC and CLIC and compare these with semi-analytical estimates and other simulations.

 
slides icon Slides  
 
WEPMN006 Status of the Superconducting CH-structure cryogenics, linac, proton, site 2056
 
  • H. Podlech
  • A. Bechtold, H. Liebermann, U. Ratzinger
    IAP, Frankfurt am Main
  Funding: GSI, BMBF 06F134I, EU 516520-FI6W, RII-CT-2003-506395, EFDA/99-507ERB5005-CT990061

The superconducting CH-structure is the first multi-cell cavity for the acceleration of low and medium energy ions and protons. A superconducting prototype cavity has been built and several cold tests have been performed at the IAP in Frankfurt. After the detection of a field emission centre the cavity will be treated by buffered chemical polishing and high pressure rinsing. Additionally the cavity is being prepared for tests in a horizontal cryostat with slow and fast tuner system. We present the status of these developments and the test results which have been gained recently.

 
 
WEPMN010 Linearization of Downconversion for IQ Detection Purposes controls, linac, radio-frequency 2068
 
  • M. K. Grecki
  • W. Koprek, S. Simrock
    DESY, Hamburg
  Funding: We acknowledge the support of the European Community-Research Infrastructure Activity under the FP6 ''Structuring the European Research Area'' program (CARE, contract number RII3-CT-2003-506395).

Measurements of effective Radio Frequency (RF) field parameters (amplitude and phase) are tasks of great importance in high-energy accelerators*. The RF signal is downconverted in frequency to intermediate frequency (IF) but keeping the information about amplitude and phase. The IF signal is then sampled in ADC and processed in digital IQ detector computing the I and Q components**. The downconverter is a nonlinear device thus not only the fundamental frequency but also its harmonics are present and sampled by ADC. For a typical downconverter (used in FLASH LLRF system) the higher order harmonics levels depend on RF signal level and are about 40dBm lower than the fundamental frequency component. These harmonics can produce errors in IQ detector of up to few percent in amplitude and few degree in phase. These errors depends not only on nonlinearity of downconverter but also on the IQ detection scheme*** (IF and sampling rate SR). The paper presents the optimization of the IQ detection scheme (choosing the IF and SR) taking into account the nonlinear characteristics of the downconverter.

*Grelick A. et all:A High-Resolution…, Proc. LINAC 2004,715-718**Grecki M. et all:Estimation of IQ…, Proc. MIXDES 2005,783-788***Simrock S. et all:Considerations…, Proc. EPAC 2006,1462-1464

 
 
WEPMN020 Improved Design of the ILC Blade-Tuner for Large Scale Production linac 2089
 
  • C. Pagani
  • A. Bosotti, N. Panzeri
    INFN/LASA, Segrate (MI)
  The ILC superconducting linacs ask for the use of a compact and cost effective tuner design with no interference with the cavity end group area. The integration of the piezo-assisted fast tuning option made the Blade-Tuner, successfully tested at DESY on the superstructures, the most viable candidate to be included into the ILC BCD. In the perspective of large scale production and on the basis of the experience acquired so far, two alternative prototypes have been recently designed and built. They mainly differ for the materials adopted (titanium or stainless steel) and have been optimized to minimize material and construction cost, while fulfilling the reviewed performances required for the high gradient cavity operation up to 35 MV/m or even higher. In this paper we discuss the rationales that brought us to the current solutions, together with a critical comparison of the two systems behavior and cost.  
 
WEPMN023 Development of 10 MW L-Band Multi-Beam Klystron (MBK) for European X-FEL Project klystron, cathode, gun, electron 2098
 
  • Y. H. Chin
  • K. Hayashi
    TETD, Otawara
  • M. Y. Miyake, Y. Yano
    Toshiba, Yokohama
  A 10MW L-band Multi-Beam Klystron (MBK) has been developed and tested by Toshiba, Japan for the European XFEL and a future linear collider projects.? The Toshiba MBK has six low-perveance beams operated at low voltage of 115kV (for 10MW) and six ring-shaped cavities to enable a higher efficiency than a single-beam klystron for a similar power. After the successful acceptance testing at the Toshiba Nasu factory in March 2006, attended by a DESY stuff, the final acceptance test was done at DESY laboratory in June 2006. In these tests, the output power of 10.2MW, more than the design goal (10MW), has been demonstrated at the standard beam voltage of 115kV at the RF pulse length of 1.5ms and the beam pulse of 1.7ms at 10Hz. The efficiency was 66%. The robustness of the tube was also demonstrated by being operated continuously more than 24 hours above 10MW. A horizontal version of the Toshiba MBK is now under construction.  
 
WEPMN036 High Field Performance in Reduced Cross-sectional X-Band Waveguides Made of Different Materials laser, linac, acceleration 2119
 
  • K. Yokoyama
  • Y. Higashi, T. Higo, N. K. Kudo, S. Ohsawa
    KEK, Ibaraki
  To study the characteristics of different materials on high-field rf breakdown we designed a simplified waveguide, where the field of 200MV/m is realized at rf power of 100MW. The geometry is transformed from the WR90, where the height and the width are reduced from 10.16 mm to 1mm and from 22.86mm to 14mm, respectively. This paper reports on the high-gradient testing of copper and stainless-steel waveguides. We have observed rf breakdowns by bursts of x-rays, flashes of visible lights and acoustic signals. Frequent breakdowns are observed at about 100MV/m level in copper case and the study on the stainless-steel waveguide will be performed to be compared to that of copper case.  
 
WEPMN044 The Pulsed Power Supply using IGBT Topology for CSNS Injection System Bump Magnet power-supply, controls, injection, pulsed-power 2140
 
  • L. Shen
  • Y. L. Chi, C. Huang
    IHEP Beijing, Beijing
  The China Spallation Neutron Source (CSNS) Rapid Cycling Synchrotron(RCS) injection system needs three pulsed power supplies to drive twelve bump magnets. The current of the three pulsed power supplies are 11813A,9706A,8205A. Two of the pulsed power supplies work in controlled method at falling edge. This paper introduces the design of the three pulsed power supplies, the circuit simulation results and the demonstration of power supplies stability.  
 
WEPMN052 FPGA - based Control System for Piezoelectric Stacks used for SC Cavity's Fast Tuner controls, resonance, radio-frequency, feedback 2155
 
  • P. M. Sekalski
  • J. W. Jalmuzna, A. Napieralski
    TUL-DMCS, Lodz
  • L. Lilje, K. P. Przygoda, S. Simrock
    DESY, Hamburg
  • R. P. Paparella
    INFN/LASA, Segrate (MI)
  Funding: We acknowledge the support of the ECRIA under the FP6 program (CARE, contract number RII3-CT-2003-506395), and Polish National Science Council Grant "138/E-370/SPB/6. PR UE/DIE 354/2004-2007"

The SC cavities need a fast tuning system, which is able to adjust the shape during the pulse operation. The first attempts were focused on the compensation of the repetitive and periodic distortion. The algorithms were implemented in Matlab and allow compensating only the Lorentz force detuning. However, the previous solution was too slow to be able to compensate the microphonics. The paper presents recent development in the field. The previously worked out algorithms are implemented in the FPGA-based control system. The SIMCON board is used, which allows to perform parallel, deeply pipelined calculation. The new approach allows integrating the algorithm dedicated for cavity shape control with the LLRF system used for vector sum control. Moreover, the new algorithm for on-line detuning calculation which base on the electromechanical model of the cavity is presented. The system is tested with Module Test Stand (MTS) at DESY with the high gradient cavities (37 MV/m). The active elements are the NOLIAC's and PI's multilayer, low voltage piezostacks. The paper will present the first results from these measurements.

 
 
WEPMN055 PEFP HOM Coupler Design damping, linac, controls, coupling 2161
 
  • S. An
  • Y.-S. Cho, B. H. Choi, C. Gao
    KAERI, Daejon
  Funding: This work was supported by the 21C Frontier R&D program of Korea Ministry of Science and Technology.

A new type of coaxial higher-order mode (HOM) coupler with one hook and two stubs has been designed for PEFP SRF cavities to satisfy the HOM damping requirements of the superconducting RF (SRF) linac of the Proton Engineering Frontier Project (PEFP), and to overcome the notch frequency shift and feed-through tip melting issues. This paper has presents details on the PEFP HOM coupler?s structure, structure optimization, filter characteristics, electro-magnetic field distribution and a coupler installation tool.

 
 
WEPMN056 PEFP Low-beta SRF Cavity Design linac, electron, coupling, proton 2164
 
  • S. An
  • Y.-S. Cho, B. H. Choi, C. Gao
    KAERI, Daejon
  Funding: This work was supported by the 21C Frontier R&D program of Korea Ministry of Science and Technology.

An elliptical superconducting RF cavity of 700 MHz with βg=0.42 has been designed for the Linac of Proton Engineering Frontier Project (PEFP). A double-ring stiffening structure is used for a low-beta cavity for a Lorentz force detuning. The results of the electron multipacting analysis of the cavity are presented. A HOM analysis shows that the HOM coupler's Qext is lower than 3·10+5, thus reducing the influence of dangerous modes on the beam instabilities and the HOM-induced power.

 
 
WEPMN057 Development of the PEFP Low Level RF Control System controls, feedback, rfq, proton 2167
 
  • H. S. Kim
  • Y.-S. Cho, I.-S. Hong, D. I. Kim, H.-J. Kwon, K. T. Seol, Y.-G. Song
    KAERI, Daejon
  Funding: This work is supported by the 21C frontier R&D program in the Ministry of Science and Technology of the Korean government.

The RF amplitude and the phase stability requirements of the LLRF system for the PEFP(Proton Engineering Frontier Project) proton linac are within 1% and 1 degree, respectively. As a prototype of the LLRF, a simple digital PI control system based on commercial FPGA board is designed and tested. The main features are a sampling rate of 40 MHz which is four times higher than the down-converted cavity signal frequency, digital in-phase and quadrature detection, pulsed mode operation with the external trigger, and a simple proportional-integral feedback algorithm implemented in a FPGA. The developed system was tested with 3 MeV RFQ and 20 MeV DTL, and satisfied the stability requirements.

 
 
WEPMN061 Design of Cooling System for Resonance Control of the PEFP DTL controls, resonance, linac, proton 2176
 
  • K. R. Kim
  • Y.-S. Cho, H.-J. Kwon
    KAERI, Daejon
  • W. H. Hwang, H. S. Kim, H.-G. Kim, S. J. Kwon, J. Park, J. C. Yoon
    PAL, Pohang, Kyungbuk
  Funding: Supported by the 21st PEFP (KAERI) and MOST in Korea

The temperature-controlled cooling water system was designed to obtain the resonance frequency stabilization of the normal conducting drift tube linac (DTL) for the PEFP 100 MeV proton accelerator. The primary sizing of individual closed-loop low conductivity cooling water pumping skids for each DTL system was conducted with a simulation of thermo-hydraulic network model. The temperature control schemes incorporating the process dynamic model of heat exchangers were examined to regulate the input water temperatures into the DTL during the steady state operation. The closed water circuits to achieve system performance and stability for low and full duty operation modes were discussed, and numerical results were also presented.

 
 
WEPMN069 Low Power Measurements on an AGS Injection Kicker Magnet kicker, impedance, injection, proton 2188
 
  • M. J. Barnes
  • G. D. Wait
    TRIUMF, Vancouver
  Funding: Work supported by a contribution from the Canada Foundation for Innovation.

The present AGS injection kickers at A5 location were designed for 1.5 GeV proton injection. Recent high intensity runs have pushed the transfer kinetic energy to 1.94 GeV, but with an imperfect matching in transverse phase space. Space charge forces result in both fast and slow beam size growth and beam loss as the size exceeds the AGS aperture. An increase in the AGS injection energy to 2 GeV with adequate kick strength would greatly reduce the beam losses making it possible to increase the intensity from 70 TP (70 * 1012 protons/s) to 100 TP. R&D studies* have been undertaken by TRIUMF, in collaboration with BNL, to design two new kicker magnets for the AGS A10 location to provide an additional kick of 1.5 mrad to 2 GeV protons. TRIUMF has designed and built a prototype 12.5 Ω transmission line kicker magnet with rise and fall times of 100 ns, 3% to 97% and field uniformity of (±)1% over 85% of the aperture, powered by matched 12.5 Ω pulse-forming lines. This paper describes the results of detailed capacitance and inductance measurements, on the prototype magnet, and compares these with predictions from 2D and 3D electromagnetic simulations.

*L. Ahrens, R. B. Armenta, M. J. Barnes, E. W Blackmore, C. J. Gardner, O. Hadary, G. D. Wait, W. Zhang, "Design Concept for AGS Injection Kicker Upgrade to 2 GeV", PAC 2005, Knoxville Tennessee.

 
 
WEPMN071 High RF Power Production for CLIC damping, impedance, linac, extraction 2194
 
  • I. Syratchev
  • E. Adli, D. Schulte, M. Taborelli
    CERN, Geneva
  The CLIC Power Extraction and Transfer Structure (PETS) is a passive microwave device in which bunches of the drive beam interact with the impedance of the periodically loaded waveguide and excite preferentially the synchronous mode. The RF power produced (several hundred MW) is collected at the downstream end of the structure by means of the Power Extractor and delivered to the main linac structure. The PETS geometry is a result of multiple compromises between beam stability and main linac RF power needs. Another requirement is to provide local RF power termination in case of accelerating structure failure (ON/OFF capability). Surface electric and magnetic fields, power extraction method, HOM damping, ON/OFF capability and fabrication technology were all evaluated to provide a reliable design.  
 
WEPMN073 A New Klystron Modulator for XFEL based on PSM Technology klystron, controls, power-supply, factory 2200
 
  • J. Alex
  • M. Bader, J. Troxler
    Thomson Broadcast & Multimedia AG, Turgi
  Funding: Supported by DESY contract.

Thomson Broadcast & Multimedia has been awarded a contract from DESY to design and build a prototype klystron modulator for the XFEL project. This modulator will be built in pulse step modulator (PSM) technology. This technology will allow to control the pulse form to achieve a maximum flatness of the pulse without tuning any high power components. The modulator will also have a built-in power regulation to prevent voltage flicker of the mains. The paper will give an overview about the principles of the modulator and presents the status of the design. It also shows simulation results about the expected performance.

 
 
WEPMN077 Impedance Measurements on a Test Bench Model of the ILC Crab Cavity impedance, dipole, coupling, higher-order-mode 2206
 
  • P. Goudket
  • C. D. Beard, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster
  • N. Chanlek, R. M. Jones
    UMAN, Manchester
  • A. C. Dexter
    Cockcroft Institute, Warrington, Cheshire
  Funding: This work was supported by the EC under the FP6 'Research Infrastructure Action - Structuring the European Research Area' EUROTeV DS Project Contract no.011899, RIDS and PPARC.

In order to verify detailed impedance simulations, the modes in an aluminium model of the ILC crab cavity were investigated using a bead-pulling technique as well as a stretched-wire frequency domain measurement. The combination of these techniques allow for a comprehensive study of the modes of interest. For the wire measurement, a transverse alignment system was fabricated and rf components were carefully designed to minimize any potential impedance mismatches. The measurements are compared with direct simulations of the stretched-wire experiments using numerical electromagnetic field codes. High impedance modes of particular relevance to the ILC crab cavity are identified and characterized

 
 
WEPMN079 Power Coupler for the ILC Crab Cavity coupling, controls, beam-loading, dipole 2212
 
  • G. Burt
  • C. D. Beard, P. Goudket, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • L. Bellantoni
    Fermilab, Batavia, Illinois
  • R. G. Carter, A. C. Dexter, R. O. Jenkins
    Cockcroft Institute, Lancaster University, Lancaster
  Funding: This work was supported by the EC under the FP6 "Research Infrasctructure Action - Structuring the European Research Area" EUROTeV DS Project Contract no.011899 RIDS and PPARC.

The ILC crab cavity will require the design of an appropriate power coupler. The beamloading in dipole cavities is considerably more variable than accelerating cavities, hence simulations have been performed to establish the required external Q. Simulations of a suitable coupler were then performed and were verified using a normal conducting prototype with variable coupler tips.

 
 
WEPMN082 Global Scattering Matrix Technique Applied to the Calculation of Higher Order Modes for ILC Superconducting Cavities scattering, dipole, linac, electromagnetic-fields 2218
 
  • I. R.R. Shinton
  • R. M. Jones
    Cockcroft Institute, Warrington, Cheshire
  A cascaded scattering matrix approach is used to determine the electromagnetic (e.m.) field in the main ILC cavities. This approach is used to compute higher order e.m. modes in the baseline configuration, and high gradient alternative configurations. We present results on three designs: TESLA, Cornell University's re-entrant and, KEK's "Ichiro". This approach allows realistic experimental errors to be incorporated in the studies in an efficient manner and allows several cavities to be modelled en masse. Simulations are presented on the wake-fields in super-structures and segments of entire modules. Details on trapped eigen-modes and means to avoid them are delineated. The influence of cell misalignments and cavity perturbations on the modes are also presented.  
 
WEPMN086 High-Power Tests of a Single-Cell Copper Accelerating Cavity Driven by Two Input Couplers vacuum, radiation, shielding, storage-ring 2227
 
  • D. Horan
  • D. J. Bromberek, D. A. Meyer, G. J. Waldschmidt
    ANL, Argonne, Illinois
  Funding: Work supported by U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

High-power tests were conducted on a 350MHz, single-cell copper accelerating cavity driven simultaneously by two H-loop input couplers for the purpose of determining the reliability, performance, and power-handling capability of the cavity and related components, which have routinely operated at 100kW power levels. The test was carried out utilizing the APS 350MHz RF Test Stand, which was modified to split the input rf power into two 1/2-power feeds, each supplying power to a separate H-loop coupler on the cavity. Electromagnetic simulations of the two-coupler feed system were used to determine coupler match, peak cavity fields, and the effect of phasing errors between the coupler feedlines. The test was conducted up to a maximum total rf input power to the cavity of 200kW CW. Test apparatus details and performance data will be presented.

 
 
WEPMN087 Variable CW RF Power Coupler for 345 MHz Superconducting Cavities coupling, vacuum, beam-loading, cryogenics 2230
 
  • K. W. Shepard
  • Z. A. Conway, J. D. Fuerst, M. P. Kelly, G. J. Waldschmidt
    ANL, Argonne, Illinois
  • A. M. Porcellato
    INFN/LNL, Legnaro, Padova
  Funding: This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357.

This paper reports the development of a 5-10 kW cw variable coupler for 345 MHz spoke-loaded superconducting (SC)cavities. The coupler inserts an 80K copper loop into a 5 cm diameter coupling port on several types of spoke-loaded cavity operating at 2 - 4K. The coupling loop can be moved during operation to vary the coupling over a range of 40 dB. The coupler is designed to facilitate high-pressure water rinsing and low-particulate clean assembly. Design details and operating characteristics are discussed.

 
 
WEPMN091 Beam Test of a Grid-less Multi-Harmonic Buncher ion, bunching, pick-up, linac 2242
 
  • P. N. Ostroumov
  • V. N. Aseev, A. Barcikowski, E. Clifft, R. C. Pardo, M. Sengupta, S. I. Sharamentov
    ANL, Argonne, Illinois
  Funding: This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357.

The Argonne Tandem Linear Accelerator System (ATLAS) is the first superconducting heavy-ion linac in the world. Currently ATLAS is being upgraded with the Californium Rare Ion Breeder Upgrade (CARIBU). The latter is a funded project to expand the range of short-lived, neutron-rich rare isotope beams available for nuclear physics research at ATLAS. To avoid beam losses associated with the existing gridded multi-harmonic buncher, we have developed and built a grid-less four-harmonic buncher with fundamental frequency of 12.125 MHz. In this paper, we are going to report the ATLAS beam performance with the new buncher.

 
 
WEPMN093 Multipactor Simulations in Superconducting Cavities RF-structure, electron, linac, radio-frequency 2248
 
  • I. G. Gonin
  • J. F. DeFord, B. Held
    STAR, Inc., Mequon, Wisconsin
  • N. Solyak
    Fermilab, Batavia, Illinois
  The multipactor (MP) is a well-known phenomenon. The existence of resonant trajectories can lead to electron avalanche under certain field level and surface conditions. In this paper we describe features of the extension of Analyst software - PT3P code developed for MP simulations in a real 3D RF structures, such as cavities, couplers, RF windows etc. Also we present the results of MP simulations in HOM couplers of TESLA, SNS β=0.61 and β=0.81 and FNAL 3-rd harmonic cavities. We discuss the comparison of simulations with experimental results.  
 
WEPMN098 New HOM Coupler Design for 3.9 GHz Superconducting Cavities at FNAL coupling, resonance, dipole, damping 2259
 
  • T. N. Khabiboulline
  • I. G. Gonin, N. Solyak
    Fermilab, Batavia, Illinois
  Last few years Fermilab is developing the superconducting third harmonic section for the FLASH (TTF/DESY) upgrade. The results of vertical tests of 9-cell Nb cavities didn't reached the designed accelerating gradient. The main gradient limitation is multipacting in HOM coupler. In this paper we present the results of vertical tests accompanied with 3D Analyst simulations of multipacting. Also we discuss the RF design of a new HOM couplers. The goal of a new design is to eliminate multipacting and to increase the frequency of second resonance of the HOM. Increasing the frequency will decrease the electric and magnetic fields having the goal to decrease the thermal load on antenna.  
 
WEPMN100 RF Design and Processing of a Power Coupler for Third Harmonic Superconducting Cavities vacuum, klystron, electron, pick-up 2265
 
  • J. Li
  • E. R. Harms, T. Kubicki, D. J. Nicklaus, D. R. Olis, P. S. Prieto, J. Reid, N. Solyak
    Fermilab, Batavia, Illinois
  • T. Wong
    Illinois Institute of Technology, Chicago, Illinois
  Funding: U. S. Department of Energy

The FLASH user facility providing free electron laser radiation is built based on the TTF project at DESY. Fermilab has the responsibility for the design and processing of a third harmonic, 3.9 GHz, superconducting cavity which is powered via a coaxial power coupler. Six power couplers have been manufactured at CPI after successful design of the power coupler including RF simulation, multipacting calculation, and thermal analysis. The power couplers are being tested and processed with high pulsed power in an elaborate test stand at Fermilab now. This paper presents the RF design and processing work of the power coupler.

 
 
WEPMN104 Mechanical Stability Study of Type IV Cryomodule (ILC Prototype) quadrupole, vacuum, linac, alignment 2277
 
  • M. McGee
  • R. Doremus, R. Wands
    Fermilab, Batavia, Illinois
  An ANSYS modal and harmonic finite element analysis (FEA) was performed in order to investigate cryomodule design mechanical stability for the proposed International Linear Collider (ILC). The current cryomodule, designated Type IV or T4CM, closely follows the Type III TESLA Test Facility (TTF) version used at DESY, with the exception of a proposed location of the superconducting (SC) quadrupole at the center. This analysis considered the stringent stability criteria established for the ILC, where vertical motion for the SC quad is limited to the micron range, at a few Hz. Model validation was achieved through Type II cryomodule vibration measurement studies performed at DESY. The effect of support location, support stiffness and other important parameters were considered in a parametric sensitivity study. FEA results, fast motion investigations and stabilization techniques are discussed.

Operated by Universities Research Association, Inc., under Contract No. DE-AC02-76CH03000 with the U. S. Department of Energy#mcgee@fnal.gov

 
 
WEPMN108 A Technique for Monitoring Fast Tuner Piezoactuator Preload Forces for Superconducting RF Cavities monitoring, instrumentation, resonance, controls 2289
 
  • Y. M. Pischalnikov
  • J. Branlard, R. H. Carcagno, B. Chase, H. Edwards, A. Makulski, M. McGee, R. Nehring, D. F. Orris, V. Poloubotko, C. Sylvester, S. Tariq
    Fermilab, Batavia, Illinois
  Funding: Work supported by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

The technology for mechanically compensating Lorentz Force detuning in superconducting RF cavities has already been developed at DESY. One technique is based on commercial piezoelectric actuators and was successfully demonstrated on TESLA cavities*. Piezo actuators for fast tuners can operate in a frequency range up to several kHz; however, it is very important to maintain a constant preload force on the piezo stack in the range of 10 to 50% of its specified blocking force. Determining the preload force during cooldown, warm-up, or re-tuning of the cavity is difficult without instrumentation, and exceeding the specified range can permanently damage the piezo stack. A technique based on strain gauge technology for superconducting magnets has been applied to fast tuners for monitoring the preload on the piezoelectric assembly. This paper will address the design and testing of piezo actuator preload sensor technology. Results from measurements of preload sensors installed on the tuner of the DESY Capture Cavity II tested at Fermilab will be presented. These results include measurements during cooldown, warm-up, and cavity tuning along with dynamic Lorentz force compensation.

* M. Liepe et al," Dynamic Lorentz Force Compensation with a Fast Piezoelectric Tuner" PAC2001

 
 
WEPMN111 3.9 GHz Superconducting Accelerating 9-cell Cavity Vertical Test Results resonance, electromagnetic-fields, pick-up, vacuum 2295
 
  • T. N. Khabiboulline
  • C. A. Cooper, N. Dhanaraj, H. Edwards, M. Foley, E. R. Harms, D. V. Mitchell, A. M. Rowe, N. Solyak
    Fermilab, Batavia, Illinois
  • W.-D. Moller
    DESY, Hamburg
  The 3rd harmonic 3.9GHz accelerating cavity was proposed to improve beam performances of the FLASH (TTF/DESY) facility. In the frame of collaboration Fermilab will provide DESY with a cryomodule containing a string of four cavities. In addition, a second cryomodule with one cavity will be fabricated for installation in the Fermilab photo-injector, which will be upgraded for the ILC accelerator test facility. The first results of vertical tests of 9-cell Nb cavities didn?t reached the designed accelerating gradient. The main problem is multipactoring in HOM couplers, which leads to quenching and overheating of the HOM couplers. New HOM couplers with improved design integarated to next 9-cell cavities. In this paper we present all results of vertical tests.  
 
WEPMN119 Equilibrium Theory of an Intense Elliptic Beam for High-Power Ribbon-Beam Klystron Applications klystron, electron, focusing, vacuum 2316
 
  • C. Chen
  • J. Z. Zhou
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Research supported by US Department of Energy, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919 and Air Force Office of Scientific Research, Grant No. FA9550-06-1-0269.

A concept for a high-power ribbon-beam klystron (RBK) employing a novel large-aspect ratio elliptic electron beam instead of a conventional circular electron beam is presented. Both cold-fluid and kinetic equilibrium theories are developed and applied in the design of the elliptic electron beam for the RBK. A small-signal theory is developed and applied in the design of the beam tunnel and the input, idler and output cavities. The electron gun and beam matching is being studied. Design results of a 10 MW 1.3 GHz RBK for the International Linear Collider (ILC) and of a 50 MW 22 GHz RBK for high-gradient research will be discussed.

 
 
WEPMN120 Photonic Band Gap Higher Order Mode Coupler for the International Linear Collider lattice, higher-order-mode, damping, collider 2319
 
  • J. Z. Zhou
  • C. Chen, B. M. Kardon
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Research supported by US Department of Energy, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919 and Air Force Office of Scientific Research, Grant No. FA9550-06-1-0269.

A photonic band gap (PBG) higher-order-mode (HOM) coupler is proposed as an Alternative Configuration Design (ACD) for the HOM coupler for the International Linear Collider (ILC). The PBG HOM coupler uses a two-dimensional triangular PBG structure with good axial symmetry. Simulation studies of a PBG HOM coupler show that it maintains the operating mode at 1.3 GHz with . While a PBG HOM coupler provides superior damping for all the higher order modes in principle, detailed studies of the effectiveness of HOM damping are being carried out, and results will be discussed.

 
 
WEPMS001 Application of Induction Module for Energy Perturbations in the University of Maryland Electron Ring induction, space-charge, electron, impedance 2322
 
  • B. L. Beaudoin
  • S. Bernal, I. Haber, R. A. Kishek, P. G. O'Shea, M. Reiser, J. C.T. Thangaraj, K. Tian, M. Walter, C. Wu
    UMD, College Park, Maryland
  Funding: Work supported by the U. S. Department of Energy grant numbers: DE-FG02-94ER40855 and DE-FG02-92ER54178, ONR and Joint Technology Office

The University of Maryland Electron Ring (UMER) is a scaled storage ring using low-energy electrons to inexpensively model beams with high-space-charge. With the ability to inject such beams comes the problem of longitudinal end erosion of both the head and tail. It is important therefore to apply suitably designed longitudinal focusing forces to confine the beam and prevent it from its normal expansion. This paper presents the design and prototyping of an induction cell for this purpose. Successful operation of the induction cell would push the achievable number of turns and also enable us to perform studies of the longitudinal physics of such highly space-charge dominated beams. The pulsed voltage requirements for such a system on UMER would require ear-fields that switch 3kV in about 8ns or so for the most intense flat-top rectangular beam injected into the ring. This places a considerable challenge on the electronics used to deliver ideal waveforms with a compact module. Alternate waveforms are also being explored for other various injected beam shapes into UMER.

 
 
WEPMS016 Modeling the Pulse Line Ion Accelerator (PLIA): An Algorithm for Quasi-Static Field Solution ion, coupling, electron, heavy-ion 2364
 
  • A. Friedman
  • R. J. Briggs
    SAIC, Alamo, California
  • D. P. Grote
    LLNL, Livermore, California
  • E. Henestroza, W. L. Waldron
    LBNL, Berkeley, California
  Funding: Work performed under auspices of U. S. DoE by the Univ. of CA, LLNL & LBNL under Contract Nos. W-7405-Eng-48 and DE-AC02-05CH11231

The Pulse-Line Ion Accelerator* (PLIA) is a helical distributed transmission line. A rising pulse applied to the upstream end appears as a moving spatial voltage ramp, on which an ion pulse can be accelerated. This is a promising approach to acceleration and longitudinal compression of an ion beam at high line charge density. In most of the studies carried out to date, using both a simple code for longitudinal beam dynamics and the Warp PIC code, a circuit model for the wave behavior was employed; in Warp, the helix I and V are source terms in elliptic equations for E and B. However, it appears possible to obtain improved fidelity using a "sheath helix" model in the quasi-static limit. Here we describe an algorithmic approach that may be used to effect such a solution.

*R. J. Briggs, PRST-AB 9, 060401 (2006).

 
 
WEPMS017 High-Power Coupler Component Test Stand Status and Results electron, vacuum, pick-up, space-charge 2367
 
  • B. Rusnak
  • C. Adolphsen, G. B. Bowden, L. Ge, R. K. Jobe, Z. Li, B. D. McKee, C. D. Nantista, J. Tice, F. Wang
    SLAC, Menlo Park, California
  • R. Swent
    Stanford University, Stanford, Califormia
  Funding: This work was performed under the auspices of the U. S. DOE by the University of California, LLNL under Contract No. W-7405-Eng-48. SLAC Work supported under Contract No. W-7405-Eng-48.

Fundamental power couplers for superconducting accelerator applications like the ILC are complicated RF transmission line assemblies due to their having to simultaneously accommodate demanding RF power, cryogenic, and cleanliness constraints. When these couplers are RF conditioned, the observed response is an aggregate of all the parts of the coupler and the specific features that dominate the conditioning response are unknown. To better understand and characterize RF conditioning phenomena toward improving performance and reducing conditioning time, a high-power coupler component test stand has been built at SLAC. Operating at 1.3 GHz, this test stand was designed to measure the conditioning behavior of select components of the TTFIII coupler independently, including outer-conductor bellows, diameter changes, copper plating and surface preparations, and cold window geometries and coatings. A description of the test stand, the measurement approach, and a summary of the results obtained are presented.

 
 
WEPMS020 Commissioning the DARHT-II Scaled Accelerator target, kicker, electron, emittance 2373
 
  • C. Ekdahl
  • E. O. Abeyta, P. Aragon, R. Archuleta, R. Bartsch, D. Dalmas, S. Eversole, R. J. Gallegos, J. Harrison, E. Jacquez, J. Johnson, B. T. McCuistian, N. Montoya, S. Nath, D. Oro, L. J. Rowton, M. Sanchez, R. D. Scarpetti, M. Schauer, G. J. Seitz
    LANL, Los Alamos, New Mexico
  • H. Bender, W. Broste, C. Carlson, D. Frayer, D. Johnson, A. Tipton, C.-Y. Tom
    NSTec, Los Alamos, New Mexico
  • M. E. Schulze
    SAIC, Los Alamos, New Mexico
  The DARHT-II accelerator will produce a 2-kA, 17-MeV beam in a 1600-ns pulse when completed this summer. After exiting the accelerator, the long pulse will be sliced into four short pulses by a kicker and quadrupole septum and then transported for several meters to a tantalum target for conversion to bremsstrahlung for radiography. In order to provide early tests of the kicker, septum, transport, and multi-pulse converter target we assembled a short accelerator from the first available refurbished cells, which are now capable of operating of operating at over 200 kV. This scaled accelerator was operated at ~ 8 Mev and ~1 kA, which provides a beam with approximately the same nu/gamma as the final 17-MeV, 2-kA beam, and therefore the same beam dynamics in the downstream transport. In this presentation we will show the results of beam measurements made during the commissioning of this scaled accelerator.  
 
WEPMS021 RF-loss Measurements in an Open Coaxial Resonator for Characterization of Copper Plating coupling, pick-up, cryogenics 2376
 
  • F. L. Krawczyk
  • G. O. Bolme, W. L. Clark, J. P. Kelley, F. A. Martinez, D. C. Nguyen, K. A. Young
    LANL, Los Alamos, New Mexico
  • J. Rathke, D. L. Schrage, T. Schultheiss, L. M. Young
    AES, Medford, NY
  Funding: Work supported by the Office of Naval Research and the High-Energy Laser Joint Technology Office.

An experiment has been conducted to measure small differences in cavity Q caused by various cavity surface treatments. A requirement of the experiment was that it show little sensitivity to the reassembly with various test pieces. We chose a coaxial half-wave resonator, with an outer conductor extending significantly beyond the length of the inner conductor. The outer conductor acts as a cut-off tube, eliminating the need for electric termination and thus any RF-contacts that can influence the Q-measurements. The experiment is aimed at qualifying the performance of cyanide-copper plated GlidCop in comparison with that of a machined GlidCop surface. To maximize the sensitivity of the measurement we use a fixed outer conductor made of annealed OFE copper and only replace the inner conductor, which is mounted on a low-loss Teflon pedestal located in the low electric field region. The Q-values of machined GlidCop and cyanide-copper plated GlidCop inner conductors are measured against the reference Q of the annealed OFE co-axial cavity. This simple configuration allows a statistically significant number of repetitions of measurements and should provide accurate comparative measurements.

 
 
WEPMS035 Measurement of the UCLA/URLS/INFN Hybrid Gun gun, coupling, cathode, emittance 2418
 
  • B. D. O'Shea
  • D. Alesini, M. Ferrario, B. Spataro
    INFN/LNF, Frascati (Roma)
  • A. Boni, A. Fukasawa, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • L. Ficcadenti, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma
  Funding: This work performed under the auspices of the U. S. Department of Energy under contract numbers DE-FG-98ER45693 and DE-FG03-92ER40693.

The hybrid photoinjector is a high current, low emittance photoinjector/accelerator and is under design and collaboration at Roma University La Sapienza, INFN - Laboratori Nazionali di Frascati and the UCLA Particle Beam Physics Lab. The hybrid standing wave-traveling wave photoinjector uses a coupling cell to divide power between a high-field 1.6 cell standing wave photoinjector, for electron emission and collection, and a low power traveling wave accelerator, for acceleration to desired energies at low emittances. Simulation results show promising beam properties of less than 4 mm-mrad emittance, energy spreads of 1.5%, and currents as high as 1.2 kA at energies of 21 MeV. We report on the progress of RF design and results of cold test RF measurements at the UCLA Pegasus Laboratory, including methods for measurements and difficulties arising in the transition from simulation to physical measurements.

 
 
WEPMS040 Active RF Pulse Compression Using Electrically Controlled Semiconductor Switches coupling, laser, resonance, linear-collider 2433
 
  • J. Guo
  • S. G. Tantawi
    SLAC, Menlo Park, California
  In this paper, we will present our recent results on the research of the ultrafast high power RF switches based on silicon. We have developed a switch module at X-band which can use a silicon window as the switch, and scaled it to 30GHz for the CLIC application. The switching is realized by generation of carriers in the bulk silicon. The carriers can be generated electrically or/and optically. The electrically controlled switches use PIN diodes to inject carrier. We have built the PIN diode switches at X-band, with <300ns switching time. The optically controlled switches use powerful laser to excite carriers. By combining the laser excitation and electrical carrier generation, significant reduction in the required power of both the laser and the electrical driver is expected. High power test is under going.  
 
WEPMS041 Multipacting Simulations of TTF-III Coupler Components electron, pick-up, vacuum, linac 2436
 
  • L. Ge
  • C. Adolphsen, K. Ko, L. Lee, Z. Li, C.-K. Ng, G. L. Schussman, F. Wang
    SLAC, Menlo Park, California
  • B. Rusnak
    LLNL, Livermore, California
  Funding: This work was supported by US DOE contract No. DE-AC02-76SF00515. This work was performed under the auspices of the US DOE by the University of California, LLNL under Contract No. W-7405-Eng-48.

The TTF-III coupler adopted for the ILC baseline cavity design has shown a tendency to have long initial high power processing times. A possible cause for the long processing times is believed to be multipacting in various regions of the coupler. To understand performance limitations during high power processing, SLAC has built a flexible high-power coupler test stand. The plan is to test individual sections of the coupler, which includes the cold and warm coaxes, the cold and warm bellows, and the cold window, using the test stand to identify problematic regions. To provide insights for the high power test, detailed numerical simulations of multipacting for these sections will be performed using the 3D multipacting code Track3P. The simulation results will be compared with measurement data.

 
 
WEPMS042 Optimization of the Low-Loss SRF Cavity for the ILC damping, coupling, dipole, superconductivity 2439
 
  • Z. Li
  • L. Ge, K. Ko, L. Lee, C.-K. Ng, G. L. Schussman, L. Xiao
    SLAC, Menlo Park, California
  • T. Higo, Y. Morozumi, K. Saito
    KEK, Ibaraki
  • P. Kneisel
    Jefferson Lab, Newport News, Virginia
  • J. S. Sekutowicz
    DESY, Hamburg
  Funding: Work supported by DOE contract DE-AC02-76SF00515.

The Low-Loss shape cavity design has been proposed as a possible alternative to the baseline TESLA cavity design for the ILC. The advantages of this design over the TESLA cavity are its lower cryogenic loss, and higher achievable gradient due to lower surface fields. High gradient prototypes for such designs have been tested at KEK (ICHIRO) and JLab (LL). However, issues related to HOM damping and multipacting (MP) still need to be addressed. Preliminary numerical studies of the prototype cavities have shown unacceptable damping for some higher-order dipole modes if the typical TESLA HOM couplers are directly adapted to the design. The resulting wakefield will dilute the beam emittance thus reduces the machine luminosity. Furthermore, high gradient tests on a 9-cell prototype at KEK have experienced MP barriers although a single LL cell had achieved a high gradient. From simulations, MP activities are found to occur in the end-groups of the cavity. In this paper, we will present the optimization results of the end-groups for the Low-Loss shape for effective HOM damping and alleviation of multipacting. Comparisons of simulation results with measurements will also be presented.

 
 
WEPMS047 Selecting RF Amplifiers for Impedance Controlled LLRF Systems - Nonlinear Effects and System Implications controls, impedance, klystron, feedback 2451
 
  • J. D. Fox
  • T. Mastorides, C. H. Rivetta, D. Van Winkle
    SLAC, Menlo Park, California
  Funding: Work supported by the U. S. Department of Energy under contract #DE-AC02-76SF00515

Several high-current accelerators use feedback techniques in the accelerating RF systems to control the impedances seen by the circulating beam. These Direct and Comb Loop architectures put the high power klystron and LLRF signal processing components inside feedback loops, and the ultimate behavior of the systems depends on the individual sub-component properties. Imperfections and non-idealities in the signal processing leads to reduced effectiveness in the impedance controlled loops. In the PEP-II LLRF systems non-linear effects have been shown to reduce the achievable beam currents, increase low-mode longitudinal growth rates and reduce the margins and stability of the LLRF control loops. We present measurements of the driver amplifiers used in the PEP-II systems, and present measurement techniques needed to quantify the small-signal gain, linearity, transient response and image frequency generation of these amplifiers. Results are presented from measurements of 5 different types of amplifiers, and the trade-offs in selecting between them highlighted.

 
 
WEPMS050 HOM and LOM Coupler Optimizations for the ILC Crab Cavity damping, dipole, coupling, pick-up 2457
 
  • L. Xiao
  • L. Bellantoni
    Fermilab, Batavia, Illinois
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster
  • P. Goudket, P. A. McIntosh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • K. Ko, Z. Li, C.-K. Ng, G. L. Schussman, A. Seryi, R. Uplenchwar
    SLAC, Menlo Park, California
  Funding: Work supported by DOE contract DE-AC02-76SF00515

The FNAL 9-cell 3.9GHz deflecting cavity designed for the CKM experiment was chosen as the baseline design for the ILC BDS crab cavity. Effective damping is required for the lower-order TM01 modes (LOM), the same-order TM11 modes (SOM) as well as the HOM modes to minimize the beam loading and beam centroid steering due to wakefields. Simulation results of the original CKM design using the eigensolver Omega3P showed that both the notch filters of the HOM/LOM couplers are very sensitive to the notch gap, and the damping of the unwanted modes is suboptimal for the ILC. To meet the ILC requirements, the couplers were redesigned to improve the damping and tuning sensitivity. With the new design, the damping of the LOM/SOM/HOM modes is significantly improved, the sensitivity of the notch filter for the HOM coupler is reduced by one order of magnitude and appears mechanically feasible, and the LOM coupler is simplified by aligning it on the same plane as the SOM coupler and by eliminating the notch filter. In this paper, we will present the coupler optimization and tolerance studies for the crab cavity.

 
 
WEPMS054 45 MW, K-Band Second-Harmonic Multiplier for Testing High-Gradient Accelerator Structures coupling, gun, electron, klystron 2466
 
  • V. P. Yakovlev
  • J. L. Hirshfield
    Omega-P, Inc., New Haven, Connecticut
  • S. Kazakov
    KEK, Ibaraki
  Funding: Research supported by the Department of Energy, Division of High Energy Physics

A relatively simple and inexpensive two-cavity 45 MW, 22.8 GHz second-harmonic multiplier is considered as an RF source for High-Gradient experiments. The design is to be based on use of an existing SLAC electron gun, such as the XL-4 gun. RF drive power would be supplied from a 50 MW SLAC klystron and modulator, and a second modulator would be used to power the gun in the multiplier. An important feature of the harmonic multiplier is TE 01 circular waveguide for output RF power extraction.

 
 
WEPMS056 High Current, Large Aperture, Low HOM, Single Crystal Nb 2.85GHz Superconducting Cavity damping, electron, higher-order-mode, synchrotron 2472
 
  • Q. S. Shu
  • F. H. Lu, I. M. Phipps, J. L. Shi, J. T. Susta
    AMAC, Newport News, Virginia
  • R. P. Redwine, D. Wang, F. Wang
    MIT, Cambridge, Massachusetts
  Funding: Footnotes: The project was funded by the US Department of Energy under contract DE-FG02-05ER84346

There is an increasing demand for High beam Current, high Radio-Frequency (RF) power S-band cavities in existing and new accelerator projects to produce a very brilliant, broadband, teraherz coherent synchrotron radiation source (CRS). To achieve this goal, the RF cavities must be upgraded to a gap voltage of 1.5 MV in the limited space available in the machine with a high gradient superconducting cavity. At the present time there are no cavities and accessories designed to support the high beam currents of up to 100 mA and at the same time provide a high gap voltage at such a high S-band frequency. AMAC proposed a High Current, Large Aperture, Low HOM, Single Crystal Nb 2.85GHz Superconducting Cavity with high RF Power Coupler and HOM absorber device. Comprehensive simulation and optimization to determine the SRF cavity parameters to meet the requirements, provided two alternate designs for the RF input couplers, performed a detailed Higher Order Modes (HOM) analysis, and proposed an HOM absorber concept to dampen the modes exited in the cavity due to the high beam current and high bunch intensity.

 
 
WEPMS057 Innovative Modular, Multiple Power Levels, 325 MHz Spokes Cavities Power Couplers vacuum, proton, electron, linac 2475
 
  • Q. S. Shu
  • G. F. Chen, F. H. Lu, I. M. Phipps, J. T. Susta
    AMAC, Newport News, Virginia
  • T. N. Khabiboulline, N. Solyak
    Fermilab, Batavia, Illinois
  Funding: Footnotes: The project was funded by the US Department of Energy under contract DE-FG02-05ER84346

In order to increase the protons energy up to 8 GeV in a driver Linac, the particles must be accelerated through various stages and three different power levels (25kW, 100kW and 210kW) are required for the 325 MHz Fermilab Proton Driver couplers. The problem identified by the project is that no High RF power coupler for these cavities has ever been produced using US industrial capabilities. AMAC proposed a novel resolution by development of innovative modular, multiple power levels, 325 MHz spoke cavities power couplers, which to meet three type cavities with one coupler design. The simulation and concept design are presented. The results of HFSS, MAFIA, ANSYS, and Multipacting are also discussed.

 
 
WEPMS068 JLab High-Current CW Cryomodules for ERL and FEL Applications damping, vacuum, insertion, linac 2493
 
  • R. A. Rimmer
  • R. Bundy, G. Cheng, G. Ciovati, E. Daly, R. Getz, J. Henry, W. R. Hicks, P. Kneisel, S. Manning, R. Manus, K. Smith, M. Stirbet, L. Turlington, L. Vogel, H. Wang, K. Wilson
    Jefferson Lab, Newport News, Virginia
  • F. Marhauser
    JLAB, Newport News, Virginia
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

We describe the developments underway at JLab to develop new CW cryomodules capable of transporting up to Ampere-levels of beam currents for use in ERLs and FELs. Goals include an efficient cell shape, high packing factor for efficient real-estate gradient and very strong HOM damping to push BBU thresholds up by two or more orders of magnitude compared to existing designs. Cavity shape, HOM damping and ancillary components are optimized for this application. Designs are being developed for low-frequency (750 MHz), Ampere-class compact FELs and for high-frequency (1.5 GHz), 100 mA configurations. These designs and concepts can easily be scaled to other frequencies. We present the results of conceptual design studies, simulations and prototype measurements. These modules are being developed for the next generation ERL based high power FELs but may be useful for other applications such as high energy light sources, electron cooling, electron-ion colliders, industrial processing etc.

 
 
WEPMS070 Simulation and Measurements of a Heavily HOM-Damped Multi-cell SRF Cavity Prototype dipole, impedance, damping, coupling 2496
 
  • H. Wang
  • F. Marhauser
    JLAB, Newport News, Virginia
  • R. A. Rimmer
    Jefferson Lab, Newport News, Virginia
  Funding: This manuscript has been authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177, and by The Office of Naval Research under contract to the Dept. of Energy.

After initial cavity shape optimization* and cryomodule development** for an Ampere-class FEL, we have simulated the whole 5-cell high-current (HC) cavity structure with six waveguide couplers for HOM damping and fundamental power coupling. The time-domain wakefield method using MAFIA is primarily used for calculation of the broadband impedance. Microwave Studio and Omega-3P are also used for the calculation of external Q (Qext) of individual HOMs. A half scale (1497MHz) single-cell model and a 5-cell copper cavity including dummy HOM waveguide loads were fabricated. Details of measurement results on these prototypes including HOM Qext spectrum, bead-pull data, data analysis technique and comparison to the simulations will be presented.

* H. Wang et. al., "Elliptical Cavity Shape Optimization for Acceleration and HOM Damping," Proc. PAC 05, Knoxville TN, USA, 2005* R. A.Rimmer et al.; EPAC 2006, paper MOPCH182

 
 
WEPMS075 Development and Testing of High Power RF Vector Modulators controls, impedance, klystron, linac 2508
 
  • Y. W. Kang
  • M. S. Champion, T. W. Hardek, S.-H. Kim, M. P. McCarthy, A. V. Vassioutchenko, J. L. Wilson
    ORNL, Oak Ridge, Tennessee
  Funding: This work was supported by SNS through UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

High power vector modulators can allow a fan-out RF power distribution system that can power many accelerating cavities from a single high-power klystron amplifier. The configuration enables independent control of amplitudes and phases of RF voltages at the cavities. A vector modulator employs either one or two hybrids with two fast phase shifters. Prototype high power RF vector modulators employing a hybrid and two fast ferrite phase shifters in coaxial TEM transmission lines for 402.5 MHz and 805 MHz are built and tested. RF properties of the design and result of high power testing are presented.

 
 
WEPMS080 SRF Cavity Transient Beam Loading Detection - Simulation and Measurement linac, beam-loading, accumulation, controls 2517
 
  • Y. Zhang
  • I. E. Campisi, C. Deibele, J. Galambos, S. Henderson, Y. W. Kang, H. Ma, J. L. Wilson
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

Beam phase measurement based on detection of transient beam loading signal in a Superconducting (SC) cavity is utilized to setup the cavity synchronous phase. It has the potential to become a fast tune-up technique for a high intensity SC electron linac, as cavity phase could be determined precisely with only a few beam pulses. The paper introduces a transient detector study in the Spallation Neutron Source (SNS) proton linac, and discusses one of the major challenges - stochastic noise in the cavity RF system, which deteriorates the precision and increases the time needed for phase measurement with this technique. We analyze the influence of RF noise to the phase measurement in a simulation study with a beam-cavity model. Beam signal measurement with the cavity Low Level RF (LLRF) system and the initial experiment of prototype detectors are briefly introduced.

 
 
WEPMS081 Simulation and Initial Test Result of the SNS Ring RF System controls, beam-loading, beam-losses, feedback 2520
 
  • Y. Zhang
  • M. S. Champion, P. Chu, S. M. Cousineau, V. V. Danilov, T. W. Hardek, J. A. Holmes, H. Ma, M. F. Piller, M. A. Plum
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy

A simulation code has been developed for the study of the Spallation Neutron Source (SNS) ring RF control. The code uses the time-domain solvers to compute beam-cavity interactions, and FFT methods to simulate time responses of the linear RF system. The important ingredients of the system are considered in the simulation model, which include the beam loading, dynamic cavity detuning, circuit bandwidth, loop delay, proportional-integral (P-I) controller for feedback and adaptive feed forward, stochastic noise, with-in-turn RF parameter change, beam current fluctuation and beam bunch leakage, etc. The beam loss in the accumulation ring goes up as the beam power increases, and thus a precise control of bunching voltage phase and amplitude is required to limit beam loss. This simulation tool will help the development a correct RF control and to achieve the goal of minimizing the beam loss.

 
 
WEPMS082 PVC - An ILC RF Cryomodule Software Simulator feedback, controls, klystron, superconducting-RF 2523
 
  • J. K. Keung
  • N. Lockyer
    TRIUMF, Vancouver
  • S. Nagaitsev
    Fermilab, Batavia, Illinois
  • F. M. Newcomer
    University of Pennsylvania, Philadelphia, Pennsylvania
  The Penn Virtual Cavity (PVC) simulator is a object oriented RF Cavity simulator with a user friendly Linux GUI, as well as a web interface. It is a tool to help understand the effects of each component in the RF system. It can simulate an International Linear Collider (ILC) cryomodule consisting of eight 9-cell cavities, together with its associated high voltage modulator, a klystron, and RF power distribution system. The uses range from experts designing LLRF control algorithms, to beginners learning about the general RF characteristics of the SRF cavities. PVC explores effects such as Lorentz Detuning, beam loading (with bunch to bunch fluctuations), 8/9pi modes, I/Q feedback and feedforward, cavity Q-drop, amplitude and phase jitter and ripples, as well as calibration errors. The current status of the PVC and the conclusions derived from the simulations will be reported, along with comparisons to the DESY-TTF cryomodules.

http://einstein.hep.upenn.edu/~keungj/simulation.html

 
 
WEPMS083 A Low-Voltage Klystron for the ILC and ILC Testing Program klystron, gun, cathode, linear-collider 2526
 
  • N. Barov
  Funding: Work supported by the US Department of Energy.

FAR-TECH, Inc. is developing and building a 36 kV, 830 kW klystron for the International Linear Collider (ILC) testing program. A variant of the tube can also be used to supply RF energy for a 2-3 meter section of ILC. The tube design is of the multiple-beam klystron (MBK) type, using ten beams with confined flow focusing. The design optimizes small tube size and low cost. The initial prototype will use an electromagnet, but the design allows for the eventual use of a permanent magnet solenoid. An efficiency of 65% is expected. We will present the design and status of the construction of the klystron and supporting systems.

 
 
WEPMS086 Design of a 26 GHz Wakefield Power Extractor electron, coupling, vacuum, single-bunch 2535
 
  • C.-J. Jing
  • W. Gai, F. Gao, R. Konecny
    ANL, Argonne, Illinois
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  High frequency, high output power, and high efficiency RF sources have compelling applications in accelerators for high energy physics. The 26 GHz RF power extractor proposed in this paper provides a practical approach for generating high power RF in this particular frequency range. The extractor is designed to couple out RF power generated from the high charge electron bunch train at the Argonne Wakefield Accelerator (AWA) facility traversing dielectric loaded or corrugated waveguides. In this paper we evaluate two different techniques for extracting the beam energy at the AWA: one is based on a completely metallic corrugated waveguide and coupler; and the other is based on a dielectric lined circular waveguide and coupler. Designs for both RF power extractors will be presented including parameter optimization, the electromagnetic modeling of structures and RF couplers, and the analysis of beam dynamics.  
 
WEPMS087 Conceptual Design of an L-Band Recirculating Superconducting Traveling Wave Accelerating Structure coupling, feedback, acceleration, collider 2538
 
  • A. Kanareykin
  • P. V. Avrakhov, Z. Liu
    Euclid TechLabs, LLC, Solon, Ohio
  • W. Gai
    ANL, Argonne, Illinois
  • S. Kazakov
    KEK, Ibaraki
  • N. Solyak
    Fermilab, Batavia, Illinois
  • V. P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  Funding: This research is supported by the US Department of Energy

We describe a conceptual design for a superconducting traveling wave accelerator for the ILC. The RF feedback system plus phase shifter can redirect the accelerating wave that passed through the STWA section back to the input of the accelerating structure. In this paper, the STWA cell shape optimization, coupler cell design and rat race ring coupler in the feedback loop are presented. The STWA cell shape is similar to the LL cavity with a 60 mm disk diameter. A 9-cell STWA operates at the mode with group velocity as low as 0.0106 c. Both the ratio of peak electric field and magnetic field to the axial electric field are smaller than in the TESLA 9-cell cavity. The STWA structure has more cells per unit length than a TESLA structure but provides an accelerating gradient higher than a TESLA structure, consequently reducing the cost. The designed rat race directional coupler with four ports has ?3 dB direct coupling coefficients, 16.5 MHz bandwidth between ?30 dB isolations and 1.1 MHz bandwidth between ?30 dB reflection coefficients. Effects of the mechanical tolerances are also discussed.

 
 
WEPMS089 Multipacting Analysis of a Quarter Wave Choke Joint used for Insertion of a Demountable Cathode into a SRF Photoinjector cathode, gun, electron, insertion 2544
 
  • A. Burrill
  • I. Ben-Zvi
    BNL, Upton, Long Island, New York
  • M. D. Cole, J. Rathke
    AES, Princeton, New Jersey
  • P. Kneisel, R. Manus, R. A. Rimmer
    Jefferson Lab, Newport News, Virginia
  Funding: Work done under the auspices of the US DOE.

The multipacting phenomena in accelerating structures and coaxial lines are well documented and methods of mitigating or suppressing it are understood. The multipacting that occurs in a quarter wave choke joint designed to mount a cathode insertion stalk into a superconducting RF photoinjector has been analyzed via calculations and experimental measurements and the effect of introducing multipacting suppression grooves into the structure is analyzed. Several alternative choke joint designs are analyzed and suggestions made regarding future choke joint development. Furthermore, the problems encountered in cleaning the choke joint surfaces, factors important in changes to the secondary electron yield, are discussed and evaluated. This design is being implemented on the BNL 1.3 GHz photoinjector, previously used for measurement of the quantum efficiency of bare Nb, to allow for the introduction of other cathode materials for study, and to verify the design functions properly prior to constructing our 703 MHz photoinjector with a similar choke joint design.

 
 
WEPMS092 A Simplified Approach to Analyze and Model Inductive Voltage Adder impedance, kicker, linac, pulsed-power 2553
 
  • W. Zhang
  • W. Eng, C. Pai, J. Sandberg, Y. Tan, Y. Tian
    BNL, Upton, Long Island, New York
  Funding: Work performed under auspices of U. S. Departemnt of Energy.

We have recently developed a simplified model and a set of simple formulas for inductive voltage adder design. This model reveals the relationship of output waveform parameters and hardware designs. A computer simulation has demonstrated that parameter estimation based on this approach is accurate as compared to an actual circuit. This approach can be used in early stages of project development to assist feasibility study, geometry selection in engineering design, and parameter selection of critical components. In this paper, we give the deduction of a simplified model. Among the estimation formulas we present are those for pulse rise time, system impedance, and number of stages. Examples are used to illustrate the advantage of this approach. This approach is also applicable to induction LINAC design.

 
 
THOAKI03 Revision of Accelerating and Damping Structures for KEK STF 45 MV/m Accelerator Modules damping, coupling, linac, higher-order-mode 2575
 
  • Y. Morozumi
  • F. Furuta, T. Higo, T. Saeki, K. Saito
    KEK, Ibaraki
  KEK is constructing its superconducting RF test facility and installing 1.3 GHz superconducting accelerator structures. Learning from experience with our first 45MV/m 9-cell structures, we have revised accelerating structures as well as higher order mode dampers for improved performance. Problems found in the earlier structures are discussed and solutions are presented. New experimental results will be also reported.  
slides icon Slides  
 
THOBKI01 Development of a Movable Collimator with Low Beam Impedance radiation, vacuum, impedance, collider 2587
 
  • Y. Suetsugu
  • K. Shibata
    KEK, Ibaraki
  A movable collimator (mask) with low beam impedance was proposed for high-intensity accelerators. The collimator head is supported by a ceramic rod with a thin metal coating, instead of a metal block or rod so far. Owing to the ceramic rod, beams hardly see the head, and thus the beam impedance decreases. The thin metal coating prevents the head from unwanted charge up. The head is also made of ceramic, but coated by copper to mitigate the Joule heating by beams. The SiC blocks are prepared close to the head to absorb trapped modes. Impedances and loss factors were calculated by simulation codes, and then the growth rates of coupled bunch instabilities were estimated. A trial model was designed based on the calculation, and installed in the KEK B-factory (KEKB) positron ring. The head had a cross section of 5 mm X 4 mm, and a length of 90 mm, which corresponded to about one radiation length. The performance of the trial model was investigated with beams. The temperatures of components near to the collimator were also measured, which was an indication of the intensity of excited HOM.  
slides icon Slides  
 
THOAAB01 Longitudinal Beam Parameters Study in the SNS Linac linac, electron, emittance, ion 2608
 
  • A. Feschenko
  • A. V. Aleksandrov, S. Assadi, J. Galambos, S. Henderson
    ORNL, Oak Ridge, Tennessee
  • L. V. Kravchuk, A. A. Menshov
    RAS/INR, Moscow
  Funding: SNS is managed by UT-Battelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

SNS Linac utilizes several accelerating structures operating at two frequencies. CCL and SCL operate at 805 MHz while 402.5 MHz is used for RFQ and DTL. Beam transfer from the previous part of the accelerator to the subsequent one requires careful longitudinal matching to improve beam transmission and to minimize beam losses. Longitudinal beam parameters have been investigated with the help of three Bunch Shape Monitors installed in the intersegments of the first CCL Module. The results of bunch shape observations for different accelerator settings are presented. Longitudinal beam emittance has been measured and optimized. Longitudinal beam halo has been evaluated as well.

 
slides icon Slides  
 
THIBKI04 Developments of Long-pulse Klystron Modulator for KEK Super-conducting RF Test Facility klystron, controls, superconducting-RF, power-supply 2691
 
  • H. Mori
  • M. Akemoto, S. Fukuda, H. Honma, H. Nakajima, T. Shidara
    KEK, Ibaraki
  • K. Furuya
    Nichicon (Kusatsu) Corporation, Shiga
  NICHICON (KUSATSU) CORPORATION and KEK have developed a novel long-pulse klystron modulator for both of single-beam tube(136kVp*100A) and multi-beam tube(120kVp*140A). The main features are; - crowberless system with optimized IGBT snubber circuit, - compact and highly reliable Self-Healing capacitors, - HV & LV twin pulse transformers of laminated steel core for reduced tank volume. Detailed configuration and test results to be presented.  
slides icon Slides  
 
THPMN008 Evaluation of Luminosity Reduction in the ILC Head-on Scheme from Parasitic Collisions luminosity, beam-beam-effects, extraction, injection 2722
 
  • J. Brossard
  • M. Alabau
    IFIC, Valencia
  • D. A.-K. Angal-Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • P. Bambade, T. Derrien
    LAL, Orsay
  • O. Napoly, J. Payet
    CEA, Gif-sur-Yvette
  An interaction region with head-on collisions is being developed for the ILC as an alternative to the base line 14 mrad crossing angle design, motivated by simpler beam manipulations upstream of the interaction point and a more favourable configuration for the detector and physics analysis. The design of the post-collision beam line in this scheme involves however a number of technological challenges, one of which is the strength requirement for the electrostatic separators placed immediately after the final doublet to extract the spent beam. In this paper, we examine in detail the main mechanism behind this requirement, the multi-beam kink instability, which results from the long-range beam-beam forces at the parasitic crossings after the bunches have been extracted. Our analysis uses realistic bunch distributions, the Guinea-Pig program to treat beam-beam effects at the interaction point and the DIMAD program to track the disrupted beam distributions in the post-collision beam line. A version of the beam-beam deflection based interaction point feedback system with an improved filtering algorithm is also studied to mitigate the luminosity deterioration from the instability.  
 
THPMN009 Backscattering of Secondary Particles into the ILC Detectors from Beam Losses Along the Extraction Lines photon, extraction, electron, collider 2725
 
  • O. Dadoun
  • P. Bambade
    LAL, Orsay
  At the International Linear Collider (ILC) the beams will be focused to extremely small spot sizes in order to achieve the desired luminosity. After the collision the beams must be brought to the dump with minimal losses. In spite of all the attention put into the design of the extraction line, the loss of some disrupted beam particles, beamstrahlung or synchrotron radiation photons is unavoidable. These losses will generate low-energy secondary particles, such as photons, electrons and neutron, a fraction of which can be back-scattered towards the interaction point and generate backgrounds into the detector. In this paper we present an evaluation of such backgrounds, using the BDSIM and Mokka simulations, for several presently considered ILC extraction lines and detectors.  
 
THPMN010 GUINEA-PIG++ : An Upgraded Version of the Linear Collider Beam-Beam Interaction Simulation Code GUINEA-PIG luminosity, background, linear-collider, collider 2728
 
  • C. Rimbault
  • M. Alabau
    IFIC, Valencia
  • P. Bambade, O. Dadoun, G. Le Meur, F. Touze
    LAL, Orsay
  • D. Schulte
    CERN, Geneva
  GUINEA-PIG++ is a newly developed object-oriented version of the Linear Collider beam-beam simulation program GUINEA-PIG. The main goals of this project are to provide a reliable, modular, documented and versatile framework enabling convenient implementation of new features and functionalities. Examples of improvements described in this paper are an easy interface to study the impact of electromagnetic effects on Bhabha event selections, a treatment of spin depolarization effects, automatic consistency checks and adjustments of internal computational parameters, upgraded input/output and user interface, an optimised setup for massive production on distributed computing GRIDs. A possible setup to perform fast parallelised computations is also discussed.  
 
THPMN015 Longitudinal Electrode Voltage Distribution on a 4-rod RFQ Simulation Model rfq, quadrupole 2737
 
  • P. Fischer
  • N. Mueller, A. Schempp
    IAP, Frankfurt am Main
  For a proper working RFQ with minimized particle losses, a constant longitudinal voltage distribution on the electrodes is needed. This assures a sufficient compensation of the beam space change. The local electrode voltage and its change is mainly given by the varying aperture of the quadrupole and in consequence the changing local capacity. The simulation of the RFQ model with modulated electrodes is a very complex thread. An example for such a model will be given here.  
 
THPMN016 Study of Fill Patterns for the ILC Electron Damping Ring ion, damping, electron, ion-effects 2739
 
  • G. X. Xia
  • Eckhard. Elsen, D. Kruecker
    DESY, Hamburg
  Funding: This work is supported by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899

Ion effects are detrimental to the performance of the electron damping ring for the International Linear Collider (ILC). Irregular bunch patterns, e.g. short bunch trains with interleaved gaps, are an effective way to alleviate ion effects. In this paper, we discuss the fill patterns and their impact on the ion effects for the ILC electron damping ring.

 
 
THPMN017 Polarized Positron Production and Tracking at the ILC Positron Source positron, target, polarization, photon 2742
 
  • A. Ushakov
  • S. Riemann, A. Schaelicke
    DESY Zeuthen, Zeuthen
  Funding: This work is supported by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

A positron source based on a helical undulator system is planned to be used for the future International Linear Collider (ILC). Depending on the accelerator design it will be possible to get polarized positrons at the interaction point. A source performance with high positron yield and high polarization is the aim of our design studies. We focus on the optimization of target and capture section using several simulation codes. FLUKA is a suitable tool to calculate the positron yield, heat deposition, neutron generation and induced activity of source parts. The ASTRA code is used to calculate positron capture efficiency into the optical matching device. The new release of Geant4 includes the spin dependence of all QED processes and allows to perform a helicity-dependent tracking of particles through target and capture section. Starting with a cross-check, the synergy of these three codes allowed to specify the the parameters of a polarized positron source.

 
 
THPMN023 Study of an Electron Linac Driven X-Ray Radio-Tomographic System Response as a Function of the Electron Beam Current electron, photon, linac, target 2757
 
  • L. Auditore, L. Auditore, R. C. Barna, D. De Pasquale, D. Loria, A. Trifiro, M. Trimarchi
    Universita di Messina, Messina
  • U. Emanuele, A. Italiano
    INFN - Gruppo Messina, S. Agata, Messina
  At the Dipartimento di Fisica, Universita di Messina, a high energy x-ray radio-tomography system driven by a 5 MeV electron linac, has been recently assembled. It has been tested and has already provided good results in inspecting heavy materials. In order to achieve good radiographic results, especially when inspecting heavy or thick materials, an enhancement of the x-ray dose at the sample position can be required and most of times this is associated to an enhancement of the grey level in the acquired image according to a linear function. Nevertheless, in the hypothesis to work at the maximum magnetron power, a variation of the x-ray dose, obtained changing the electron beam current, is associated to a variation of the electron beam energy. As a consequence, the x-ray energy spectrum varies thus influencing the response of the radio-tomographic system. This does not allow a linear correspondence between the x-ray fluence (or the electron beam current) and the image grey level. By means of MCNP-4C2 simulations, the influence of electron beam energy variations on the produced bremsstrahlung spectrum has been studied and the theoretical results have been experimentally confirmed.  
 
THPMN029 A DC/Pulse Electron Gun with an Aperture Grid cathode, extraction, gun, electron 2775
 
  • T. Sugimura
  • M. Ikeda, S. Ohsawa
    KEK, Ibaraki
  A new thermionic-electron gun for a high-brightness X-ray source is under development. Its extraction voltage and design current are 60 keV and 100 mA, respectively. In order to focus beams on a metal target within 1.0 x 0.1 mm2, it is required for the emittance of a beam to be small. A grid electrode is not an orthodox mesh grid but an aperture grid. An increase of the beam emittance and heat generation at a grid will be surpressed. Electrodes dimensions such as shape of Wehnelt electrode and a shape of an aperture grid are determined by the EGUN simulation and parameters were optimized. In this paper a result of beam examination will be reported.  
 
THPMN042 Design of a 200keV High Pulse Current Electron Beam Facility electron, cathode, vacuum, plasma 2811
 
  • G. Feng
  • Y. Hong, Y. J. Pei, X. Wang
    USTC/NSRL, Hefei, Anhui
  In the paper, design of a 200keV high pulse current electron beam facility is introduced, which is used to generate plasma by interaction between electron beam and gas. Physical parameters of the beam have been selected to satisfy the plasma experiment's need. LaB6 is chosen as cathode because of its high efficient emission and long lifetime. Temperature distribution simulation in the facility has been finished with I-deas code. Because the maximum working temperature in the system is 2400°C, grid is made of heat-resistant metal Mo. In order to get high pulse current and line shaping electron beam, shape of electrodes has been optimized. Electric field distribution in the system and process of electron beam emission have been simulated with opera-3d, which considering space charge effects. Ceramic flange's electrics and mechanics properties have also been analyzed. Metal foil window is made of titanium with 40μm thickness. Relationship between initial energy and energy loss of the electron beam has been obtained by MC simulation during passing through the window. Making of the facility has been finished and some parameters have been measured through testing experiments.  
 
THPMN047 Commissioning Scenario for L-band Electron Accelerator by PARMELA Code linac, bunching, electron, focusing 2820
 
  • H. R. Yang
  • M.-H. Cho, S. H. Kim, S.-I. Moon, W. Namkung
    POSTECH, Pohang, Kyungbuk
  • S. D. Jang, S. J. Kwon, J.-S. Oh, S. J. Park, Y. G. Son
    PAL, Pohang, Kyungbuk
  Funding: Work supported by KAPRA and PAL

An intense L-band electron accelerator is now being installed at PAL (Pohang Accelerator Laboratory) for initial tests. It is capable of producing 10-MeV electron beams with average 30 kW. This accelerator has a diode-type E-gun, a pre-buncher cavity, and an accelerating column with the built-in bunching section. We conduct simulational study for the commissioning scenario by the PARMELA code. At first, we observe the beam position and the beam current when the beam line is misaligned under no fields. Next, turning on focusing solenoids we observe the beam position change to check the alignments of the solenoids. Finally, varying RF power and phase of the pre-buncher we observe beam energy and beam power to obtain the optimum pre-buncher condition. In this paper, we present simulational results for each step. We also present commissioning strategies based on these results.

 
 
THPMN056 Comparison of ILC Fast Beam-Beam Feedback Performance in the e-e- and e+e- Modes of Operation luminosity, feedback, ground-motion, lattice 2832
 
  • M. Alabau
  • P. Bambade
    LAL, Orsay
  • A. Faus-Golfe
    IFIC, Valencia
  • A. Latina, D. Schulte
    CERN, Geneva
  Several feedback loops are required in the Beam Delivery System (BDS) of the International Linear Collider (ILC) to preserve the luminosity in the presence of dynamic imperfections. Realistic simulations have been carried out to study the performance of the beam-beam deflection based fast feedback system, for both e+e- and e-e- modes of operation. The beam-beam effects in the e-e- collisions make both the luminosity and the deflections more sensitive to offsets at the IP than in the case of the e+e- collisions. This reduces the performance of the feedback system in comparison to the standard e+e- collisions, and may require a different beam parameter optimization.  
 
THPMN061 Bunch Compressor for Beam-Based Alignment linac, emittance, alignment, quadrupole 2844
 
  • A. Latina
  • P. Eliasson
    Uppsala University, Uppsala
  • D. Schulte
    CERN, Geneva
  Funding: Supported by the European Community under the 6th Framework Programme "Structuring the European Research Area".

Misalignments in the main linac of future linear colliders can lead to significant emittance growth. Beam-based alignment algorithms, such as Dispersion Free Steering (DFS), are necessary to mitigate these effects. We study how to use the Bunch Compressor to create the off-energy beams necessary for DFS and discuss the effectiveness of this method.

 
 
THPMN062 Dynamic Effects During Beam-Based Alignment emittance, alignment, quadrupole, linac 2847
 
  • D. Schulte
  • P. Eliasson, A. Latina
    CERN, Geneva
  Funding: Supported by the European Community under the 6th Framework Programme "Structuring the European Research Area".

Complex beam-based alignment procedures are needed in future linear colliders to reduce the negative effects of static imperfections in the main linac on the beam emittance. The efficiency of these procedures could be affected by dynamic imperfections during their application. In this paper we study the resulting emittance growth.

 
 
THPMN072 Material Damage Test for ILC Collimators target, vacuum, radiation, single-bunch 2868
 
  • J.-L. Fernandez-Hernando
  • G. A. Blair, S. T. Boogert
    Royal Holloway, University of London, Surrey
  • G. Ellwood, R. J.S. Greenhalgh
    STFC/RAL, Chilton, Didcot, Oxon
  • L. Keller
    SLAC, Menlo Park, California
  • N. K. Watson
    Birmingham University, Birmingham
  Simulations were completed to determine the energy deposition of an ILC bunch using FLUKA , Geant4 and EGS4 to a set of different spoiler designs. These shower simulations were used as inputs to thermal and mechanical studies using ANSYS. This paper presents different proposals to carry out a material damage test beam that would benchmark the energy deposition simulations and the ANSYS studies and give the researchers valuable data which will help achieve a definitive ILC spoiler design.  
 
THPMN074 The Status of the HeLiCal Contribution to the Polarised Positron Source for the International Linear Collider undulator, positron, electron, damping 2874
 
  • D. J. Scott
  • I. R. Bailey, D. P. Barber, J. B. Dainton, L. J. Jenner
    Cockcroft Institute, Warrington, Cheshire
  • E. Baynham, T. W. Bradshaw, A. J. Brummitt, F. S. Carr, Y. Ivanyushenkov, A. J. Lintern, J. Rochford
    STFC/RAL, Chilton, Didcot, Oxon
  • A. Birch, J. A. Clarke, O. B. Malyshev
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • L. I. Malysheva
    Liverpool University, Science Faculty, Liverpool
  • G. A. Moortgat-Pick
    Durham University, Durham
  The positron source for the International Linear Collider is a helical undulator-based design, which can generate unprecedented quantities of polarised positrons. The HeLiCal collaboration takes responsibility for the design and prototyping of the superconducting helical undulator, which is a highly demanding short period device with very small aperture, and also leads the start to end simulations of the polarised electrons and positrons to ensure that the high polarisation levels generated survive from the source up to the collision point. This paper will provide an update on the work of the collaboration, focusing on these two topic areas, and will also discuss future plans.  
 
THPMN079 Simulation of ILC Feedback BPM Signals in an Intense Background Environment background, feedback, extraction, alignment 2889
 
  • A. F. Hartin
  • R. Arnold, S. Molloy, S. Smith, M. Woods
    SLAC, Menlo Park, California
  • P. Burrows, G. B. Christian, C. I. Clarke, B. Constance, H. D. Khah, C. Perry, C. Swinson, G. R. White
    JAI, Oxford
  • A. Kalinin
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  Funding: This work is supported in part by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

Experiment T-488 at SLAC, End Station A recorded distorted BPM voltage signals and an accurate simulation of these signals was performed. Geant simulations provided the energy and momentum spectrum of the incident spray and secondary emissions, and a method via image charges was used to convert particle momenta and number density into BPM stripline currents. Good agreement was achieved between simulated and measured signals. Further simulation of experiment T-488 with incident beam on axis and impinging on a thin radiator predicted minimal impact due to secondary emission. By extension to worst case conditions expected at the ILC, simulations showed that background hits on BPM striplines would have a negligible impact on the accuracy of beam position measurements and hence the operation of the FONT feedback system

 
 
THPMN083 Spin Tracking at the International Linear Collider polarization, damping, linac, positron 2901
 
  • I. R. Bailey, I. R. Bailey, P. Cooke, L. Zang
    Liverpool University, Science Faculty, Liverpool
  • D. P. Barber
    DESY, Hamburg
  • E. Baynham, T. W. Bradshaw, F. S. Carr, Y. Ivanyushenkov, J. Rochford
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • A. Birch
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • A. J. Brummitt, A. J. Lintern
    STFC/RAL, Chilton, Didcot, Oxon
  • J. A. Clarke, J. B. Dainton, L. J. Jenner, O. B. Malyshev, L. I. Malysheva, G. A. Moortgat-Pick, D. J. Scott
    Cockcroft Institute, Warrington, Cheshire
  • A. F. Hartin
    OXFORDphysics, Oxford, Oxon
  Funding: This work is supported in part by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

Polarized electron and positron beams are foreseen for the future International Linear Collider (ILC), with polarized electrons already included in the baseline design and polarized positrons seen as a highly-desirable upgrade. High precision physics requires the polarization of both beams to be known with a relative uncertainty of approximately 0.5% or better. Therefore all possible depolarization effects that could operate between the polarized sources and the interaction regions have to be carefully modelled. The "heLiCal" collaboration aims to provide a full "cradle-to-grave" analysis of all depolarization effects at the ILC, and to develop software tools to carry out appropriate computer simulations. In this paper we report on the first phase of our work which includes extensive simulations of the ILC spin-dynamics and a detailed study of beam-beam depolarization effects at the interaction point(s).

 
 
THPMN086 Metamaterial-loaded Waveguides for Accelerator Applications electron, radiation, dipole, higher-order-mode 2906
 
  • S. P. Antipov
  • M. E. Conde, W. Gai, R. Konecny, W. Liu, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • L. K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
  Funding: US Department of Energy National Science Foundation grant # 0237162

Metamaterials (MTM) are artificial periodic structures made of small elements and designed to obtain specific electromagnetic properties. As long as the periodicity and the size of the elements are much smaller than the wavelength of interest, an artificial structure can be described by a permittivity and permeability, just like natural materials. Metamaterials can be customized to have the permittivity and permeability desired for a particular application. Waveguides loaded with metamaterials are of interest because the metamaterials can change the dispersion relation of the waveguide significantly. Slow backward waves, for example, can be produced in a LHM-loaded waveguide without corrugations. In this paper we present theoretical studies and computer modeling of waveguides loaded with 2D anisotropic metamaterials, including the dispersion relation for a MTM-loaded waveguide. The dispersion relation of a MTM-loaded waveguide has several interesting frequency bands which are described. It is shown theoretically that dipole mode suppression may be possible. Therefore, metamaterials can be used to suppress wakefields in accelerating structures.

 
 
THPMN087 Simulations of the Rotating Positron Target in the Presence of OMD Field target, positron, optical-matching, linear-collider 2909
 
  • S. P. Antipov
  • W. Gai, W. Liu
    ANL, Argonne, Illinois
  • L. K. Spentzouris
    Illinois Institute of Technology, Chicago, Illinois
  Funding: US Department of Energy

For an ILC undulator-based positron source target configuration, a strong optical matching device (OMD) field is needed inside the target to increase the positron yield (by more than 40%)[1]. It is also required that the positron target is constantly rotated to reduce thermal and radiation damage. We report on a simulation of the rotating metal target wheel under a strong magnetic field. By rearranging Maxwell?s equations for a rotating frame and using FEMLAB, we have solved the detailed magnetic field distribution and eddy current of a rotating metal disk in magnetic field, and so the required power to drive the target wheel. In order to validate the simulation process, we have compared our results with previous experimental data [2] and found they are in very good agreement, but differ from previous approximate models [3]. Here we give detailed results on the proposed ILC target system, such as induced magnetic field (dipole and higher orders), eddy current distribution and the driving force requirements. The effect of these higher order fields on the positron beam dynamics is also considered.

 
 
THPMN091 Study on High Flux Accelerator Based Slow Positrons Source positron, target, radiation, electron 2921
 
  • J. Long
  • S. Chemerisov, W. Gai, C. D. Jonah, W. Liu, H. Wang
    ANL, Argonne, Illinois
  This work represents a new direction in the development of linac-based high intense slow positron source. The approach is to use RF cavities to decelerate positrons (to ~100 keV) which are produced from a high-energy electron (~10 MeV) beam irradiating a heavy-metal target. In this paper, we present simulation works on the technique to decelerate the positrons to energies where techniques such as penning traps, DC deceleration or moderation can be done with high efficiency. Present techniques for decelerating positrons by thermalizing them in tungsten moderator have an efficiency of 10-3 to 10-5 slow positrons per high energy positron, so even modest success in decelerating and trapping positrons can lead to an increase in the production of low-energy positrons. The challenging aspect of this work is the broad energy and angular distribution of the positrons produced by pair-production in the heavy-metal target. We have explored the use of an adiabatic-matching device and a pillbox RF cavity and have obtained promising results.  
 
THPMN092 Design and Prototyping of the AMD for the ILC positron, target, power-supply, coupling 2924
 
  • H. Wang
  • W. Gai, W. Liu
    ANL, Argonne, Illinois
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • T. Wong
    Illinois Institute of Technology, Chicago, Illinois
  The Adiabatic Matching Device (AMD), a tapered magnetic field with initial on-axis magnetic field up to 5 Tesla, is required in ILC positron capturing optics. An option of using a pulsed normal conducting structure based on flux concentrator technique can be used to generate high magnetic field*. By choosing the AMD geometry appropriately, one can shape the on-axis magnetic field profile by varying the inner shape of a flux concentrator. In this paper, we present an equivalent circuit model of a pulsed flux concentrator based on frequency domain analysis. The analysis shows a very good agreement with the experiment results from reference*. We have also constructed a prototype flux concentrator based on the circuit model, and experimental results are presented to verify the effectiveness of the model. Using the equivalent circuit model, a flux concentrator based AMD is designed for ILC positron matching. The beam capturing simulation results using the designed AMD are presented in this paper.

* H. Brechna, D. A. Hill and B. M. Bally, "150 KOe Liquid Nitrogen Cooled Flux Concentrator Magnet", Rev. Sci. Instr., 36 1529,1965.

 
 
THPMN094 Simulations of Parametric-resonance Ionization Cooling lattice, dipole, resonance, emittance 2927
 
  • D. J. Newsham
  • S. A. Bogacz, Y.-C. Chao, Y. S. Derbenev
    Jefferson Lab, Newport News, Virginia
  • R. P. Johnson, R. Sah
    Muons, Inc, Batavia
  Funding: Supported in part by DOE SBIR grant DE-FG02-04ER84016

Parametric-resonance ionization cooling (PIC) is a muon-cooling technique that is useful for low-emittance muon colliders. This method requires a well-tuned focusing channel that is free of chromatic and spherical aberrations. In order to be of practical use in a muon collider, it also necessary that the focusing channel be as short as possible to minimize muon loss due to decay. G4Beamline numerical simulations are presented of a compact PIC focusing channel in which spherical aberrations are minimized by using design symmetry.

 
 
THPMN097 Envelope and Multi-slit Emittance Measurements at Fermilab A0-Photoinjector and Comparison with Simulations emittance, space-charge, laser, gun 2936
 
  • C. M. Bhat
  • J.-P. Carneiro, R. P. Fliller, G. M. Kazakevich, J. K. Santucci
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U. S. Department of Energy under contract DE-AC02-76CH03000.

Recently we have measured the transverse emittance using both multi-screen as well as muli-slit methods for a range of electron beam intensities from 1 nC to 4 nC at A0 Photoinjector facility at Fermilab. The data have been taken with un-stacked 2.5 ps laser pulse. In this paper we report on these measurements and compare the results with the predictions from beam dynamics calculations using ASTRA and General Particle Tracer including 3D space charge effects.

 
 
THPMN098 Modeling and Design of the ILC Test Area Beam Absorbers at Fermilab shielding, electron, controls, vacuum 2939
 
  • M. Church
  • A. Z. Chen, N. V. Mokhov, S. Nagaitsev, N. Nakao
    Fermilab, Batavia, Illinois
  Detailed MARS15 simulations have been performed on energy deposition and shielding of the proposed ILC Test Area absorbers to deal with up to 50 kW of 800 MeV electron beam power and provide unlimited occupancy conditions in the hall. ANSYS analysis based on the calculated energy deposition maps confirms robustness of the proposed design of the absorbers and beam windows for normal operation and for various failure modes. A non-trivial shielding solution was found for the entire region housing the main and single-bunch absorbers.  
 
THPMN100 Suppression of Muon Backgrounds Generated in the ILC Beam Delivery System background, positron, beam-losses, electron 2945
 
  • A. I. Drozhdin
  • L. Keller
    SLAC, Menlo Park, California
  • N. V. Mokhov, N. Nakao, S. I. Striganov
    Fermilab, Batavia, Illinois
  Particle fluxes generated from the interactions of beam halo with the collimators in the ILC Beam Delivery System (BDS) can exceed tolerable levels for the collider detectors and create hostile radiation environment in the interaction region. Thorough analysis of the BDS model, beam loss patterns, driving geometry factors and physics processes along with verification of the simulation codes were performed for the current ILC BDS layout with 250-GeV electron and positron beams crossing at 14 mrad with a push-pull detector option. Muon flux reduction by distributed toroids (doughnut-type spoilers) in comparison with magnetic iron walls filling the BDS tunnel are calculated and analysed in great detail. Shielding conditions which allow occupancy of the interaction region while the full power beam is on the linac tuneup dump are also studied.  
 
THPMN107 Study of Emittance Bumps in The ILC Main Linac emittance, linac, alignment, quadrupole 2960
 
  • N. Solyak
  • K. Ranjan
    Fermilab, Batavia, Illinois
  Funding: U. S. Department of Energy

This paper reports the studies of using global emittance tuning bumps to limit the emittance growth to very small values in the main linac of the proposed International Linear Collider (ILC) machine. Simulation studies indicate that closed-orbit emittance bumps, when used after local or quasi-local beam based alignment techniques, can be utilized to further suppress the emittance growth in the ILC main linac. A series of simulations are performed to find the optimal number of bumps and their locations. A more general method of optimizing the emittance bumps in the ILC main linac is also discussed.

 
 
THPMN113 Performance of Capillary Discharge Guided Laser Plasma Wakefield Accelerator laser, electron, plasma, beam-loading 2978
 
  • K. Nakamura
  • E. Esarey, C. G.R. Geddes, A. J. Gonsalves, W. Leemans, D. Panasenko, C. B. Schroeder, C. Toth
    LBNL, Berkeley, California
  • S. M. Hooker
    OXFORDphysics, Oxford, Oxon
  Funding: This work is supported by US DoE office of High Energy Physics under contract DE-AC02-05CH11231 and DARPA.

A GeV-class laser-driven plasma-based wakefield accelerator has been realized at the Lawrence Berkeley National Laboratory (LBNL). The device consists of a 100 TW-class high repetition rate Ti:sapphire LOASIS laser system of LBNL and a gas-filled capillary discharge waveguide developed at Oxford University. Results will be presented on the generation of GeV-class electron beams with a 3.3 cm long preformed plasma channel. The use of a discharge-based waveguide permitted operation at an order of magnitude lower density and 15 times longer distance than in previous experiments that relied on laser-preformed plasma channels. Laser pulses with peak power ranging from 10-50 TW were guided over more than 20 Rayleigh ranges and high-quality electron beams with energy up to 1 GeV were obtained. The dependence of the electron beam characteristics on plasma channel properties and laser parameters are discussed.

 
 
THPMN118 Modelling of E-cloud Build-up in Grooved Vacuum Chambers Using POSINST electron, vacuum, dipole, accumulation 2993
 
  • M. Venturini
  • M. A. Furman, J.-L. Vay
    LBNL, Berkeley, California
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  Funding: Work supported by DOE contract No. DE-AC02-05CH11231

Electron cloud build-up and related beam instabilities are a serious concern for the positron damping ring of the International Linear Collider (ILC). To mitigate the effect use of grooved vacuum-chamber walls is being actively investigated in addition to more conventional techniques like surface coating, scrubbing, and/or conditioning. Experimental and simulation studies have characterized the effectiveness of the grooved surface by means of an effective secondary emission yield (SEY), which has been measured to be significantly lower than the SEY of a smooth surface of the same material. However, some inconsistencies of the results, and the need to model the experimental testing of the grooved surface concept in more detail, have motivated us to simulate the grooved surfaces directly. Specifically, we have augmented the code POSINST by adding the option to simulate the electron-cloud build-up in the presence of a grooved surface geometry. By computing the accumulated e-cloud density and comparing it with the same quantity computed for a smooth surface, we infer an effective SEY, and we thereby make contact with the effective SEY estimates obtained from previous studies.

 
 
THPMS001 An Ideal Circular Charged-Particle Beam System electron, cathode, focusing, ion 2999
 
  • T. Bemis
  • R. Bhatt, C. Chen, J. Z. Zhou
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Research at Massachusetts Institute of Technology was supported by DOE, Office of High-Energy Physics, Grant No. DE-FG02-95ER40919 and AFOSR, Grant No. FA9550-06-1-0269.

A theory is presented for the design of an ideal non-relativistic circular beam system including a charged-particle emitting diode, a diode aperture, a circular beam tunnel, and a focusing magnetic field that matches the beam from the emitter to the beam tunnel. The magnetic field is determined by balancing the forces throughout the gun and transport sections of the beam system. OMNITRAK simulations are performed, validating theory. As applications, a circular electron beam system is discussed for space-charge-dominated beam experiments such as the University of Maryland Electron Ring (UMER), and a circular ion beam system is discussed for high energy density physics (HEDP) research.

 
 
THPMS006 Photonic Bandgap (PBG) Accelerator Structure Design damping, higher-order-mode, lattice, acceleration 3005
 
  • R. A. Marsh
  • M. A. Shapiro, R. J. Temkin
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Work supported by the Department of Energy, High Energy Physics, under contract DE-FG02-91ER40648.

High gradient structure design entails optimization of the gradient, while minimizing surface electric fields (associated with breakdown) and surface magnetic fields (associated with pulsed heating). Design studies are reported comparing metallic and dielectric PBG structures and standard disk-loaded waveguide. Operation in a higher order mode is considered. A variety of codes; HFSS, CST MWS, and Superfish have been used to compare and refine designs. Final design work is in preparation for a structure to be cold tested, tuned, and then processed to high gradient operation at the MIT HRC 17 GHz accelerator facility.

 
 
THPMS007 Surface Waves on Interface of 3D Metal-wire Diamond Lattice for Accelerator Applications. lattice, plasma, vacuum, resonance 3008
 
  • M. A. Shapiro
  • J. R. Sirigiri, R. J. Temkin
    MIT/PSFC, Cambridge, Massachusetts
  Funding: Dept. of Energy, High Energy Physics

We present the results of our recent research on 3D metal-wire lattices operating at microwave frequencies, with applications to advanced accelerator structures and radiation sources based on the Smith-Purcell effect. Bulk and surface electromagnetic waves supported by a diamond-like lattice are calculated using HFSS. The bulk modes are determined using primitive cell calculations. The surface mode is determined using the simulations of the stack of cells with the perfect-matching layer (PML) boundary.

 
 
THPMS010 Polarized Pulsed Beam Source for Electron Microscopy cathode, electron, laser, vacuum 3011
 
  • N. Vinogradov
  • C. L. Bohn, P. Piot
    Northern Illinois University, DeKalb, Illinois
  • J. W. Lewellen, J. Noonan
    ANL, Argonne, Illinois
  A novel source of polarized pulsed electron beam is discussed. Unlike conventional devices based either on a thermionic cathodes or field-emission needle cathodes, in this source the electrons are produced by a laser beam hitting the cathode surface. Using a combination of gallium arsenide (GaAs) planar cathode and a suitable laser one can obtain a polarized picosecond electron bunch. Numerical simulations of the electron dynamics in the optimized cathode-anode geometry have shown that the beam with initial transverse size of a few mm can be focused down to 1 mm RMS at a distance of about 4 cm from the cathode. The suggested source can be installed instead of a tungsten filament source in an existing electron microscope with no modification of any column elements. The main advantages of this approach are that the beam can be easily pulsed, the beam is polarized which makes it an effective probe of some magnetic phenomena, and the laser can be used to provide larger beam intensity. The design of the source and subsequent fabrication has been completed. The paper presents numerical studies, conceptual design of the device, and results of beam measurements.  
 
THPMS013 Comparison of Tracking Codes for the International Linear Collider emittance, linac, lattice, linear-collider 3020
 
  • J. C. Smith
  • P. Eliasson
    Uppsala University, Uppsala
  • K. Kubo
    KEK, Ibaraki
  • A. Latina, D. Schulte
    CERN, Geneva
  • P. Lebrun, K. Ranjan
    Fermilab, Batavia, Illinois
  • F. Poirier, N. J. Walker
    DESY, Hamburg
  • P. Tenenbaum
    SLAC, Menlo Park, California
  Funding: Supported by the US Department of Energy, the US National Science Foundation and the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area".

In an effort to compare beam dynamics and create a ‘‘benchmark'' for Dispersion Free Steering (DFS) a comparison was made between different International Linear Collider (ILC) simulation programs while performing DFS. This study consisted of three parts. First, a simple betatron oscillation was tracked through each code. Secondly, a set of component misalignments and corrector settings generated from one program was read into the other to confirm similar emittance dilution. Thirdly, given the same set of component misalignments DFS was performed independently in each program and the resulting emittance dilution was compared. Performance was found to agree exceptionally well in all three studies.

 
 
THPMS014 Design of a High Field Stress, Velvet Cathode for the Flash X-Ray (FXR) Induction Accelerator cathode, emittance, plasma, pulsed-power 3023
 
  • T. L. Houck
  • C. G. Brown, D. E. Fleming, B. R. Kreitzer, K. E. Lewis, M. M. Ong, J. M. Zentler
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

A new cathode design has been proposed for the Flash X-Ray (FXR) induction linear accelerator with the goal of lowering the beam emittance. The present design uses a conventional Pierce geometry and applies a peak field of 134 kV/cm (no beam) to the velvet emission surface. Voltage/current measurements indicate that the velvet begins emitting near this peak field value and images of the cathode show a very non-uniform distribution of plasma light. The new design has a flat cathode/shroud profile that allows for a peak field stress of 230 kV/cm on the velvet. The emission area is reduced by about a factor of four to generate the same total current due to the greater field stress. The relatively fast acceleration of the beam, approximately 2.5 MeV in 10 cm, reduces space charge forces that tend to hollow the beam for a flat, non-Pierce geometry. The higher field stress achieved with the same rise time is expected to lead to an earlier and more uniform plasma formation over the velvet surface. Simulations of the proposed design are presented.

 
 
THPMS015 Observation of Multi-GeV Breakdown Thresholds in Dielectric Wakefield Structures electron, laser, radiation, alignment 3026
 
  • M. C. Thompson, H. Badakov, J. B. Rosenzweig, M. C. Thompson, G. Travish
    UCLA, Los Angeles, California
  • M. J. Hogan, R. Ischebeck, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • P. Muggli
    USC, Los Angeles, California
  • A. Scott
    UCSB, Santa Barbara, California
  • R. B. Yoder
    Manhattan College, Riverdale, New York
  Funding: This work was performed under the auspices of the US Department of Energy under Contracts No. DE-FG03-92ER40693, DE-AC02-76SF00515, W-7405-ENG-48, and DE-FG02-92-ER40745.

The breakdown threshold of a dielectric subjected to the GV/m-scale electric-fields of an intense electron-beam has been measured. In this experiment at the Final Focus Test Beam (FFTB) facility, the 30 GeV SLAC electron beam was focused down and propagated through short fused-silica capillary-tubes with internal diameters of as little as 100 microns. The electric field at the inner surface of the tubes was varied from about 1 GV/m to 22 GV/m by adjusting the longitudinal compression of the electron bunch. The onset of breakdown, as indicated by a bright discharge, was found to correlate to a surface field of about 4 GV/m. An analysis of the damage sustained to the beam-exposed fibers, and its correlation to field amplitude, is also reported.

 
 
THPMS019 Comparison of 6D Ring Cooler Schemes and Dipole Cooler for Mu+Mu- Collider Development collider, factory, dipole, emittance 3038
 
  • D. B. Cline
  • Y. Fukui
    SLAC, Menlo Park, California
  • A. A. Garren
    LBNL, Berkeley, California
  We discuss the various schemes to use ring coolers for 6D cooling for Mu+Mu- colliders. The earliest successful cooler used dipoles and quadrupoles and a high dispersion low beta region. This was also proposed in the form of solenoids. Recently, there have been many new ideas. The simplest is to use a simple dipole ring with high-pressure gas absorber or Li hydride. We show the results of simulations and compare with the results for other cooler schemes.  
 
THPMS020 Beam-Driven Dielectric Wakefield Accelerating Structure as a THz Radiation Source radiation, electron, dipole, permanent-magnet 3041
 
  • A. M. Cook
  • H. Badakov, R. J. England, J. B. Rosenzweig, R. Tikhoplav, G. Travish, O. Williams
    UCLA, Los Angeles, California
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • M. C. Thompson
    LLNL, Livermore, California
  Funding: United States Department of Energy

Experimental work is planned to study the performance of a beam-driven cylindrical dielectric wakefield accelerating structure as a source of THz coherent Cerenkov radiation. For an appropriate choice of dielectric tube geometry and driving electron bunch parameters, the device operates in a single-mode regime, producing narrow-band radiation in the THz range. This source can potentially produce high power levels relative to currently available sources, with ~50 μJ radiated energy per pulse achievable using the electron beam currently in operation at the Neptune Advanced Accelerator Research Laboratory at UCLA (~13 MeV beam energy, ~200 μm RMS bunch length, ~500 pC bunch charge). Preparations underway for installation of the experiment are discussed.

 
 
THPMS021 Optimum Electron Bunch Creation in a Photoinjector Using Space Charge Expansion emittance, electron, laser, space-charge 3044
 
  • J. B. Rosenzweig
  • M. Bellaveglia, M. Boscolo, G. Di Pirro, M. Ferrario, D. Filippetto, G. Gatti, L. Palumbo, C. Vicario
    INFN/LNF, Frascati (Roma)
  • L. Catani, A. Cianchi
    INFN-Roma II, Roma
  • A. M. Cook, M. P. Dunning, R. J. England, P. Musumeci
    UCLA, Los Angeles, California
  • S. M. Jones
    Jet Propulsion Laboratory, Pasadena, California
  Recent studies have shown that by illuminating a photocathode with an ultra-short laser pulse of appropriate transverse profile, a uniform density, ellipsoidally shaped electron bunch can be dynamically formed. Linear space-charge fields then exist in all dimensions inside of the bunch, which minimizes emittance growth. Here we study this process, and its marriage to the standard emittance compensation scenario that is implemented in most modern photoinjectors. We show that the two processes are compatible, with simulations indicating that a very high brightness beam can be obtained. An initial time-resolved experiment has been performed at the SPARC injector in Frascati, involving Cerenkov radiation produced at an aerogel. We discuss the results of this preliminary experiment, as well as plans for future experiments to resolve the ellipsoidal bunch shape at low energy. Future measurements at high energy based on fs resolution RF sweepers are also discussed.  
 
THPMS022 6 Dimensional Muon Phase Space Cooling by Using Curved Lithium Lenses emittance, target, vacuum, scattering 3047
 
  • Y. Fukui
  • D. B. Cline, A. A. Garren
    UCLA, Los Angeles, California
  • H. G. Kirk
    BNL, Upton, Long Island, New York
  A curved Lithium lens ring model can provide the emittance exchange mechanism in obtaining the muon 6 dimensional phase space cooling. With straight Lithium lenses in a muon cooling ring, only transverse phase space cooling has been demonstrated. We demonstrate the 6 dimensional phase space cooling with various parameters of a muon cooling ring in tracking simulation.  
 
THPMS024 Experimental Investigation of Self-guiding using a Matched Laser Beam in a cm Scale Length Underdense Plasma plasma, laser, electron, diagnostics 3052
 
  • J. E. Ralph
  • C. E. Clayton, F. Fang, C. Joshi, K. A. Marsh, A. E. Pak
    UCLA, Los Angeles, California
  Funding: This work was supported by NNSA Grant no. DE-FG52- 03NA00138, and DOE Grant no. DE-FG02-92ER40727.

High-intensity short-pulse laser guiding in plasma channels has extended the length over which acceleration occurs in laser wake field accelerators*. Recent multidimensional nonlinear plasma wave theory predicts a range of optimal characteristics for self-guiding of laser pulses in the blowout regime for pulses shorter than a plasma wavelength**. This theory predicts a robust, stable parameter space for self-guiding and wake production and has been verified through multidimensional particle-in-cell simulations. We experimentally explore the plasma dynamics and laser pulse propagation using a 50 fs multi-terawatt Ti:Sapphire laser in a helium plasma at plasma densities, laser powers, and spot sizes within this parameter space. Our parameters are in the range where the plasma is underdense and the laser power is much greater than the critical power for self focusing. The evolution of the laser pulse and plasma channel will be followed over several Rayleigh lengths.

* C. Geddes et. al., Nature (London) 431, 538 (2004)** W. Lu et. al., Phys. Plasmas 13, 056709 (2006)

 
 
THPMS026 The UCLA Helical Permanent-Magnet Inverse Free Electron Laser undulator, laser, electron, permanent-magnet 3055
 
  • R. Tikhoplav
  • J. T. Frederico, G. Reed, J. B. Rosenzweig, S. Tochitsky, G. Travish
    UCLA, Los Angeles, California
  • G. Gatti
    INFN/LNF, Frascati (Roma)
  The Inverse Free Electron Laser (IFEL) is capable, in principle, of reaching accelerating gradients of up to 1 GV/m making it a prospective accelerator scheme for linear colliders. The Neptune IFEL at UCLA utilizes a 15 MeV Photoinjector-generated electron beam of 0.5 nC and a CO2 laser with peak energy of up to 100 J, and will be able to accelerate electrons to 100 MeV over an 80 cm long, novel helical permanent-magnet undulator. Past IFELs have been limited in their average accelerating gradient due to the Gouy phase shift caused by tight focusing of the drive laser. Here, laser guiding is implemented via an innovative Open Iris-Loaded Waveguide Structure scheme which ensures that the laser mode size and wave front are conserved through the undulator. The results of the first phase of the experiment are discussed in this paper, including the design and construction of a short micro-bunching undulator, testing of the OILS waveguide, as well as the results of corresponding simulations.  
 
THPMS027 Dielectric Wakefield Accelerator Experiments at the SABER Facility acceleration, radiation, electron, emittance 3058
 
  • G. Travish
  • H. Badakov, A. M. Cook, J. B. Rosenzweig, R. Tikhoplav
    UCLA, Los Angeles, California
  • M. K. Berry, I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • P. Muggli
    USC, Los Angeles, California
  • M. C. Thompson
    LLNL, Livermore, California
  Funding: Work supported in part by Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92-ER40745, DE-FG03-92ER40693 and W-7405-ENG-48

Electron bunches with the unparalleled combination of high charge, low emittances, and short time duration, as first produced at the SLAC FFTB, are foreseen to be produced soon at the SABER facility. These types of bunches have enabled wakefield driven accelerating schemes of >10 GV/m. In the context of the Dielectric Wakefield Accelerators (DWA) such beams, having rms bunch length as short as 20 um, have been used to drive 100 μm and 200 μm ID hollow tubes above 20 GV/m surface fields. These FFTB tests enabled the measurement of a breakdown threshold in excess of 4 GV/m (2 GV/m accelerating field) in fused silica. With the construction and commissioning of the SABER facility at SLAC, new experiments are made possible to test further aspects of DWAs including materials, tube geometrical variations, direct measurements of the Cerenkov fields, and proof of acceleration in tubes >10 cm in length. The E169 collaboration will investigate breakdown thresholds and accelerating fields in new materials including CVD diamond. Here we describe the experimental plans, beam parameters, simulations, and progress to date as well as future prospects for machines based of DWA structures.

 
 
THPMS028 The Physical Picture of Beam Loading in the Blowout Regime electron, plasma, beam-loading, laser 3061
 
  • M. Tzoufras
  • S. Fonseca, L. O. Silva, J. H. Vieira
    Instituto Superior Tecnico, Lisbon
  • C. Huang, W. Lu, W. B. Mori, F. S. Tsung
    UCLA, Los Angeles, California
  Funding: This work is supported by DOE and NSF under grant Nos. DE-FG03-92ER40727, DE-FC02-01ER41179, DE-FG02-03ER54721, and NSF-Phy-0321345.

The realization of high quality LWFA-produced electron beams requires laser pulses that remain focused for distances exceeding the Rayleigh length. It is often thought that a short pulse laser cannot be self-guided and some form of external optical guiding is needed. As short pulse lasers with higher power are rapidly coming online to test the LWFA concept it is vital to understand the nature of their propagation through centimeters of plasma. We argue that a degree of self-guiding is possible for short ultra-intense pulses that have been shown to lead to complete ponderomotive expulsion of plasma electrons. Furthermore, the generation of a high quality electron beam requires proper loading of the wake. We have developed a theoretical framework which predicts the maximum number of electrons which can be loaded in the wake, as well as the optimal charge density profile for beam loading. Using the PIC codes OSIRIS and QuickPIC we present designs of LWFA accelerators that verify our theoretical estimates as well as demonstrate the potential of LWFA to produce high energy electron beams with high beam quality.

 
 
THPMS029 Beam Head Erosion in Self-ionized Plasma Wakefield Accelerators plasma, ion, vacuum, emittance 3064
 
  • M. Zhou
  • M. K. Berry, I. Blumenfeld, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
  Funding: Work supported by Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745 DE-FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345

In the recent plasma wakefield accelerator experiments at SLAC, the energy of the particles in the tail of the 42 GeV electron beam were doubled in less than one meter [1]. Simulations suggest that the acceleration length was limited by a new phenomenon – beam head erosion in self-ionized plasmas. In vacuum, a particle beam expands transversely in a distance given by beta*. In the blowout regime of a plasma wakefield [2], the majority of the beam is focused by the ion channel, while the beam head slowly spreads since it takes a finite time for the ion channel to form. It is observed that in self-ionized plasmas, the head spreading is exacerbated compared to that in pre-ionized plasmas, causing the ionization front to move backward (erode). A simple theoretical model is used to estimate the upper limit of the erosion rate for a bi-gaussian beam by assuming free expansion of the beam head before the ionization front. Comparison with simulations suggests that half this maximum value can serve as an estimate for the erosion rate. Critical parameters to the erosion rate are discussed.

[1] I. Blumenfeld et al., Nature 445, 741(2007)[2] J. B. Rosenzweig et al., Phys. Rev. A 44, R6189 (1991)

 
 
THPMS037 ON THE POSSIBILITY OF ACCELERATING POSITRON ON AN ELECTRON WAKE AT SABER positron, electron, plasma, target 3082
 
  • X. Wang
  • R. Ischebeck
    SLAC, Menlo Park, California
  • C. Joshi
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  Funding: This work was supported by the Department of Energy contract DE-FG02-92-ER40745

A new approach for positron acceleration in non-linear plasma wakefields driven by electron beams is presented. Positrons can be produced by colliding an electron beam with a thin foil target embedded in the plasma. Integration of positron production and acceleration in one stage is realized by a single relativistic, intense electron beam. Simulations with the parameters of the proposed SABER facility at SLAC suggest that this concept could be tested there.

 
 
THPMS038 Magnetic Measurements and Simulations of a 4-Magnet Dipole Chicane for the International Linear Collider dipole, monitoring, linear-collider, collider 3085
 
  • R. Arnold
  • V. N. Duginov, S. A. Kostromin, N. A. Morozov
    JINR, Dubna, Moscow Region
  • A. Fisher, C. Hast, Z. Szalata, M. Woods
    SLAC, Menlo Park, California
  • H. J. Schreiber, M. Viti
    DESY Zeuthen, Zeuthen
  T-474 at SLAC is a prototype BPM-based energy spectrometer for the ILC. We describe magnetic measurements and simulations for the 4-magnet chicane used in T-474. The ILC physics program requires better than 100 part-per-million (ppm) accuracy for energy measurements, which necessitates better than 50 ppm accuracy for magnetic field integral measurements. A 4-dipole chicane is used in T-474 with mid-chicane dispersion of 5-mm and magnetic fields of ~1 kGauss; similar to the current ILC parameters. Stability, reproducibility and consistency of magnetic measurements, including magnetic field maps for the T-474 dipole magnets, are presented using a moving wire, rotating coil, NMR probe, Hall probe and low-field fluxgate magnetometer. Measurements from SLAC's Magnet Test Lab facility as well as in situ measurements in End Station A (ESA) are presented, including measurements of residual magnetic fields in the T-474 chicane between the chicane magnets. Results are provided for an operational mode with a 1-hour calibration cycle, where the chicane magnets are operated in both polarities and at near-zero field.  
 
THPMS039 Wakefield Effects in the Beam Delivery System of the ILC emittance, vacuum, injection, focusing 3088
 
  • K. L.F. Bane
  • A. Seryi
    SLAC, Menlo Park, California
  Funding: Work supported by US Department of Energy contract DE-AC02-76SF00515

The main linac of the International Linear Collider (ILC) accelerates short, high peak current bunches into the Beam Deliver System (BDS) on the way to the interaction point. In the BDS wakefields are excited by the resistance of the beam pipe walls and by beam pipe transitions that will tend to degrade the emittance of the beam bunches. In this report we calculate the effect on emittance of incoming jitter or drift, and of misalignments of the beam pipes with respect to the beam axis, both analytically and through multi-particle tracking. Finally, we discuss ways of ameliorating the wake effects in the BDS.

 
 
THPMS040 Correlation of Beam Parameters to Decelerating Gradient in the E-167 Plasma Wakefield Acceleration Experiment plasma, electron, radiation, emittance 3091
 
  • I. Blumenfeld
  • M. K. Berry, F.-J. Decker, M. J. Hogan, R. Ischebeck, R. H. Iverson, N. A. Kirby, R. Siemann, D. R. Walz
    SLAC, Menlo Park, California
  • C. E. Clayton, C. Huang, C. Joshi, W. Lu, K. A. Marsh, W. B. Mori, M. Zhou
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli, E. Oz
    USC, Los Angeles, California
  Funding: This work was supported by the Department of Energy contracts DE-AC02-76SF00515, DE-FG02-92ER40727, DE-FG02-92-ER40745 DE-FG02-03ER54721, DE-FC02-01ER41179 and NSF grant Phy-0321345

Recent experiments at SLAC have shown that high gradient acceleration of electrons is achievable in meter scale plasmas. Results from these experiments show that the wakefield is sensitive to parameters in the electron beam which drives it. In the experiment the bunch length and beam waist location were varied systematically at constant charge. Here we investigate the correlation of peak beam current to the decelerating gradient. Limits on the transformer ratio will also be discussed. The results are compared to simulation.

 
 
THPMS049 Investigations of the Wideband Spectrum of Higher Order Modes Measured on TESLA-style Cavities at the FLASH Linac dipole, higher-order-mode, monitoring, electron 3100
 
  • S. Molloy
  • C. Adolphsen, K. L.F. Bane, J. C. Frisch, Z. Li, J. May, D. J. McCormick, T. J. Smith
    SLAC, Menlo Park, California
  • N. Baboi
    DESY, Hamburg
  • N. E. Eddy, L. Piccoli, R. Rechenmacher
    Fermilab, Batavia, Illinois
  • R. M. Jones
    UMAN, Manchester
  Funding: US DOE Contract #DE-AC02-76SF00515

Higher Order Modes (HOMs) excited by the passage of the beam through an accelerating cavity depend on the properties of both the cavity and the beam. It is possible, therefore, to draw conclusions on the inner geometry of the cavities based on observations of the properties of the HOM spectrum. A data acquisition system based on two 20 GS/s, 6 GHz scopes has been set up at the FLASH facility, DESY, in order to measure a significant fraction of the HOM spectrum predicted to be generated by the TESLA cavities used for the acceleration of its beam. The HOMs from a particular cavity at FLASH were measured under a range of known beam conditions. The dipole modes have been identified in the data. 3D simulations of different manufacturing errors have been made, and it has been shown that these simulations can predict the measured modes.

 
 
THPMS052 Optical Wakefield from a Photonic Bandgap Fiber Accelerator electron, laser, quadrupole, vacuum 3106
 
  • C. M.S. Sears
  • R. L. Byer, T. Plettner
    Stanford University, Stanford, Califormia
  • E. R. Colby, B. M. Cowan, R. Ischebeck, C. Mcguinness, R. J. Noble, R. Siemann, J. E. Spencer, D. R. Walz
    SLAC, Menlo Park, California
  Photonic Bandgap (PBG) structures have recently been proposed as optical accelerators for there high coupling impedance and high damage threshold (>2 GV/m). As a first step in preparing a PBG accelerator, we propose to first observe the optical wakefield induced incoherently by an electron beam traversing the structure in the absence of a coupled laser pulse. The electrons are coupled into the fiber via a permanent magnet quadrupole triplet. The electrons excite fiber modes with speed-of-light phase velocities. By observing the wakefield using a spectrometer, the accelerating mode frequencies are determined.  
 
THPMS053 Compensation of the Effect of a Detector Solenoid on the Beam Size in the ILC multipole, electron, dipole, quadrupole 3109
 
  • S. Seletskiy
  In the International Linear Collider (ILC) [1] the colliding beams must be focused to the nanometre size in order to reach the desired luminosity. The method of Weak Antisolenoid is used for the compensation of the effect of the Detector Solenoid on the beam size [2, 3]. The studies of this method require the computer simulation of the charged particle's kinematics in the arbitrarily distributed solenoidal, dipole, quadrupole and higher multipole fields. We suggest the mathematical algorithm that allows to optimize parameters of antisolenoid for different configurations of Final Focus magnets and to compensate parasitic effects of the Detector Solenoid on the beam.

[1] 'International Linear Collider Reference Design Report', April 2007
[2] Y Nosochkov, A. Seryi, Phys. Rev. ST Accel. Beams 8, 021001 (2005)
[3] B. Parker, A. Seryi, Phys. Rev. ST Accel. Beams 8, 041001 (2005)

 
 
THPMS056 Emittance Preservation in the International Linear Collider Ring to Main Linac Transfer Line emittance, coupling, survey, betatron 3118
 
  • P. Tenenbaum
  • K. Kubo
    KEK, Ibaraki
  • A. Latina
    CERN, Geneva
  • J. C. Smith
    CLASSE, Ithaca
  Funding: Work supported by the US Department of Energy, contract DE-AC02-76SF00515.

The very small vertical beam emittance in the International Linear Collider (ILC) can be degraded by dispersion, xy coupling, transverse wakefields, and time-varying transverse fields introduced by elements with misalignments, strength errors, xy rotation errors, or yz rotation errors in the Ring to Main Linac (RTML) transfer line. We present a plan for emittance preservation in this beamline which uses local, quasi-local, and global correction schemes. Results of simulations of the emittance preservation algorithm are also presented and discussed.

 
 
THPMS067 A CW Positron Source for CEBAF positron, electron, target, quadrupole 3133
 
  • S. Golge
  • A. Freyberger
    Jefferson Lab, Newport News, Virginia
  • C. Hyde-Wright
    ODU, Norfolk, Virginia
  Funding: Authored by Jefferson Science Associates, LLC under U. S. DOE Contract No. DE-AC05-06OR23177.

A positron source for the 6 GeV (or the proposed 12 GeV upgrade) recirculating linacs at Jefferson Lab is presented. The proposed 100nA CW positron source has several unique characteristics; high incident beam power (100kW), 10 MeV incident electron beam energy, CW incident beam and CW production. Positron production with 10 MeV electrons has several advantages; the energy is below neutron threshold so the production target will not become activated during use and the absolute energy spread is bounded by the low incident energy. These advantages are offset by the large angular distribution of the outgoing positrons. Results of simulations of the positron production, capture, acceleration and injection into the recirculating linac are presented. Energy flow and thermal management of the production target present a challenge and are included in the simulations.

 
 
THPMS073 Progress towards a Gap Free Dielectric-Loaded Accelerator coupling, vacuum, impedance, acceleration 3151
 
  • C.-J. Jing
  • S. H. Gold
    NRL, Washington, DC
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  • R. Konecny, J. G. Power
    ANL, Argonne, Illinois
  One of the major concerns in the development of Dielectric-Loaded Accelerating (DLA) structures is the destructive breakdown at dielectric joints caused by a local electric field enhancement induced by the discontinuity of the dielectric constant on the surface of the joint gap. Our previous X-band traveling wave DLA structure design*, for example, incorporated two separate impedance matching sections with at least two dielectric joints. In this paper, we present a new design to avoid this problem. This scheme is based on a coaxial type coupler which is able to implement mode conversion and impedance matching at the same time and therefore to eliminate joint gap induced breakdown. The new structure is under construction; bench test results will be presented

* C. Jing, W. Gai, J. Power, R. Konecny, S. Gold, W. Liu and A. Kinkead, IEEE, Trans. PS, vol.33 No.4, Aug. 2005, pp.1155-1160.

 
 
THPMS074 High Transformer Ratios in Collinear Wakefield Accelerators laser, gun, target, linac 3154
 
  • C.-J. Jing
  • M. E. Conde, W. Gai, J. G. Power, Z. M. Yusof
    ANL, Argonne, Illinois
  • A. Kanareykin, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  Funding: DOE SBIR Phase II, DE-FG02-02ER83418.

Based on our previous experiment that successfully demonstrated wakefield transformer ratio enhancement in a 13.625 GHz dielectric-loaded collinear wakefield accelerator using the ramped bunch train technique, we present here a redesigned experimental scheme for even higher enhancement of the efficiency of this accelerator. Design of a collinear wakefield device with a transformer ratio R>>2, is presented. Using a ramped bunch train (RBT) rather than a single drive bunch, the enhanced transformer ratio (ETR) technique is able to increase the transformer ratio R above the ordinary limit of 2. To match the wavelength of the fundamental mode of the wakefield with the bunch length (σz=2 mm) of the new Argonne Wakefield Accelerator (AWA) drive gun, where the experiment will be performed, a 26.625 GHz dielectric based accelerating structure is required. This transformer ratio enhancement technique based on our dielectric-loaded waveguide design will result in a compact, high efficiency accelerating structure for future wakefield accelerators.

 
 
THPMS076 Development of Dual Layered Dielectric-Loaded Accelerating Structure impedance, vacuum, coupling, RF-structure 3160
 
  • C.-J. Jing
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • S. Kazakov
    KEK, Ibaraki
  Funding: DOE SBIR Phase I, DOE Grant No. DE-FG02-05ER84356

Due to the high magnetic field-induced surface currents on its conducting sleeve, a conventional single layer Dielectric-Loaded Accelerating (DLA) structure exhibits a relatively high RF loss. One possible way to solve this problem is to use multilayered DLA structures*. In these devices, the RF power attenuation is reduced by making use of the Bragg Fiber concept: the EM fields are well confined by multiple reflections from multiple dielectric layers. This paper presents the design of an X-band dual layer DLA structure as well as the results of bench tests of the device. We will also present results on the design, numerical modeling, and fabrication of structures for coupling RF into multilayer DLAs such as a novel TM03 mode launcher and a TM01-TM03 mode converter using dielectric-loaded corrugated waveguide.

* C. Jing, W. Liu, W. Gai, J. G. Power, and T. Wong, Nucl. Instr. Meth. Phy. Res. A 539 (2005) 445-454.

 
 
THPMS079 Nonlinear Permittivity Effects in Dielectric Accelerating Structures controls, acceleration, diagnostics, linac 3169
 
  • P. Schoessow
  • A. Kanareykin
    Euclid TechLabs, LLC, Solon, Ohio
  • V. P. Yakovlev
    Omega-P, Inc., New Haven, Connecticut
  Funding: Work supported by the US Department of Energy

New low loss ferroelectric ceramic materials* possessing large variations in the permittivity as a function of the electric field present interesting and potentially useful applications for dielectric loaded accelerating structures, both wakefield-based and driven by an external rf source. We will consider X-band cylindrical dielectric structures and report numerical results on frequency multiplication, wave steepening and shock formation, and the effect of nonlinearities on the mode structure of these devices. We will examine applications of nonlinear dielectric devices to high gradient acceleration, rf sources, and beam diagnostics.

* ''Fast Switching Ferroelectric Materials for Accelerator Applications'', A. Kanareykin et al., Proceedings of Advanced Accelerator Concepts 2006 (in press)

 
 
THPMS086 Plasma Lens for US Based Super Neutrino Beam at Either FNAL or BNL plasma, target, background, focusing 3184
 
  • A. Hershcovitch
  • M. Diwan, J. C. Gallardo, B. M. Johnson, H. G. Kirk, W.-T. Weng
    BNL, Upton, Long Island, New York
  • E. Garate, A. van Drie
    University of California IIrvine, Irvine, California
  • S. A. Kahn
    Muons, Inc, Batavia
  • N. Rostoker
    UCI, Irvine, California
  Funding: Work supported under Contract No. DE-AC02-98CH1-886 with the US Department of Energy

Plasma lens concept is examined as an alternative to focusing horns and solenoids for a neutrino beam facility. The concept is based on a combined high-current lens/target configuration. Current is fed at an electrode located downstream from the beginning of the target where pion capturing is needed. Some of the current flows through the target, while the rest is carried by plasma outside the target. A second plasma lens section, with an additional current feed, follows the target. Plasma of this section is immersed in a solenoidal magnetic field to facilitate its current profile shaping to optimize pion capture. Simulation of the second section alone yielded a 10% higher neutrino production than the horn system. Plasma lenses have additional advantages: larger axial currents, high signal purity: minimal neutrino background in anti-neutrino runs. Lens medium consists of plasma, consequently, particle absorption and scattering is negligible. Withstanding high mechanical and thermal stresses is not an issue. Results of capturing and focusing obtained for various plasma lens configurations will be presented.

 
 
THPMS090 A Complete Scheme of Ionization Cooling for a Muon Collider collider, emittance, lattice, single-bunch 3193
 
  • R. B. Palmer
  • Y. Alexahin, D. V. Neuffer
    Fermilab, Batavia, Illinois
  • J. S. Berg, R. C. Fernow, J. C. Gallardo, H. G. Kirk
    BNL, Upton, Long Island, New York
  • S. A. Kahn
    Muons, Inc, Batavia
  • D. J. Summers
    UMiss, University, Mississippi
  Funding: Work Supported by the United States Department of Energy, Contract No. DE-AC02-98CH10886.

We propose a complete scheme for cooling a muon beam for a muon collider. We first outline the parameters required for a multi-TeV muon collider. The cooling scheme starts with the front end of the Study 2a proposed Neutrino Factory. This yields bunch trains of both muon signs. Emittance exchange cooling in upward climbing helical lattices then reduces the longitudinal emittance until it becomes possible to combine the trains into single bunches, one of each sign. Further cooling is now possible in emittance exchange cooling rings. Final cooling to the required parameters is achieved in 50 T solenoids that use high temperature superconductor. Preliminary simulations of each element will be presented.

 
 
THPAN002 A Self-Consistent Model for Emittance Growth of Mismatched Charged Particle Beams in Linear Accelerators emittance, focusing, plasma, injection 3220
 
  • R. P. Nunes
  • R. Pakter, F. B. Rizzato
    IF-UFRGS, Porto Alegre
  Funding: CNPq, Brazil

The goal of this work is to analyze the envelope dynamics of magnetically focused and high-intensity charged particle beams. As known, beams with mismatched envelopes decay into its equilibrium state with a simultaneous increasing of emittance. This emittance growth implies that, in the stationary regime, the transverse phase-space of the beam is characterized by a tenuous population of hot particles around a dense population of cold particles. To describe this emittance growth, it was used the test-particle approach for the development of a simplified self-consistent macroscopic model, whose self-consistency is a result of the inclusion of the emittance growth into the envelope equation. The model is then compared with full N-particle beam simulations and the agreement is shown to be quite reasonable. The model revealed to be useful to understand the physical aspects of the problem and is computationally faster when compared with full simulations.

 
 
THPAN003 Image Effects on the Transport of Intense Beams focusing, multipole, beam-transport, vacuum 3223
 
  • R. Pakter
  • Y. Levin, F. B. Rizzato
    IF-UFRGS, Porto Alegre
  Funding: CNPq and FAPERGS, Brazil, and U. S. AFOSR Grant No. FA9550-06-1-0345.

We start by analyzing the image effects of a cylindrical conducting pipe on a continuous beam with elliptical symmetry. In particular, we derive an exact expression for the self-field potential of the beam inside the pipe without using any sort of multipole expansion. By means of a variational method, the potential for beams with varying density profiles along an elliptical shape is used to search for equilibrium solutions for intense beams. For that, we assume a uniform focusing in the smooth-focusing approximation. A curious result is that the product of the rms sizes along the ellipsis semi-axis stays constant as the pipe radius is varied. Finally, we prove that despite the nonlinear forces imposed by the image charges of an arbitrary shape conducting pipe, intense beams in uniform focusing fields preserve a uniform density in the equilibrium.

 
 
THPAN004 Runge-Kutta DA Integrator in Mathematica Language quadrupole, controls, optics 3226
 
  • A. Baartman
  • D. Kaltchev
    TRIUMF, Vancouver
  The method of Truncated Power Series Algebra is applied in a Mathematica code to compute the transfer map for arbitrary equations of motion (EOM) describing a charged particle optical system. The code is a non-symplectic integrator – a combination between differential algebra module and a numerical solver of EOM. Using the symbolic system offers some advantages, especially in case of non-autonomous EOM (element with fringe-fields). An example is given – a soft-fringe map of a magnetic quadrupole.  
 
THPAN005 Short Quadrupole Parametrization quadrupole, focusing, kaon, beam-transport 3229
 
  • A. Baartman
  • D. Kaltchev
    TRIUMF, Vancouver
  Funding: National Research Council (Canada)

The Enge function can be used to parametrize any element with well-defined edges. If an element is too short, however, there is no unambiguous definition of the effective edge. We first demonstrate that very little fringe field detail is needed to obtain accurate maps even up to fifth order. Then we go on to show a simple fitting algorithm that works well for short as well as long quadrupoles. The results are true whether the quads are magnetic or electrostatic.

 
 
THPAN006 Simulation of Decays and Secondary Ion Losses in a Betabeam Decay Ring ion, dipole, quadrupole, lattice 3232
 
  • F. W. Jones
  • E. Y. Wildner
    CERN, Geneva
  The beta decay of circulating ions in the decay ring of a Betabeam facility will give rise to secondary ions which differ in charge from the primary ions and will follow widely off-momentum orbits. A small fraction of these ions will be lost in the long straights, but the great majority of them will be lost in the arcs. Profiling of the losses requires detailed knowledge of the paths of these ions, which are distributed in phase space as well as around the ring circumference. We describe here a comprehensive model of ion decay, secondary ion tracking, and loss detection, which has been implemented in the tracking and simulation code Accsim. Methods have been developed to accurately track ions at large momentum deviations not amenable to conventional multiparticle tracking codes, as well as to detect their impact coordinates on vacuum chamber walls (possibly inside magnetic elements). In our simulation we have also included absorbers which are needed, along with appropriate lattice optimisations, to localize the majority of losses outside of the dipoles. From simulation results, some estimates of decay ring performance (in terms of loss concentration and management) will be given.  
 
THPAN007 Parallel Beam-Beam Simulation Incorporating Multiple Bunches and Multiple Interaction Regions collider, beam-beam-effects, interaction-region, betatron 3235
 
  • F. W. Jones
  • W. Herr
    CERN, Geneva
  • T. Pieloni
    EPFL, Lausanne
  The simulation code COMBI has been developed to enable the study of beam-beam effects in the full collision scenario of the LHC, with multiple bunches interacting at multiple head-on and long-range collision points. The code is structured in a general way, allowing any number of bunches and interaction points (IP's) and procedural options for collisions, beam transport, and output of statistics and coherent mode data. The scale of this problem escalates into the parallel computing arena, and herein we will describe the construction of an MPI-based version of COMBI able to utilize arbitrary numbers of processors to support efficient calculation of multi-bunch multi-IP interactions and transport. After an overview of the basic methods and numerical components of the code, the computational framework will be described in detail and the parallel efficiency and scalability of the code will be evaluated.  
 
THPAN010 Local Magnetic Error Estimation using Action and Phase Jump Analysis of Orbit Data quadrupole, lattice, interaction-region, proton 3244
 
  • J. F. Cardona
  Funding: This work is funded by DINAIN, Division Nacional de Investigacion, Universidad Nacional de Colombia, Bogota Colombia

It's been shown in previous conferences [*,**] that action and phase jump analysis is a promising method to measure normal quadrupole components, skew quadrupole components and even normal sextupole components. In this paper, the action and phase jump analysis is evaluated using new RHIC data.

*J. Cardona,et al, Procceedings of PAC 2005, Knoxville, Tennesse.**J. Cardona,et al, Procceedings of EPAC 2004, Lucerne, Switzerland.

 
 
THPAN011 Non Linear Space Charge Effects on Transverse Beam Stability space-charge, betatron, impedance, damping 3247
 
  • J. J. Espinosa
  • J. F. Cardona
    UNAL, Bogota D. C
  Funding: This work is funded by DINAIN, Division Nacional de Investigacion, Universidad Nacional de Colombia, Bogota - Colombia.

Simbad code is used to study the combined effect of external non linearities and space charge non linearities on the beam stability using a simple FODO lattice. Gaussian and parabolic particle distribution are used for these simulations and results are compared with Mohl and Metral theoretical results.

 
 
THPAN016 Improving the SIS18 Performance by use of the Orbit Response Method quadrupole, focusing, lattice, closed-orbit 3256
 
  • A. S. Parfenova
  • G. Franchetti, I. Hofmann, C. Omet
    GSI, Darmstadt
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
  The SIS18 will be used as a booster for the new FAIR facility SIS100. A well-controlled linear optics of the SIS18 is necessary for further optimisation studies of nonlinear dynamics, resonance induced beam loss, dynamic aperture and nonlinear error measurements. The analysis of the orbit response matrix (ORM) is a powerful tool to calibrate the linear lattice models. We present results of several measurements on the SIS18 using the ORM and discuss the achieved improvement of the SIS18 performance.  
 
THPAN017 Scaling Laws for Space Charge Driven Resonances emittance, resonance, space-charge, lattice 3259
 
  • I. Hofmann
  • G. Franchetti
    GSI, Darmstadt
  Intrinsic fourth order space charge resonances may occur in linear as well as circular accelerators. The difference resonance ("emittance exchange" or "Montague" resonance) and the fourth order structure resonance lead to emittance variations depending on the strength of space charge, the crossing rate and the lattice. We present scaling laws for the Montague coupling resonance and for the fourth order structure resonance in terms of simple power law expressions that allow a straightforward application in design of accelerators subject to these mechanism.  
 
THPAN018 Stability Thresholds for Transverse Dipole Modes with Nonlinear Space Charge, Chromaticity and Octupoles space-charge, octupole, impedance, damping 3262
 
  • V. Kornilov
  • O. Boine-Frankenheim, I. Hofmann
    GSI, Darmstadt
  Funding: Work supported by EU design study (contract 515873 -DIRACsecondary-Beams)

Transverse stability due to combinations of chromaticity effect, nonlinear space charge and octupoles of different polarities plays an important role in the determination of the impedance budget for the FAIR synchrotrons. Different analytic approaches [*,**,etc.] have been suggested, for which no direct comparison has been made so far. In order to clarify this issue we perform numerical investigations employing the particle tracking code PATRIC and compare results of simulation scans with predictions of a dispersion relation. Space charge effects within self-consistent and 'frozen' models are used for comparisons, connection to beam transfer function studies is addressed.

* D. Moehl, CERN/PS 95-08 (DI), (1995)** M. Blaskiewicz, Phys. Rev. ST Accel. Beams 4, 044202, (2001)

 
 
THPAN019 Utilizing a Wien Filter within the Beam Dynamics Simulation Tool V-Code multipole, dipole, electron, extraction 3265
 
  • W. Ackermann
  • J. Enders, C. Heßler, Y. Poltoratska
    TU Darmstadt, Darmstadt
  • W. F.O. Muller, B. Steiner, T. Weiland
    TEMF, Darmstadt
  Funding: This work was partially funded by EUROFEL (RIDS-011935), DESY Hamburg, and DFG (SFB 634).

Beam dynamics simulations for computationally large problems are challenging tasks. On the one hand, to accurately simulate the electromagnetic field distribution within the whole device and the surrounding environment it is essential to consider all necessary device components including even small geometry details, complicated material distributions and the field excitations. On the other hand, further computational effort has to be put into precise modeling of the injected particle beam for detailed beam dynamics simulations. Under linear conditions, it is possible to separate the field calculation of the device from the computation of the particles self-field which can result in the proper application of diverse numerical schemes for the individual field contributions. In the paper it is demonstrated how the static electric and magnetic fields of a Wien filter beam line element can be treated as applied external fields within the beam dynamics simulation tool V-Code under the assumption that the interaction of the particle beam with the surrounding materials can be neglected.

 
 
THPAN020 A Dispersionless Algorithm for Calculating Wake Potentials in 3D linac, background 3268
 
  • R. Hampel
  • W. F.O. Muller, T. Weiland
    TEMF, Darmstadt
  Funding: This work is supported in part by the EU under contract number RIDS-011899 (EUROTeV).

Accurate computations of wake potentials are an important task in modern accelerator design. Short bunches used in high energy particle accelerators excite very high-frequency fields. The geometrical size of accelerating structures exceeds the wavelength of the excited fields by many orders of magnitude. The application of codes such as TBCI, MAFIA or tamBCI are limited due to numerical dispersion effects and memory needs. Recently new codes like PBCI have been developed to overcome these problems. In this work the utilization of dispersionless directions in the leap-frog update scheme on a Cartesian grid are proposed for accurate simulations. In conjunction with a conformal modelling technique which allows for the full Courant time step a moving window technique can be applied. This was previously implemented in a 2D code. In this publication an extension to arbitrary three dimensional problems are presented.

 
 
THPAN021 Analysis of a Particle-In-Cell Code Based on a Time-Adaptive Mesh cathode, space-charge, electromagnetic-fields, laser 3271
 
  • S. Schnepp
  • E. Gjonaj, T. Weiland
    TEMF, Darmstadt
  Funding: This work was partially funded by HGF (VH-FZ-005) and DESY Hamburg.

For the coupled simulation of charged particles and electromagnetic fields several techniques are known. In order to achieve accurate results various parameters have to be taken into account. The number of macro-particles per cell, the resolution of the computational grid, and other parameters strongly affect the accuracy of the results. In the code tamBCI, based on a time-adaptive mesh, additional variables related to the adaptive grid refinement have to be chosen appropriately. An analysis of these values is carried out and the results are applied to the self-consistent simulation of the injector section of FLASH in 3D.

 
 
THPAN023 MERLIN-Based Start-to-End Simulations of Luminosity Stability for the ILC luminosity, ground-motion, linac, emittance 3277
 
  • D. Kruecker
  • F. Poirier, N. J. Walker
    DESY, Hamburg
  Funding: Supported by the Commission of the European Communities under the 6th Framework Programme "Structuring the European Research Area", contract number RIDS-011899.

The International Linear Collider (ILC) requires the preservation of an ultra-small vertical emittance from the Damping Ring to the Interaction Point (IP) where the nanometre-sized beams are made to collide. It is well-known that ground motion and component vibration will need to be compensated by fast intra-train feedback systems and slower semi-continuous trajectory corrections. This complex system can in general only be modelled using simulation. In this paper, we report the progress and status of a full-featured so-called start-to-end simulation based on the MERLIN package of the ILC Low Emittance Transport (LET): Bunch compression, acceleration in the superconducting Main Linac, Beam Delivery System and finally collision at the IP. Realistic modelling of the beam-beam is included by using the code GUINEAPIG. Results based on several ground motion and vibration models and configurations of trajectory control are presented.

 
 
THPAN026 Beam Profile Measurements and Analysis at FLASH emittance, undulator, electron, lattice 3283
 
  • E. Prat
  • W. Decking, T. Limberg, F. Loehl
    DESY, Hamburg
  • K. Honkavaara
    Uni HH, Hamburg
  FLASH (Free Electron LASer in Hamburg) is a SASE FEL user facility at DESY, Hamburg. It serves also as a pilot project for the European XFEL. Although the slice emittance is a more appropriate parameter to characterize the SASE process, the projected emittance is a good indicator of the electron beam quality which can be measured in an easy and fast way. In this paper we present measurements of the projected emittance along FLASH. We also analyze the effect of the dispersion on transverse electron beam profiles.  
 
THPAN030 Transverse Self-Consistent Modeling of a 3D Bunch in SIS100 with MICROMAP synchrotron, lattice, space-charge, emittance 3292
 
  • C. Benedetti
  • G. Franchetti, I. Hofmann
    GSI, Darmstadt
  • S. Rambaldi, G. Turchetti
    Bologna University, Bologna
  Funding: EU-DESIGN STUDY (contract 515873 - DIRACsecondary-Beams)

We present the upgrade of the MICROMAP beam dynamics simulation library to include a 2 1/2 D space charge modeling of a 3D bunch using local slices in z. We discuss the parallelization technique, the performances, several tests and comparison with existing well-established analytical/numerical results in order to validate the code. An application to the SIS100 synchrotron of the FAIR project at GSI is outlined.

 
 
THPAN033 Design Study of the Dipole Magnet for the RHIC EBIS High Energy Transport Line dipole, multipole, quadrupole, sextupole 3301
 
  • T. Kanesue
  • M. Okamura, D. Raparia, J. Ritter
    BNL, Upton, Long Island, New York
  • J. Tamura
    Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology, Tokyo
  The design studies of the dipole magnet for EBIS HEBT line is proceeding. The RHIC EBIS is a new high current highly charged heavy ion preinjector for RHIC. The dipole magnet discussed in this paper will be used to guide the beam to existing heavy ion injection line to Booster. A total of 145 degrees bend is provided by two identical dipole magnets with a slit between these magnets to pass only intended charge state ions. Also this magnet has a hole in the side wall to pass the beam from the existing Tandem Van de Graaff. The performance of this magnet calculated by TOSCA and the results of the particle tracking calculation are described.  
 
THPAN034 New Simulation Code for Synchrotron Radiation Based on a Real Beam Orbit synchrotron-radiation, monitoring, synchrotron, alignment 3304
 
  • T. Abe
  A computer code to simulate synchrotron-radiation power and spatial distributions has been developed based on the method by T. Abe and H. Yamamoto*, where a real beam orbit is obtained by fitting measurements of beam-position monitors (BPMs) with some offset corrections for BPMs and magnet alignments. In this paper, the basic performance and application are presented. This code has been rewritten in Fortran95 so as to obtain expectable maximal speed-up by parallel computing, aiming at online alarm systems to take precautions against synchrotron-radiation damage, toward higher beam current accelerators.

* T. Abe and H. Yamamoto, Phys. Rev. ST Accel. Beams 7, 072802 (2004)

 
 
THPAN037 Beam-Beam Effects Observed at KEKB luminosity, feedback, emittance, betatron 3309
 
  • Y. Funakoshi
  • K. Ohmi, K. Oide, M. Tawada
    KEK, Ibaraki
  KEKB is an e+ e- collider with a world-highest luminosity of 1.7 x 1034 /cm2/s. It has a half-crossing angle of 11 mrad. We are installing crab cavities for the purpose of eliminating effects of crossing angle in the begining of 2007. Another feature of KEKB is that its operating points are very close to the half interger in the horizontal direction. This report summarizes beam-beam effects observed at KEKB.  
 
THPAN040 Study of Halo Formation in JPARC-MR emittance, acceleration, beam-losses, space-charge 3318
 
  • K. Ohmi
  • S. Igarashi, H. Koiso, T. Koseki, K. Oide
    KEK, Ibaraki
  JPARC is a high intensity proton facility which is constructing as a joint project JAERI-KEK in Japan. JPARC equips two proton ring accelerators, Rapid Cycle Synchrotron (RCS) and Main Ring (MR). We discuss the space charge effect of MR in this paper. The proton beam with the population of 4.15·1013 x 8 bunches is accelerated from 3 GeV to 50 GeV and extracted with 0.5 Hz in MR. Beam loss during the acceleration is caused by an incoherent emittance growth due to the space charge force. We discuss the emittance growth and halo formation using a computer simulation based on the particle in cell method.  
 
THPAN043 Comparison of Trajectory Between Modeling and Experiment for J-PARC Linac linac, quadrupole, beam-transport, betatron 3324
 
  • T. Ohkawa
  • H. Ao, A. Ueno
    JAEA/LINAC, Ibaraki-ken
  • K. Hasegawa
    JAEA, Ibaraki-ken
  • M. Ikegami
    KEK, Ibaraki
  • H. Sako
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  In the beam commissioning of J-PARC (Japan Proton Accelerator Research Complex) linac, three simulations codes are used to model the accelerator. We have compared with the experimental results obtained in the beam commissioning to date, where a basic agreement has been confirmed between the modeling and the actual beam behavior.  
 
THPAN045 Explicit Time Domain Boundary Element Scheme for Dispersion-free Wake Field Calculation of Long Accelerator Structures linac, scattering, electromagnetic-fields, electron 3330
 
  • K. Fujita
  • T. Enoto, S. Tomioka
    Hokkaido University, Sapporo
  • R. Hampel, W. F.O. Muller, T. Weiland
    TEMF, Darmstadt
  • H. Kawaguchi
    Muroran Institute of Technology, Department of Electrical and Electronic Engineering, Muroran
  This paper introduces a new explicit scheme with a moving window option for wake field calculation of long accelerator structures. This scheme is based on a time domain boundary element method (TDBEM) which uses a retarded Kirchhoff boundary integral equation on interior region problems. As a corollary of this boundary integral equation, our approach allows a conformal modeling of a structure and time domain wake field simulation without numerical grid dispersion errors in all spatial directions. The implementation of a moving window technique in the framework of TDBEM is presented and it is shown that this moving window technique allows to significantly reduce memory requirement of the TDBEM scheme in the short range wake field calculation. Several numerical examples are demonstrated for the TESLA 9-cell cavity and tapered collimators. The results of the new TDBEM scheme are compared with that of finite difference codes.  
 
THPAN048 Numerical Solver with CIP Method for Fokker Planck Equation of Stochastic Cooling pick-up, kicker, feedback, impedance 3336
 
  • T. Kikuchi
  • T. Katayama
    CNS, Saitama
  • S. Kawata
    Utsunomiya University, Utsunomiya
  A Fokker Planck equation for a Stochastic cooling* is solved by using the CIP method**. The Fokker Planck equation can be described in a convection-diffusion equation as a function of time and energy. The equation is a non linear form and the evolution of the distribution function should be numerically solved. The CIP method, which is an effective scheme to solve the convection term numerically, is applied to the Fokker Planck equation of the Stochastic cooling. By using the CIP method for the numerical solver, we can effectively calculate the time-dependent Fokker Planck equation in more few computational costs. The developed numerical solver can give us the energy spectrum of the particle distribution during the beam cooling. The simulation results show the good agreements compared with the experimental results.

* S. Van der Meer, CERN/PS/AA/78-22, 1978.** T. Yabe and T. Aoki, Comp. Phys. Commun. 66 (1991) 219.

 
 
THPAN049 Particle Dynamics at Stagnation Point during Longitudinal Bunch Compression of High Current Beams emittance, beam-transport, focusing, space-charge 3339
 
  • T. Kikuchi
  • K. Horioka
    TIT, Yokohama
  • S. Kawata
    Utsunomiya University, Utsunomiya
  Funding: This work is supported by MEXT (Ministry of Education, Culture, Sports, Science and Technology) and JSPS (Japan Society for the Promotion of Science) No.17740361.

For researches in high energy density physics and inertial confinement fusion by using heavy ion beams, high-current beam dynamics should be understood well. The heavy ion beam is longitudinally compressed by a head-to-tail velocity tilt applied from high-power induction voltage modules. In this study, emittance growth due to the longitudinal bunch compression is numerically investigated by using a particle-in-cell simulation. The code developed is dealt with three dimensional particle motions, and 2D transverse electric field is solved by Poisson equation coupled with 1D longitudinal electric field. We indicate the particle dynamics due to the non-linear longitudinal-transverse coupling effect around the stagnation point in the longitudinal compression.

 
 
THPAN054 Experiment on a Cold Test Model of a 2-Cell SC Deflecting Cavity for ALS at LBNL damping, coupling, electron, RF-structure 3348
 
  • J. Shi
  • H. Chen, C.-X. Tang, S. Zheng
    TUB, Beijing
  • D. Li
    LBNL, Berkeley, California
  Deflecting Cavities can be used to generate sub-pico-second X-ray pulse and are proposed at ALS at LBNL. A 2-cell structure has been simulated earlier to achieve the required deflecting voltage with damping waveguide to get low impedance. An aluminum cold test model has been made to demonstrate the simulation and the idea for damping LOM with waveguide. Field distribution as well as (R/Q)s are measured using 'bead-pull' method. Qs with/without waveguide loaded are measured and compared with simulation. Detailed configuration and experiment progress is presented.  
 
THPAN058 Beam Tracking Simulations for a BPM-based Energy Spectrometer Prototype for ILC dipole, electron, synchrotron, radiation 3360
 
  • S. A. Kostromin
  T-474 at SLAC is a prototype BPM-based energy spectrometer for the ILC. A 4-dipole chicane is used with mid-chicane dispersion of 5-mm and magnetic fields of ~1 kGauss; these match the current ILC parameters. Better than 100 part-per-million (ppm) accuracy is needed for ILC energy measurements, requiring better than 50 ppm accuracy for magnetic field integral measurements. Code for beam tracking through the spectrometer chicane was developed. Magnetic field maps for dipole magnets obtained from the measurements at SLAC are used. Different aspects of the magnetic field influence to the beam deflection value are discussed. Results of the beam dynamics study using the measured magnetic fields for T-474 chicane to estimate magnetic effects on capabilities for the energy measurements are also reported.  
 
THPAN060 3D PIC Method Development for Simulation of Beam-Beam Effects in Supercolliders electron, positron, focusing, beam-beam-effects 3366
 
  • M. A. Boronina
  • E. Levichev, S. A. Nikitin
    BINP SB RAS, Novosibirsk
  • V. N. Snytnikov
    IC SB RAS, Novosibrsk
  • V. A. Vshivkov
    ICM&MG SB RAS, Novosibirsk
  A new Beam-Beam simulation code based on a 3D PIC method has been developed. Taking into account to the full extent the three-dimensional nature of the interaction can be useful for studies of some thin questions such as a pinch effect at large crossing angles in ILC and Crab Waist properties in SuperB Factory. Colliding electron and positron beams move in the region shaped as parallelepiped. The physical process is described by Vlasov-Liouville equations and a set of Maxwell equations that interrelate of the densities of charge and current, and intensities of electric and magnetic fields. The examples of the electron and positron bunches movement and collision simulation are presented.  
 
THPAN065 Beam Loss Map Simulations and Measurements in the CERN PS beam-losses, septum, collimation, extraction 3372
 
  • J. Barranco
  • O. E. Berrig, S. S. Gilardoni, J. B. Jeanneret, Y. Papaphilippou
    CERN, Geneva
  • G. Robert-Demolaize
    BNL, Upton, Long Island, New York
  Numerical tools providing detailed beam loss maps, recently developed for the design of the LHC collimation system, were adapted to the CERN Proton Synchrotron in order to reproduce the observed beam loss patterns. Using a MADX optics sequence model, these tools are able to track a large number of particles with Sixtrack and interact with a realistic aperture model to simulate particle losses all around the ring. The modeled loss maps were finally compared with beam loss measurements at several energies and for a variety of beams accelerated in the synchrotron.  
 
THPAN068 Wakefield Models for Particle Tracking Codes multipole, dipole, quadrupole, collective-effects 3378
 
  • A. Latina
  • R. J. Barlow, A. Bungau
    UMAN, Manchester
  • G. A. Blair
    Royal Holloway, University of London, Surrey
  • G. Rumolo, D. Schulte
    CERN, Geneva
  • J. D.A. Smith
    Lancaster University, Lancaster
  Wakefields have a considerable effect on beam dynamics and they must not be neglected for emittance growth studies, background estimates and other problems. The codes used for these problems are normally not capable of self-consistent wakefield calculations. They should thus be extended with either analytical models or export the wakefields numerically evaluated with other codes (such as Gdfidl) when analytical models are not feasible. We discuss both approaches and present their implementation in PLACET, MERLIN and BDSIM. The simulation results for the ILC and CLIC beam delivery systems are given as an example. Results produced with different codes are compared.  
 
THPAN071 LHC On-Line Modeling controls, optics, closed-orbit, resonance 3384
 
  • F. Schmidt
  • I. V. Agapov
    DESY, Hamburg
  • W. Herr, G. Kruk, M. Lamont
    CERN, Geneva
  The LHC machine will be a very demanding accelerator with large nonlinearities to control. Particle loss in the LHC must be actively controlled to avoid damage to the machine. Therefore any relevant adjustment to the machine must be checked beforehand with a proper modeling tool of the LHC. The LHC On-Line Modeling is an attempt to provide such an analysis tool mainly based on the MAD-X code. The goal is not to provide real-time system to control LHC but rather a way to speed up off-line analysis to give results within minutes. There will be a rich spectrum of applications like closed orbit corrections, beta-beating analysis, optimization of correctors and knob settings to name a few. This report will outline how in detail the On-Line Modeling will be in embedded in the LHC control system. It will also be reported about progress in applying this analysis tool to the SPS machine and to the commissioning of the CNGS.  
 
THPAN075 Modeling Incoherent Electron Cloud Effects electron, emittance, synchrotron, radiation 3393
 
  • F. Zimmermann
  • E. Benedetto, G. Rumolo, D. Schulte, R. Tomas
    CERN, Geneva
  • W. Fischer
    BNL, Upton, Long Island, New York
  • G. Franchetti
    GSI, Darmstadt
  • K. Ohmi
    KEK, Ibaraki
  • M. T.F. Pivi, T. O. Raubenheimer
    SLAC, Menlo Park, California
  • K. G. Sonnad, J.-L. Vay
    LBNL, Berkeley, California
  Incoherent effects driven by an electron cloud could seriously limit the beam lifetime in proton storage rings or blow up the vertical emittance in positron ones. Different approaches to modeling these effects each have their own merits and drawbacks. We compare the simulation results and computing time requirements from a number of dedicated codes under development over the last years, and describe the respective approximations for the beam-electron cloud interaction, the accelerator structure, and the optical lattice, made in each of these codes. Examples considered include the LHC, CERN SPS, RHIC, and the ILC damping ring. Tentative conclusions are drawn and a strategy for further codes development is outlined.  
 
THPAN076 Progress on H5Part: A Portable High Performance Parallel Data Interface for Electromagnetics Simulations emittance, focusing 3396
 
  • A. Adelmann
  • E. W. Bethel, J. M. Shalf, C. Siegerist, K. Stockinger
    LBNL, Berkeley, California
  • A. Gsell, B. S.C. Oswald, T. Schietinger
    PSI, Villigen
  Significant problems facing all experimental and computational sciences arise from growing data size and complexity. Common to all these problems is the need to perform efficient data I/O on diverse computer architectures. In our scientific application, the largest parallel particle simulations generate vast quantities of six-dimensional data. Such a simulation run produces data for an aggregate data size up to several TB per run. Motived by the need to address data I/O and access challenges, we have implemented H5Part, an open source data I/O API that simplifies use of the Hierarchical Data Format v5 library (HDF5), which is an industry standard for high performance, cross-platform data storage and retrieval that runs on all contemporary architectures from large parallel supercomputers to laptops. H5part, which is oriented to the needs of the particle physics and cosmology communities, provides support for parallel storage and retrieval of particles, structured and in the future unstructured meshes. In this paper, we describe recent work focusing on I/O support for unstructure meshes and provide data showing performance on modern supercomputer architectures.  
 
THPAN078 An Elementary Analysis of Coupled-Bunch Instabilities coupling, damping, impedance, storage-ring 3399
 
  • K. M. Hock
  • A. Wolski
    Liverpool University, Science Faculty, Liverpool
  We reconsider the equations of motion of wakefield coupled bunches in the light of recent developments in Delay Differential Equations. In the case of uniform resistive wall in a circular accelerator, we demonstrate an alternative way to obtain the growth rates. For each Fourier mode of bunch displacements, we show that multiple time domain modes can arise from an exact solution of the equation of motion. The growth rate as it is commonly defined corresponds to only one of them. The amplitude of each Fourier mode can therefore evolve with time in a way is not simply exponential. This is a result that has been observed in simulations of wakefield coupled bunches.  
 
THPAN079 Emittance Growth Due to High Order Angular Multipole Mode Wakefields in the ILC-BDS Collimators luminosity, higher-order-mode, emittance, collider 3402
 
  • A. Bungau
  • R. J. Barlow
    UMAN, Manchester
  The passage of an off-axis bunch through the collimator gap induces higher order mode wakefields which can lead to emittance growth and consequently can affect the luminosity at the IP - a major concern for the ILC. The emittance growth due to high order angular multipole mode wakefields is calculated and beam profiles at the IP are presented in this paper.  
 
THPAN081 Collimator Wakefields: Formulae and Simulation damping, electromagnetic-fields, collimation 3405
 
  • R. J. Barlow
  • A. Bungau, R. M. Jones
    Cockcroft Institute, Warrington, Cheshire
  The effect of a leading particle on a trailing particle due to resistive and geometric wakefields in collimators can be described by expanding in a series of angular mode potentials Wm(s). Several formulae for these are given in the literature. We compare these formulae with numerical predictions from codes that solve the EM field equations, and explore the claimed regions of validity. We also explore how the EM code results can be used to numerically obtain angular mode potentials suitable for use in tracking codes.  
 
THPAN082 Implementation of Spread Mass Model of Ion Hose Instability in Lamda ion, induction, acceleration, target 3408
 
  • Y. Tang
  • C. Ekdahl
    LANL, Los Alamos, New Mexico
  • T. C. Genoni, T. P. Hughes
    Voss Scientific, Albuquerque, New Mexico
  • M. E. Schulze
    SAIC, Los Alamos, New Mexico
  Funding: Work supported by Los Alamos National Laboratory.

The ion-hose instability sets limits on the allowable vacuum in the DARHT-2 linear induction accelerator (2kA, 18.6MeV, 2μs). Lamda is a transport code which advances the beam centroid and envelope in a linear induction accelerator from the injector to the final focus region. The code computes the effect of magnet misalignments, beam breakup instability, image-displacement instability, and gap voltage fluctuation on the beam. In this work, we have implemented the Spread Mass (SM) model of ion-hose instability into Lamda so that we can examine quickly the operating parameters for the experiments. Unlike the ordinary SM ion-hose code which assumes the uniform axial magnetic field, Lamda ion-hose calculation includes varying axial magnetic field, accelerating beam, gas pressure file, varying beam radius and elliptical beam. The benchmarks against a semi-analytical SM code and the particle-in-cell code Lsp, and a prediction of ion-hose instability for a 2.5MeV-1.4kA beam in the DARHT-2 are presented.

 
 
THPAN083 A Beam-Slice Algorithm for Transport Simulations of the DARHT-2 Accelerator emittance, beam-transport, extraction, target 3411
 
  • C. H. Thoma
  • T. P. Hughes
    Voss Scientific, Albuquerque, New Mexico
  A beam-slice algorithm has been implemented into the Lsp particle-in-cell (PIC) code to allow for efficient simulation of beam electron transport through a long accelerator. The slice algorithm pushes beam particles along a virtual axial dimension and performs a field solve on a transverse grid which moves with the particle slice. Any external electric and magnetic fields are also applied to the slice at each time step. For an axisymmetric beam problem the slice algorithm is very fast compared to full 2-D r-z PIC simulations. The algorithm also calculates beam emittance growth due to mismatch oscillations, in contrast to standard envelope codes which assume constant emittance. Using the slice algorithm we are able to simulate beam transport in the DARHT-2 accelerator at LANL from the region just downstream of the diode to the end of the accelerator, a distance of about 50 meters. Results from the slice simulation are compared to both 2-D PIC simulations and the beam envelope code Lamda. The sensitivity of the final emittance to imperfect tuning of the transport solenoids is calculated.  
 
THPAN084 Self Consistent Monte Carlo Method to Study CSR Effects in Bunch Compressors shielding, vacuum 3414
 
  • G. Bassi
  • J. A. Ellison, K. A. Heinemann
    UNM, Albuquerque, New Mexico
  • R. L. Warnock
    SLAC, Menlo Park, California
  Funding: Supported by DOE grant DE-FG02-99ER41104 and contract DE-AC02-76SF00515.

We report on the implementation of a self consistent particle code to study CSR effects on particle bunches traveling on arbitrary planar orbits. Shielding effects are modeled with parallel perfectly conducting plates. The "vertical" charge distribution is assumed to be stationary. The macroscopic Maxwell equations are solved in the lab frame while the equations of motion are integrated in the beam frame interaction picture where the dynamics is governed by the self fields alone. We study different methods to construct a smooth charge density from particles, e.g. gridless nonparametric curve estimation and charge deposition plus filtering. We present numerical results for bunch compressors. In particular, we study different initial distributions. The transverse initial distribution is Gaussian and we study different initial longitudinal distributions: Gaussian, parabolic and nonlinear chirp. A parallel version of the code has been implemented and this will speed up parameter analysis and allow micro-bunching studies.

 
 
THPAN085 Two-Stream Instability Analysis For Propagating Charged Particle Beams With a Velocity Tilt plasma, ion, background, emittance 3417
 
  • D. Rose
  • R. C. Davidson, E. Startsev
    PPPL, Princeton, New Jersey
  • T. C. Genoni, D. R. Welch
    Voss Scientific, Albuquerque, New Mexico
  Funding: This research was supported by the U. S. DOE through Lawrence Berkeley National Laboratory, Princeton Plasma Physics Laboratory for the Heavy Ion Fusion Science-Virtual National Laboratory.

The linear growth of the two-stream instability for a charged particle beam that is longitudinally compressing as it propagates through a background plasma (due to an applied velocity tilt) is examined. Detailed, 1D particle-in-cell simulations are carried out to examine the growth of a wave packet produced by a small amplitude density perturbation in the background plasma. Recent analytic and numerical work by Startsev and Davidson [1] predicted reduced linear growth rates, which are indeed observed in the simulations. Here, small-signal asymptotic gain factors are determined in a semi-analytic analysis and compared with the simulation results in the appropriate limits. Nonlinear effects in the PIC simulations, including wave breaking and particle-trapping, are found to limit the linear growth phase of the instability for both compressing and non-compressing beams.

[1] Phys. Plasmas 13, 62108 (2006)

 
 
THPAN086 End-to-end Simulations of an Accelerator for Heavy Ion Beam Bunching ion, plasma, focusing, emittance 3420
 
  • D. R. Welch
  • J. E. Coleman, E. Henestroza, P. K. Roy, P. A. Seidl
    LBNL, Berkeley, California
  • E. P. Gilson, A. B. Sefkow
    PPPL, Princeton, New Jersey
  • D. Rose
    Voss Scientific, Albuquerque, New Mexico
  Funding: This research was supported by the U. S. Department of Energy through Princeton Plasma Physics Laboratory and Lawrence Berkeley National Laboratory for the HIFS-VNL.

Longitudinal bunching factors in excess of 70 of a 300-keV, 27-mA K+ ion beam have been demonstrated in the Neutralized Drift Compression Experiment in rough agreement with LSP particle-in-cell end-to-end simulations. These simulations include both the experimental diode voltage and induction bunching module voltage waveforms in order to specify the initial beam longitudinal phase space critical to longitudinal compression. To maximize simultaneous longitudinal and transverse compression, we designed a solenoidal focusing system that compensated for the impact of the applied velocity tilt on the transverse phase space of the beam. Here, pre-formed plasma provides beam neutralization in the last one meter drift region where the beam perveance becomes large. Integrated LSP simulations, that include detailed modeling of the diode, magnetic transport, induction bunching module, plasma neutralized transport, were critical to understanding the interplay between the various accelerator components. Here, we compare simulation results with the experiment and discuss the contributions to longitudinal and transverse emittance that limit compression.

 
 
THPAN090 Fourier Spectral Simulation for Wake Field in Conducting Cavities impedance, vacuum, coupling, electromagnetic-fields 3432
 
  • M. Min
  • Y.-C. Chae, P. F. Fischer, K.-J. Kim
    ANL, Argonne, Illinois
  • Y. H. Chin
    KEK, Ibaraki
  Recent demand of short-bunch beams poses high-order computational tools for investigating beam dynamics in order to improve the beam quality. We have studied a new computational approach with spectrally accurate high-order approximation for wake field calculations. The technique employs the standard Fourier basis combined with a post-processing procedure for noise reduction by Gegenbauer reconstruction. We integrate this scheme into the existing 2D wake field calculation code ABCI and investigate possible enhancemance of its performance on the same grid base. We will demontrate 2D wake potential simulations for various cylindrically symmetric structures with the quality improvement in comparison to the conventional lower-order method.  
 
THPAN091 Spectral-Element Discontinuous Galerkin Simulations for Wake Potential Calculations: NEKCEM impedance, coupling, electromagnetic-fields, storage-ring 3435
 
  • M. Min
  • Y.-C. Chae, P. F. Fisher
    ANL, Argonne, Illinois
  The demand for short bunches of 1 ps or less poses not only technical challenges in order to deliver the beams for leading-edge research but also poses computational challenges when it comes to investigating bunched multi-particle beam dynamics in order to improve the beam quality. We introduce a powerful high-order numerical tool based on spetral-element discretizations with discontinuous Galerkin approximation approach, which includes spectral element time domain solver for Maxwell's equation and electrostatic Poisson solver. We will demonstrate 3D simulations for wakefield and wake potential calculations in conducting cavity structures, as well as meshing and visualization components. We will discuss the overcome of the computational bottleneck by widely-used low-order finite difference programs for calculating wake field excited by 1-ps bunches, provided with performance and accuracy comparison.  
 
THPAN093 Booster Requirements for Advanced Photon Source 1-nm Emittance Upgrade Lattices lattice, injection, booster, emittance 3438
 
  • N. Sereno
  • M. Borland
    ANL, Argonne, Illinois
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357

In recent years, we have explored various upgrade options for the Advanced Photon Source (APS) storage ring that would provide the user community higher brightness. Increased brightness would be accomplished by reducing the emittance of the storage ring as well as increasing the stored beam current from 100 mA to 200 mA. Two upgrade lattices were developed that reduce the effective beam emittance to 1 nm from the present 2.7 nm. These lattices have reduced dynamic aperture compared to the present ring lattice, which may require a reduced emittance booster to minimize injection losses. This paper describes injection tracking simulations that explore how high the booster emittance can be and still have no losses at injection for the 1-nm ring upgrade lattices. An alternative booster lattice is presented with reduced emittance compared to the present booster lattice (65 nm). The proposed low-emittance booster lattice would add pole-face windings to the existing booster dipoles and hence would not require replacement of the existing booster magnets.

 
 
THPAN094 Design Study of a Transverse-to-Longitudinal Emittance Exchange Proof-of-principle Experiment emittance, dipole, space-charge, quadrupole 3441
 
  • Y.-E. S. Sun
  • K.-J. Kim, J. G. Power
    ANL, Argonne, Illinois
  • P. Piot, M. M. Rihaoui
    Northern Illinois University, DeKalb, Illinois
  Funding: Dr. Sun's work is supported by U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

Transverse-to-longitudinal emittance exchange can be achieved through certain arrangements of dipole magnets and dipole mode rf cavity. Theory on such schemes has been developed in the past several years. In this paper we report our numerical simulations on the emittance exchange using particle tracking codes. Photoelectron beams with energy less than 20 MeV are used, as our purpose of simulations is to study the feasibility of performing such emittance exchange at existing facilities of beam energy at this level. Parametric studies of the dipole magnets and cavity strengths, as well as initial beam parameters, are presented.

 
 
THPAN095 Implementation and Performance of Parallelized Elegant collective-effects, space-charge, linac, damping 3444
 
  • Y. Wang
  • M. Borland
    ANL, Argonne, Illinois
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The program Elegant* is widely used for design and modeling of linacs for free-electron lasers and energy recovery linacs, as well as storage rings and other applications. As part of a multi-year effort, we have parallelized many aspects of the code, including single-particle dynamics, wakefields, and coherent synchrotron radiation. We report on the approach used for gradual parallelization, which proved very beneficial in getting parallel features into the hands of users quickly. We also report details of parallelization of collective effects. Finally, we discuss performance of the parallelized code in various applications.

*M. Borland, APS Light Source Note LS-287, September 2000.

 
 
THPAN099 Direct Space-Charge Calculation in Elegant and Its Application to the ILC Damping Ring space-charge, damping, emittance, electron 3456
 
  • A. Xiao
  • M. Borland, L. Emery, Y. Wang
    ANL, Argonne, Illinois
  • K. Y. Ng
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

A direct space-charge force model has been implemented in the tracking code elegant. The user can simulate transverse space-charge effects by inserting space-charge elements in the beamline at any desired position. Application to the International Linear Collider damping ring is presented in this paper. We simulated beam under equilibrium conditions, as well as the entire damping cycle from injection to extraction. Results show that beam halo is generated due to space charge effects. This would be a significant concern for the ILC damping ring and a detailed follow-up study is needed.

 
 
THPAN100 Parallelization of TRACK for Large Scale Beam Dynamic Simulations in Linear Accelerator linac, space-charge, emittance, proton 3459
 
  • J. Xu
  • V. N. Aseev, B. Mustapha, P. N. Ostroumov
    ANL, Argonne, Illinois
  Funding: This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC-02-06CH11357.

Large scale beam dynamics simulations are important to support the design and operations of an accelerator. From the beginning, the beam dynamics code TRACK was developed to make it useful in the three stages of a hadron (proton and heavy-ion) linac project, namely the design, commissioning and operation of the machine. In order to combine the unique features of TRACK with large scale and fast parallel computing we have recently developed a parallel version of the code*. We have successfully benchmarked the parallel TRACK on different platforms: BG/L and Jazz at ANL, Iceberg at ARSC, Lemieux at PSC and Seaborg at NERSC. We have performed large scale RFQ and end-to-end simulations of the FNAL proton driver where particles were simulated. The actual parallel version has the potential of simulating particles on 10 racks with 20,480 processors of BG/L at ANL, which will be available soon. After a brief description of the parallel TRACK, we'll present results from highlight applications.

* "Parallelization of a Beam Dynamics Code and First large Scale RFQ Simulations", J. Xu, B. Mustapha, V. N. Aseev and P. N. Ostroumov, accepted for publication in PRST-AB.

 
 
THPAN103 G4Beamline Simulation Program for Matter-dominated Beamlines emittance, factory, collider, target 3468
 
  • T. J. Roberts
  • D. M. Kaplan
    Illinois Institute of Technology, Chicago, Illinois
  Funding: Supported in part by DOE STTR grant DE-FG02-06ER86281

G4beamline is a single-particle simulation program optimized for the design and evaluation of beam lines. It is based on the Geant4 toolkit, and can implement accurate and realistic simulations of particle transport in both EM fields and in matter. This makes it particularly well suited for studies of muon collider and neutrino factory design concepts. G4beamline includes a rich repertoire of beamline elements and is intended to be used directly without C++ programming by accelerator physicists. The program has been enhanced to handle a larger class of beamline and detector systems, and to run on Linux, Windows, and Macintosh platforms.

 
 
THPAN112 CHEF: A Status Report linac, optics, emittance, lattice 3486
 
  • J.-F. Ostiguy
  • L. Michelotti
    Fermilab, Batavia, Illinois
  Funding: Authored by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U. S. Department of Energy.

CHEF is both a framework and an interactive application emphasizing accelerator optics calculations. The framework supports, using a common infrastructure, multiple domains of applications: e.g. nonlinear analysis, perturbation theory, and tracking. Its underlying philosophy is to provide infrastructure with minimum hidden implicit assumptions, general enough to facilitate both routine and specialized computational tasks and to minimize duplication of necessary, complex bookkeeping tasks. CHEF was already described in recent conferences. In this paper we present a status report on the most recent developments, including issues related to its application to high energy linacs.

 
 
THPAN113 Mxyzptlk: An Efficient, Native C++ Differentiation Engine quadrupole, sextupole 3489
 
  • J.-F. Ostiguy
  • L. Michelotti
    Fermilab, Batavia, Illinois
  Funding: Authored by Universities Research Association, Inc. under contract No. DE-AC02-76CH03000 with the U. S. Department of Energy.

Mxyzptlk was one of the early and, to this day, limited number of differentiation engines implemented by taking full advantage of a language with operator overloading capabilities. It was created with an eye at enabling accelerator related computations, especially within the realm of perturbation theories. Such computations are supported by (1) a one-to-one correspondence between original mathematical abstractions and the data types and operations used to implement them; (2) the exact computation of high order derivatives. Significant efforts were invested recently in modernizing Mxyzptlk both architecturally and algorithmically. Among other things, these substantially improved performance and usabilty. We present a description of the current Mxyzptlk from both standpoints and describe its current capabilities and performance.

 
 
THPAN114 Simulations of Beam-wire Experiments at RHIC dynamic-aperture, resonance, beam-losses, injection 3492
 
  • T. Sen
  • H. J. Kim
    Fermilab, Batavia, Illinois
  We report on simulations of beam-beam experiments performed at RHIC in 2006. These experiments were designed to observe the influence of a single parasitic interaction on beam quality. Several observables such as tunes, emittances and losses were simulated with the weak-strong code BBSIM. These simulation results are compared to observed values. Simulations of the wire compensation experiment to be carried out in RHIC are also shown.  
 
THPAN118 Simulations of the Electron Cloud Buildups and Suppressions in Tevatron and Main Injector electron, vacuum, proton, storage-ring 3504
 
  • X. Zhang
  • J.-F. Ostiguy
    Fermilab, Batavia, Illinois
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC02-76CH03000

To assess the effects of the electron cloud on Main Injector intensity upgrades, simulations of the cloud buildup were carried out using POSINST and compared with ECLOUD. Results indicate that even assuming an optimistic 1.3 maximum secondary electron yield, the electron cloud remains a serious concern for the planned future operational of mode of 500 bunches, 3·1011 proton per bunch. Electron cloud buildup can be mitigated in various ways. We consider a plausible scenario involving solenoids in straight section and a single clearing strip electrode (like SNEG in Tevatron)held at a potential of 500V. Simulations with parameters corresponding to Tevatron and Main Injector operating conditions at locations where special electron cloud detectors have been installed have been carried out and are in satisfactory agreement with preliminary measurements.

 
 
THPAS001 Suppression of Terahertz Radiation in Electron Beams with Longitudinal Density Modulation wiggler, electron, gun, radiation 3507
 
  • C. P. Neuman
  • P. G. O'Shea
    UMD, College Park, Maryland
  Electron beams with periodic longitudinal density modulations may produce terahertz radiation in a linear accelerator. Terahertz radiation is useful for a wide range of applications and research interests. In other cases, it may be desirable to suppress unwanted terahertz radiation caused by unintended fluctuations of the electron beam. This study explores the possibility of using a wiggler to convert the density modulation to energy modulation. Previous studies by the author (*) have shown that energy modulation washes out of the beam as it is transported in a linear accelerator system. Thus, by converting density modulation to energy modulation and then letting it wash out, we will have suppressed density modulation in the beam and thus the possibility of unwanted terahertz radiation. Simulations are performed using PARMELA and other software codes. Results will provide a better understanding of the evolution of modulated electron beams and may provide a method to suppress unwanted terahertz radiation. Parameters in the simulations are chosen to correspond to existing accelerator systems so that the results may be used to support an experimental study.

(*) Simulation of Longitudinally Modulated Electron Beams. C. P. Neuman and P. G. O'Shea. In 2006 Advanced Accelerator Concepts Workshop, AIP Conference Proceedings, 877, 621-627. Melville, AIP (2006).

 
 
THPAS002 Evolution of Longitudinal Modulation in Electron Beams electron, radiation, gun, linac 3510
 
  • C. P. Neuman
  • P. G. O'Shea
    UMD, College Park, Maryland
  Electron beams with periodic longitudinal density modulations may produce terahertz radiation in a linear accelerator. Whether the radiation is desired or not, it would be useful to understand how the modulations of an electron bunch evolve as the beam is transported through a linac system. Recent studies (*) show that density modulated beams lose their density modulation in favor of energy modulation. Thus, it is instructive to simulate beams that have only density modulation and beams that have only energy modulation. The former is useful for learning how to keep the desired density modulation for beams intended to create terahertz radiation, the latter for learning how to suppress unwanted energy modulation, which may have originated as density modulation. In this study, simulations are performed using PARMELA and other software codes. The study investigates energy ranges that are higher than those studied in the author’s previous work, and the study also focuses on the evolution of the beam in the electron gun. Parameters in the simulations are chosen to correspond to existing accelerator systems so that the results may be used to support an experimental study.

(*) Simulation of Longitudinally Modulated Electron Beams. C. P. Neuman and P. G. O'Shea. In 2006 Advanced Accelerator Concepts Workshop, AIP Conference Proceedings 877, edited by M. Conde and C. Eyberger, 621-627. Melville, NY, AIP (2006).

 
 
THPAS006 A Solenoid Final Focusing System with Plasma Neutralization for Target Heating Experiments plasma, target, ion, focusing 3519
 
  • P. K. Roy
  • J. J. Barnard, A. W. Molvik
    LLNL, Livermore, California
  • F. M. Bieniosek, J. E. Coleman, J.-Y. Jung, M. Leitner, B. G. Logan, P. A. Seidl, W. L. Waldron
    LBNL, Berkeley, California
  • R. C. Davidson, P. Efthimion, E. P. Gilson, A. B. Sefkow
    PPPL, Princeton, New Jersey
  • J. A. Duersch, D. Ogata
    UCB, Berkeley, California
  • D. R. Welch
    Voss Scientific, Albuquerque, New Mexico
  Intense bunches of low-energy heavy ions have been suggested as means to heat targets to the warm dense matter regime (0.1 to 10 eV). In order to achieve the required intensity on target (~1 eV heating), a beam spot radius of approximately 0.5 mm, and pulse duration of 2 ns is required with an energy deposition of approximately 1 J/cm2. This translates to a peak beam current of 8A for ~0.4 MeV K+ ions. To increase the beam intensity on target, a plasma-filled high-field solenoid is being studied as a means to reduce the beam spot size from several mm to the sub-mm range. We are building a prototype experiment to demonstrate the required beam dynamics. The magnetic field of the pulsed solenoid is 5 to 8 T. Challenges include suitable injection of the plasma into the solenoid so that the plasma density near the focus is sufficiently high to maintain space-charge neutralization of the ion beam pulse. Initial experimental results for a peak current of ~1A will be presented.

This work was supported by the Office of Fusion Energy Sciences, of the U. S. Department of Energy under Contract No. DE-AC02-05CH11231, W-7405-Eng-48, DE-AC02-76CH3073 for HIFS-VNL.

 
 
THPAS007 Parallel Beam Dynamics Simulation Tools for Future Light Source Linac Modeling linac, electron, space-charge, emittance 3522
 
  • R. D. Ryne
  • I. V. Pogorelov, J. Qiang
    LBNL, Berkeley, California
  Large-scale modeling on parallel computers is playing an increasingly important role in the design of future light sources. Such modeling provides a means to accurately and efficiently explore issues such as limits to beam brightness, emittance preservation, the growth of instabilities, etc. Recently the IMPACT codes suite was enhanced to be applicable to future light source design. Early simulations with IMPACT-Z were performed using up to 100M simulation particles for the main linac of a future light source. Combined with the time domain code IMPACT-T, it is now possible to perform large-scale start-to-end linac simulations for future sources, including the injector, main linac, chicanes, and transfer lines. In this paper we provide an overview of the IMPACT code suite, its key capabilities, and recent enhancements pertinent to accelerator modeling for future linac-based light sources.  
 
THPAS008 Simulation of the Dynamics of Microwave Transmission Through an Electron Cloud electron, plasma, diagnostics, polarization 3525
 
  • K. G. Sonnad
  • J. R. Cary
    CIPS, Boulder, Colorado
  • M. A. Furman
    LBNL, Berkeley, California
  • P. Stoltz, S. A. Veitzer
    Tech-X, Boulder, Colorado
  Funding: Work supported by the U. S. DOE under Contract no. DE-AC02-05CH11231

Simulation studies are under way to analyze the dynamics of microwave transmission through a beam channel containing electron clouds. Such an interaction is expected to produce a shift in phase accompanied by attenuation in the amplitude of the microwave radiation. Experimental observation of these phenomena would lead to a useful diagnosis tool for electron clouds. This technique has already been studied* at the CERN SPS. Similar experiments are being proposed at the PEP-II LER at SLAC as well as the Fermilab MI. In this study, simulation results will be presented for a number of cases including those representative of the above mentioned experiments. The code VORPAL is being utilized to perform electromagnetic particle-in-cell (PIC) calculations. The results are expected to provide guidance to the above mentioned experiments as well as lead to a better understanding of the problem.

* T. Kroyer, F. Caspers, E. Mahner , pg 2212 Proc. PAC 2005, Knoxville, TN

 
 
THPAS009 On the Stability of the Kapchinskij-Vladimirskij Equations focusing, quadrupole, lattice, ion 3528
 
  • C. Xu
  • C. K. Allen
    LANL, Los Alamos, New Mexico
  • E. Schuster
    Lehigh University, Bethlehem, Pennsylvania
  The stability of the linearized Kapchinskij-Vladimirskij (KV) equations around a matched solution, which constitute a linear periodic Hamiltonian system, is studied. By using Floquet theorem, symplectic algebra and the eigenvalue distribution theory, a critical stability condition for the linearized particle beam envelope equations is obtained. The stability conditions are expressed in terms of the time-averaged Hamiltonian system.  
 
THPAS010 A Multislice Approach for Electromagnetic Green's Function Based Beam Simulations electron, space-charge, electromagnetic-fields, cathode 3531
 
  • M. Hess
  • C. S. Park
    IUCF, Bloomington, Indiana
  Funding: This research is supported in part by the Department of Energy under grant DE-FG0292ER40747 and in part by the National Science Foundation under grant PHY-0552389.

We present a multislice approach for modeling the space-charge fields of bunched electron beams that are emitted from a metallic cathode using electromagnetic Green's function techniques. The multislice approach approximates a local region of the beam density and current with a slice of zero longitudinal thickness. We show examples of how the multislice approach can be used to accurately compute the space-charge fields for electron bunch lengths in the regime of photocathode sources, i.e. (<10 ps).

 
 
THPAS012 Computational Requirements for Green's Function Based Photocathode Source Simulations space-charge, electromagnetic-fields, electron, cathode 3537
 
  • C. S. Park
  • M. Hess
    IUCF, Bloomington, Indiana
  Funding: This work is supported by the National Science foundation under contract PHY-0552389 and by the Department of Energy under contract DE-FG02-92ER40747.

We demonstrate the computational requirements for a Green's function based photocathode simulation code called IRPSS. In particular, we show the necessary conditions, e.g. eigenmode number and integration time-step, for accurately computing the space-charge fields in IRPSS to less than 1 % error. We also illustrate how numerical filtering methods can be applied to IRPSS in conjunction with a multislice approach, for dramatically improving computational efficiency of electromagnetic field calculations.

 
 
THPAS013 Electron Cloud Simulations to Cold PSR Proton Bunches electron, proton, vacuum, beam-losses 3540
 
  • Y. Sato
  • J. A. Holmes
    ORNL, Oak Ridge, Tennessee
  • S.-Y. Lee
    IUCF, Bloomington, Indiana
  • R. J. Macek
    LANL, Los Alamos, New Mexico
  Funding: SNS through UT-Battelle, LLC, DE-AC05-00OR22725 for the U. S. DOE. Indiana University Bloomington, PHY-0552389 for NSF and DE-FG02-92ER40747 for DOE. LANL, W-7405-ENG-36.

We present ORBIT code simulations to examine the sensitivity of electron cloud properties to different proton beam profiles and to reproduce experimental results from the proton storage ring at Los Alamos National Laboratory. We study the recovery of electron clouds after sweeping, and also the characteristics of two types of electrons signals (prompt and swept) as functions of beam charge. The prompt signal means the peak height of electron sweeper signal before high voltage pulse applied on its electrode and after beam accumulation, and the swept signal means the spike height of electron sweeper signal during the high voltage pulse. To concentrate on the electron cloud dynamics, we use a cold proton bunch to generate primary electrons and electromagnetic field for electron dynamics. However, the protons receive no feedback from the electron cloud. Our simulations indicate that the proton loss rate in the field-free straight section might be an exponential function of proton beam charge and may also be lower than the averaged proton loss rate in a whole ring.

 
 
THPAS014 MICE: the International Muon Ionization Cooling Experiment: Phase Space Cooling Measurement emittance, factory, background, electron 3543
 
  • T. L. Hart
  Muon storage rings have been proposed for use as sources of intense high-energy neutrino beams and as the basis for multi-TeV lepton-antilepton colliding-beam facilities. Optimizing the performance of such facilities is likely to require the phase-space compression (cooling) of the muon beam prior to acceleration and storage. The short muon lifetime makes traditional beam-cooling techniques ineffective. Ionization cooling, a process in which the muon beam is passed through a series of energy absorbers followed by accelerating RF cavities, is thus the technique of choice. The international Muon Ionization Cooling Experiment (MICE) collaboration is constructing the apparatus for a muon ionization-cooling demonstration experiment, to be conducted at Rutherford Appleton Laboratory over the next 3 years. The MICE cooling channel, its instrumentation, and its implementation at the Rutherford Appleton Laboratory are described together with the predicted performance of the channel and the measurements that will be made.  
 
THPAS015 Three-Dimensional Integrated Green Functions for the Poisson Equation space-charge, linac, induction, accelerator-theory 3546
 
  • D. T. Abell
  • P. J. Mullowney, K. Paul, V. H. Ranjbar
    Tech-X, Boulder, Colorado
  • J. Qiang, R. D. Ryne
    LBNL, Berkeley, California
  Funding: Supported by US DOE Office of Science: Offices of Nuclear Physics, grant DE-FG02-03ER83796; High Energy Physics; and Advanced Scientific Computing Research, SciDAC Accelerator Science and Technology.

The standard implementation of using FFTs to solve the Poisson equation with open boundary conditions on a Cartesian grid loses accuracy when the change in G rho (the product of the Green function and the charge density) over a mesh cell becomes nonlinear; this is commonly encountered in high aspect ratio situations and results in poor efficiency due to the need for a very large number of grid points. A modification which solves this problem, the integrated Green function (IGF), has been implemented in two dimensions using linear basis functions and in three dimensions using constant basis functions. But, until recently, it has proved to be very difficult to implement IGF in three dimensions using linear basis functions. Recently significant progress has been made. We present both the implementation and test results for the three-dimensional extension.

 
 
THPAS017 Numerical Algorithms for Modeling Electron Cooling in the Presence of External Fields undulator, ion, electron, plasma 3549
 
  • G. I. Bell
  • I. Ben-Zvi, A. V. Fedotov, V. Litvinenko
    BNL, Upton, Long Island, New York
  • D. L. Bruhwiler, A. V. Sobol
    Tech-X, Boulder, Colorado
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-FG02-04ER84094.

The design of the high-energy cooler for the Relativistic Heavy Ion Collider (RHIC) recently adopted a non-magnetized approach. To prevent recombination between the fully stripped gold ions and co-propagating electrons, a helical undulator magnet has been proposed. In addition, to counteract space-charge defocusing, weak solenoids are proposed every 10m. To understand the effect of these magnets on the cooling rate, numerical models of cooling in the presence of external fields are needed. We present an approach from first principles using the VORPAL parallel simulation code. We solve the n-body problem by exact calculation of pair-wise collisions. Simulations of the proposed RHIC cooler are discussed, including fringe field and finite interaction time effects.

 
 
THPAS019 A Beam Dynamics Application Based on the Common Component Architecture quadrupole, lattice, booster, target 3552
 
  • D. R. Dechow
  • D. T. Abell, P. Stoltz
    Tech-X, Boulder, Colorado
  • J. F. Amundson
    Fermilab, Batavia, Illinois
  • L. Curfman McInnes, B. Norris
    ANL, Argonne, Illinois
  Funding: Department of Engergy, Office of Advanced Scientific Computing Research, SBIR grant: DE-FG02-06ER84520

A component-based beam dynamics application for modeling collective effects in particle accelerators has been developed. The Common Component Architecture (CCA) software infrastructure was used to compose a new Python-steered accelerator simulation from a set of services provided by two separate beam dynamics packages (Synergia and MaryLie/Impact) and two high-performance computer science packages (PETSc and FFTW). The development of the proof-of-concept application was accomplished via the following tasks:

  1. addressing multilanguage interoperability in the MaryLie/Impact code with Babel;
  2. creating components by making the selected software objects adhere to the Common Component Architecture protocol;
  3. assemblying the components with a newly developed, Component Builder gui; and
  4. characterizing the performance of the space charge (Poisson) solver that was originally used in Synergia 1.0 versus the PETSc-based space charge solver that has been developed for Synergia2.
The resulting beam dynamics application will allow the Synergia2 framework to evolve simultaneously with the modeling and simulation requirements of the International Linear Collider.
 
 
THPAS020 3D Simulations of Secondary Electron Generation and Transport in a Diamond Amplifier for Photocathodes electron, scattering, lattice, acceleration 3555
 
  • D. A. Dimitrov
  • I. Ben-Zvi, X. Chang, T. Rao, J. Smedley, Q. Wu
    BNL, Upton, Long Island, New York
  • D. L. Bruhwiler, R. Busby, J. R. Cary
    Tech-X, Boulder, Colorado
  The Relativistic Heavy Ion Collider (RHIC) contributes fundamental advances to nuclear physics by colliding a wide range of ions. A novel electron cooling section, which is a key component of the proposed luminosity upgrade for RHIC, requires the acceleration of high-charge electron bunches with low emittance and energy spread. A promising candidate for the electron source is the recently developed concept of a high quantum efficiency photoinjector with a diamond amplifier. We have started to implement algorithms, within the VORPAL particle-in-cell framework, for modeling of secondary electron and hole generation, and for charge transport in diamond. The algorithms include elastic and various inelastic scattering processes over a wide range of charge carrier energies. Initial results from the implemented capabilities will be presented and discussed.

The work at Tech-X Corp. is supported by the U. S. Department of Energy under a Phase I SBIR grant.

 
 
THPAS031 Measurement and Simulation of Source-Generated Halos in the University of Maryland Electron Ring (UMER) cathode, gun, electron, space-charge 3564
 
  • I. Haber
  • S. Bernal, R. Feldman, R. A. Kishek, P. G. O'Shea, C. Papadopoulos, M. Reiser, D. Stratakis, M. Walter
    UMD, College Park, Maryland
  • A. Friedman, D. P. Grote
    LLNL, Livermore, California
  • J.-L. Vay
    LBNL, Berkeley, California
  Funding: This work is supported by the US DOE under contract Nos. DE-FG02-02ER54672 and DE-FG02-94ER40855 (UMD), and DE-AC02-05CH11231 (LBNL) and W-7405-ENG-48 (LLNL)

One of the areas fundamental beam physics that serve as the rationale for recent research on UMER is the study of generation and evolution of beam halos. This physics can be accessed on a scaled basis in UMER at a small fraction of the cost of similar experiments on a much larger machine. Recent experiments and simulations have identified imperfections in the source geometry, particularly in the region near the emitter edge, as a potentially significant source of halo particles. The edge-generated halo particles, both in the experiments and the simulations are found to pass through the center of the beam in the vicinity of the anode plane. Understanding the detailed evolution of these particle orbits is therefore important to designing any aperture to remove the beam halo. Both experimental data and simulations will be presented to illustrate the details of this mechanism for halo formation.

 
 
THPAS032 Modeling Skew Quadrupole Effects on the UMER Beam quadrupole, emittance, space-charge, electron 3567
 
  • C. Papadopoulos
  • G. Bai, B. L. Beaudoin, I. Haber, R. A. Kishek, P. G. O'Shea, M. Reiser, M. Walter
    UMD, College Park, Maryland
  Funding: US Department of Energy

This is a numerical study of the effects of skew quadrupoles on the beam used in University of Maryland Electron Ring (UMER). As this beam is space-charge dominated, we expect new phenomena to be present compared to the emittance-dominated case. In our studies we find that skew quadrupoles can severely affect the halo of the beam and cause emittance growth, even in the first turn of the beam. For our simulations we used the WARP particle-in-cell code and we compared the results with the experimental study of skew quadrupole effects (to be reported separately).

 
 
THPAS033 Evolution of Laser Induced Perturbation and Experimental Observation of Space Charge Waves in the University of Maryland Electron Ring (UMER) space-charge, laser, electron, cathode 3570
 
  • J. C.T. Thangaraj
  • G. Bai, B. L. Beaudoin, S. Bernal, D. W. Feldman, R. B. Fiorito, I. Haber, R. A. Kishek, P. G. O'Shea, M. Reiser, D. Stratakis, D. F. Sutter, K. Tian, M. Walter
    UMD, College Park, Maryland
  Funding: This work is funded by US Dept. of Energy grant numbers DE-FG02-94ER40855

The University of Maryland Electron Ring (UMER) is a scaled model to investigate the transverse and longitudinal physics of space charge dominated beams. It uses a 10-keV electron beam along with other scaled beam parameters that model the larger machines but at a lower cost. Understanding collective behavior of intense, charged particle beams due to their space charge effects is crucial for advanced accelerator research and applications. This paper presents the experimental study of longitudinal dynamics of an initial density modulation on a spacecharge dominated beam. A novel experimental technique of producing a perturbation using a laser is discussed. Using a laser to produce a perturbation provides the ability to launch a pure density modulation and to have better control over the amount of perturbation introduced. Collective effects like space charge waves and its propagation over long distances in a quadrupole channel are studied. One dimensional cold fluid model is used for theoretical analysis and simulations are carried out in WARP-RZ.

 
 
THPAS035 Code development for Next-Generation High-Intensity Large Acceptance Fragment Separators target, ion, heavy-ion, optics 3576
 
  • B. Erdelyi
  • L. L. Bandura
    Northern Illinois University, DeKalb, Illinois
  • S. L. Manikonda, J. A. Nolen
    ANL, Argonne, Illinois
  Funding: This work was supported by the U. S. Department of Energy, Office of Nuclear Physics, under Contract No. DE-AC02-06CH11357

An Exotic Beam Facility is one of the highest priority projects in the DOE 20-year plan and a major strategic initiative for Argonne. The main components of the facility are a high-power multi-beam superconducting heavy-ion accelerator, a production complex, and finally a high-efficiency post-accelerator. This talk revolves around new approaches to heavy-ion beam dynamics for the central part, the Fragment Separators. To this end, it will summmarize the theories developed, software written, and simulations done that lead to better understanding of basic beam dynamics, more insight towards the best design choices, and optimization of the system?s parameters, including the integrated beam optics-nuclear physics approach.

 
 
THPAS037 Open Architecture Software Integration System (OASIS) for the Particle Beam Optics Laboratory (PBO Lab) optics, target, linac, quadrupole 3579
 
  • G. H. Gillespie
  • W. Hill
    G. H. Gillespie Associates, Inc., Del Mar, California
  Funding: This work has been supported by the U. S. Department of Energy (DOE) Small Business Innovative Research (SBIR) program under grant number DE-FG02-04ER83961.

The Particle Beam Optics Laboratory, or PBO Lab, is a suite of software applications developed to support beamline design, accelerator operations, and personnel training. The software provides an intuitive and easy-to-use graphic user interface (GUI) that works with a variety of particle optics codes. The PBO Lab GUI is largely responsible for the popularity of this software suite, which is now used at more than ninety institutions throughout the world. While PBO Lab greatly improves the human-machine interface for several popular optics programs, it has historically required a significant effort to incorporate additional optics codes into the software suite. The Open Architecture Software Integration System, or OASIS, provides an innovative framework that allows users to readily integrate their own optics programs into PBO Lab. This paper provides an overview of the OASIS framework and describes some of the new PBO Lab Modules that have been created using OASIS.

 
 
THPAS040 The Cyclotron Gas Stopper Project at the NSCL ion, extraction, cyclotron, space-charge 3588
 
  • G. K. Pang
  • G. Bollen, S. Chouhan, C. Guenaut, D. Lawton, F. Marti, D. J. Morrissey, J. Ottarson, S. Schwarz, A. Zeller
    NSCL, East Lansing, Michigan
  • M. Wada
    RIKEN, Saitama
  Funding: Work supported by DOE Grant # DE-FG02-06ER41413

Gas stopping is the method of choice to convert high-energy beams of rare isotopes produced by projectile fragmentation into low-energy beams. Fast ions are slowed down in solid degraders and stopped in a buffer gas in a stopping cell, presently linear. They have been successfully used for first precision experiments with rare isotopes*,** but they have beam-rate limitations due to space charge effects. Their extraction time is about 100 ms inducing decay losses for short-lived isotopes. At the NSCL a new gas stopper concept*** is under development, which avoids these limitations and fulfills the needs of next-generation rare isotope beam facilities. It uses a gas-filled cyclotron magnet. The large volume, and a separation of the regions where the ions stop and where the maximum ionization is observed are the key to a higher beam-rate capability. The longer stopping path due to the magnetic field allows a lower pressure to be used, which decreases the extraction times. The concepts of the cyclotron gas stopper will be discussed and the results from detailed simulation and design work towards the realization of such a device at the NSCL will be summarized.

* G. Bollen et al., Phys. Rev. Lett. 96 (2006) 152501 ** R. Ringle Phys. Rev. C Submitted*** G. Bollen et al., Nucl. Instr. Meth. A550 (2005) 27

 
 
THPAS043 Controlling Coupler-kick Emittance Growth in the Cornell ERL Main Linac emittance, linac, lattice, controls 3591
 
  • B. W. Buckley
  • G. Hoffstaetter
    CLASSE, Ithaca
  Funding: Supported by Cornell University and NSF grant PHY 0131508

One of the main concerns in the design of a high energy Energy Recovery Linac x-ray source is the preservation of beam emittance. Discussed is one possible source of emittance dilution due to transverse electromagnetic fields in the accelerating cavities of the linac caused by the power coupler geometry. This has already been found to be a significant effect in Cornell's ERL injector cavities if only one coupler per cavity is chosen. Here we present results of simulations for Cornell's main ERL linac with three possible coupler configurations and compare them with regards to total normalized emittance growth after one complete pass through the linac. We explain why the sign of the phase between the transverse kick and the accelerating force alternates each cavity, which leads to a cancellation of the emittance growth to acceptable values. We also investigate the effect of cavity detuning on the coupler-kick effect.

 
 
THPAS045 Method of Perturbative-PIC Simulation for Interactions between a Bunch and Its Synchrotron Radiation radiation, synchrotron, synchrotron-radiation, lattice 3594
 
  • J. Shi
  • G. Hoffstaetter
    CLASSE, Ithaca
  Funding: This work is supported by the US Department of Energy under Grant No. DE-FG02-04ER41288.

A self-consistant simulation method is developed for the study of coherent synchrotron radiation effects by using a perturbation expansion of retarded radiation field and the particle-in-cell method. The perturbation expansion of the radiation field is based on the fact that the time dependance of a bunch particle distribution has typically two significantly different time scales, a fast time scale related to the linear dynamics and a slow time scale of the beam-size growth due to nonlinear perturbations. Since the scale of the retardation of the radiation field is usually much shorter than the slow time scale of the particle distribution, the retardation on the slow time scale of the particle distribution is treated perturbatively while the retardation on the fast time scale is removed by transformations associated the linear lattice. With this method, the particle-radiation interaction can be calculated in configuration space without memorizing the history of the particle distribution.

 
 
THPAS050 Simulating Electron Effects in Heavy-Ion Accelerators with Solenoid Focusing electron, target, diagnostics, lattice 3603
 
  • W. M. Sharp
  • R. H. Cohen, A. Friedman, D. P. Grote, A. W. Molvik
    LLNL, Livermore, California
  • J. E. Coleman, P. K. Roy, P. A. Seidl, J.-L. Vay
    LBNL, Berkeley, California
  • I. Haber
    UMD, College Park, Maryland
  Funding: This work was performed under the auspices of US DOE by the University of California Lawrence Livermore and Lawrence Berkeley National Laboratories under contracts W-7405-Eng-48 and DE-AC03-76SF00098.

Contamination from electrons is a concern for solenoid-focused ion accelerators being developed for experiments in high-energy-density physics (HEDP). These electrons, produced directly by beam ions hitting lattice elements or indirectly by ionization of desorbed neutral gas, can potentially alter the beam dynamics, leading to a time-varying focal spot, increased emittance, halo, and possibly electron-ion instabilities. The electrostatic particle-in-cell code WARP is used to simulate electron-cloud studies on the solenoid-transport experiment (STX) at Lawrence Berkeley National Laboratory. We present self-consistent simulations of several STX configurations to show the evolution of the electron and ion-beam distributions first in idealized 2-D solenoid fields and then in the 3-D field values obtained from probes. Comparisons are made with experimental data, and several techniques to mitigate electron effects are demonstrated numerically.

 
 
THPAS051 The RIAPMTQ/IMPACT Beam-Dynamics Simulation Package linac, heavy-ion, beam-losses, rfq 3606
 
  • T. P. Wangler
  • V. N. Aseev, B. Mustapha, P. N. Ostroumov
    ANL, Argonne, Illinois
  • J. H. Billen, R. W. Garnett
    LANL, Los Alamos, New Mexico
  • K. R. Crandall
    TechSource, Santa Fe, New Mexico
  • M. Doleans, D. Gorelov, X. Wu, R. C. York, Q. Zhao
    NSCL, East Lansing, Michigan
  • J. Qiang, R. D. Ryne
    LBNL, Berkeley, California
  Funding: This work is supported by the U. S. Department of Energy, DOE contract number:W-7405-ENG-36

RIAPMTQ/IMPACT is a pair of linked beam-dynamics simulation codes that have been developed for end-to-end computer simulations of multiple-charge state heavy-ion linacs for future exotic-beam facilities. The simulations can extend from the low-energy beam transport after the ECR source to the end of the linac. The work has been performed by a collaboration including LANL, LBNL, ANL, MSU, and TechSource. The code RIAPMTQ simulates the linac front end including the LEBT, RFQ, and MEBT, and the code IMPACT simulates the main superconducting linac. The codes have been benchmarked for rms beam properties against previously existing codes at ANL and MSU. The codes allow high-statistics runs on parallel supercomputing platforms, such as NERSC at LBNL, as well as runs on desktop PC computers for low-statistics design work. We will show results from 10-million-particle simulations of RIA designs by ANL and MSU, carried out at the NERSC facility. These simulation codes will allow evaluations of candidate designs with respect to beam-dynamics performance including beam losses.

 
 
THPAS052 Charge and Wavelength Scaling of the UCLA/URLS/INFN Hybrid Photoinjector emittance, gun, injection, cathode 3609
 
  • A. Fukasawa
  • D. Alesini, M. Ferrario, B. Spataro
    INFN/LNF, Frascati (Roma)
  • A. Boni, B. D. O'Shea, J. B. Rosenzweig
    UCLA, Los Angeles, California
  • L. Ficcadenti, A. Mostacci, L. Palumbo
    Rome University La Sapienza, Roma
  Short-bunched beam is required for the improving the emission of the free electron laser and wakefield accelerations, as well as low emittance beam. To achieve both of short length and low emittance, we are developing SW/TW Hybrid gun. Two standing wave cells make a photocathode RF gun and the gun is connected directory to the input coupler of the traveling wave structure, and the total length is about 3 m. The low emittance beam produced in the RF gun is bunching in the traveling wave structure in the scheme of, so called, "velocity bunching". PARMELA simulation shows that 1 nC bunch can be achieve 3.0 mm.mrad for the normalized rms emittance and 0.14 mm for the rms bunch length, simultaneously. We also calculates the cases of 1 pC bunch in S-band and 250 pC bunch in X-band to get shorter bunch length and lower emittance. 1 pC bunch is scaled to 1/1000 in its volume (one-tenth for each dimension). It can result in 0.0047 mm short while the emittance is 0.091 mm.mrad. In X-band case, where the structures are scaled down one-fourth in the length and four times in the field strength, the bunch length and the emittance are 0.027 mm and 1.1 mm.mrad, respectively.  
 
THPAS055 Long Time Electron Cloud Instability Simulation Using QuickPIC With Pipelining Algorithm electron, plasma, betatron, acceleration 3615
 
  • B. Feng
  • V. K. Decyk, C. Huang, W. B. Mori
    UCLA, Los Angeles, California
  • T. C. Katsouleas, P. Muggli
    USC, Los Angeles, California
  Funding: This work was supported by the Department of Energy contract DE-FG02-92-ER40745

We proposed a novel algorithm, which uses pipelining to reduce the simulation time for beam-electron cloud interaction. In the pipelining algorithm the processors are divided into subgroups, and during the simulation different groups will be on consecutive time steps. The pipelining algorithm is applied to the fully parallelized Particle-In-Cell (PIC) code QuickPIC to overcome the limit of the number of processors that can be used at each time step. With the new algorithm, the accuracy of the simulation is preserved; and the speed of the simulation is improved by a factor proportional to the number of processors available. The long term beam evolution results for the CERN-LHC and the FNAL main injector are presented using the QuickPIC with pipelining algorithm.

 
 
THPAS060 LCLS Beam Dynamics Studies with the 3-D Parallel Impact-T Code space-charge, linac, emittance, electron 3624
 
  • Y. T. Ding
  • Z. Huang, C. Limborg-Deprey
    SLAC, Menlo Park, California
  • J. Qiang
    LBNL, Berkeley, California
  In 2007, the Linac Coherent Light Source (LCLS) will start to commission the photoinjector, the linacs (up to 250 MeV) and the first bunch compressor (BC1). In this paper, we report on the beam dynamics studies in this low-energy part of the machine with the parallel Impact-T code*, taking into account three-dimensional (3-D) space charge forces, linac wakefields, and coherent synchrotron radiation. We compare the IMPACT-T simulation results with PARMELA and discuss possible space charge effects in the linac and BC1 regions. We also plan to compare with experimental measurements when they become available.

* J. Qiang et al, Phys. Rev. ST Accel. Beams 9,044204 (2006).

 
 
THPAS062 Recent Progress in a Beam-Beam Simulation Code for Circular Hadron Machines lattice, sextupole, beam-beam-effects, storage-ring 3627
 
  • A. C. Kabel
  • W. Fischer
    BNL, Upton, Long Island, New York
  • T. Sen
    Fermilab, Batavia, Illinois
  Over the past years, we have developed a set of codes (PLIBB and NIMZOVICH) applicable to weak-strong and strong-strong beam-beam interactions in hadron machines. We have unified these codes into a single application and augmented the modeled physics to include arbitrary-order magnetic elements, noise sources and wire compensators; algorithmic improvements include diferential-algebraic methods, thick magnetic elements, and a fully-coupled, six-dimensional and symplectic treatment of lumped sections. A novel weighted-macroparticle approach allows for the immediate calculation of very low beam loss rates by particle tracking. The parallelization scheme of the code allows for a highly efficient simulation of colliders with a high number of parasitic crossings and/or pronounced hourglass effect in the IP. Areas of applicability include the LHC and the wire-compensation experiments performed at RHIC. Typical results will be presented.  
 
THPAS066 CMAD: A New Self-consistent Parallel Code to Simulate the Electron Cloud Build-up and Instabilities electron, lattice, damping, storage-ring 3636
 
  • M. T.F. Pivi
  Funding: Work supported by the Director, Office of Science, High Energy Physics, U. S. DOE under Contract No. DE-AC02-76SF00515.

We present the features of CMAD, a newly developed self-consistent code which simulates both the electron cloud build-up and related beam instabilities. By means of parallel (Message Passing Interface - MPI) computation, the code tracks the beam in an existing (MAD-type) lattice and continuously resolve the interaction between the beam and the cloud at each element location, with different cloud distributions at each magnet location. CMAD simulates single-and coupled-bunch instability, allows tune shift, dynamic aperture and frequency map analysis and the determination of the secondary electron yield instability threshold. Preliminary results are presented.

 
 
THPAS068 Calculating IP Tuning Knobs for the PEP II High Energy Ring using Singular Value Decomposition, Response Matrices and an Adapted Moore Penrose Method lattice, quadrupole, coupling, collider 3642
 
  • W. Wittmer
  Funding: US-DOE

The PEP II lattices are unique in their detector solenoid field compensation scheme by utilizing a set of skew quadrupoles in the IR region and the adjacent arcs left and right from the IP. Additionally the design orbit through this region is nonzero. This combined with the strong local coupling wave makes it very difficult to calculate IP tuning knobs which are orthogonal and closed. The usual approach results either in non-closure, not being orthogonal or the change in magnet strength being too big. To find a solution the set of tuning quads had to be extended which resulted having more degrees of freedom than constrains. To find the optimal set of quadrupoles which creates a linear, orthogonal and closed knob and simultaneously minimizing the changes in magnet strength, the method using Singular Value Decomposition, Response Matrices and an Adapted Moore Penrose Method had to be extended. The results of these simulations are discussed below and the results of first implementation in the machine are shown.

 
 
THPAS074 The Effective CSR Forces for an Energy-Chirped Bunch Under Magnetic Compression optics, dipole, electron, synchrotron 3654
 
  • R. Li
  Funding: The work is supported by JSA/DOE Contract No. DE-AC05-06OR23177.

In this study, we analyze the longitudinal effective CSR force for an energy-chirped Gaussian bunch moving relativistically on a circular orbit. With the geometry of the bunch tilt in dispersive regions (as induced by the initial energy-chirp) included in the retardation relation, the longitudinal effective CSR force thus calculated displays a variety of behaviors depending on the level of bunch compression. The variety ranges from the suppression of the longitudinal CSR force, for an undercompressed thin bunch, to an enhancement of the CSR interaction above that for a projected bunch, in a duration of path length shortly after the bunch crosses over the full compression point. The amplitude and duration of the enhancement depends on the bunch and lattice parameters. During this enhancement, the longitudinal effective CSR force depends sensitively on the particle's transverse position in the bunch. The physical picture of this phenomenon will be discussed.

 
 
THPAS078 3D Modeling of SNS Ring Injection Dump Beam Line injection, dipole, beam-losses, emittance 3660
 
  • J.-G. Wang
  Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U. S. Department of Energy under contract DE-AC05-00OR22725.

The SNS ring injection dump beam line has been suffering high beam losses since its commissioning. In order to understand the mechanisms of the beam losses, we have built a 3D simulation model consisting of three injection chicane dipoles and one injection dump septum. The magnetic field distributions and the 3D particle trajectories in the model are obtained. The study has clearly shown two design problems causing beam losses in the injection dump beam line. This paper reports our simulation model, particle trajectory calculations, beam losses due to small vertical aperture of the injection dump septum and inadequate focusing down stream. The remedy of the beam losses is also discussed.

 
 
THPAS081 Particle-in-Cell Simulations of Halo Particle Production in Intense Charged Particle Beams Propagating Through a Quadrupole Focusing Field with Varying Lattice Amplitude lattice, betatron, focusing, emittance 3669
 
  • M. Dorf
  • R. C. Davidson, E. Startsev
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U. S. Department of Energy.

The transverse compression and dynamics of intense charged particle beams, propagating through a periodic quadrupole lattice, play an important role in many accelerator physics applications. Typically, the compression can be achieved by means of increasing the focusing strength of the lattice along the beam propagation direction. However, beam propagation through the lattice transition region inevitably leads to a certain level of beam mismatch and halo formation. In this paper we present a detailed analysis of these phenomena using particle-in-cell (PIC) numerical simulations performed with the WARP code. A new definition of beam halo is proposed in this work that provides the opportunity to carry out a quantitative analysis of halo production by a beam mismatch.

 
 
THPAS083 Charge and Current Neutralization of an Ion Beam Pulse by Background Plasma in Presence of Applied Magnetic Field and Gas Ionization plasma, background, ion, focusing 3675
 
  • J. S. Pennington
  • R. C. Davidson, I. Kaganovich, A. B. Sefkow, E. Startsev
    PPPL, Princeton, New Jersey
  Funding: *Research supported by the U. S. Department of Energy under the auspices of the Heavy Ion Fusion Science Virtual National Laboratory.

Background plasma can be used as a convenient tool for manipulating intense charge particle beams, for example, for ballistic focusing and steering, because the plasma can effectively reduce the space-charge potential and self-magnetic field of the beam pulse. We previously developed a reduced analytical model of beam charge and current neutralization for an ion beam pulse propagating in a cold background plasma. The reduced-fluid description provides an important benchmark for numerical codes and yields useful scaling relations for different beam and plasma parameters. This model has been extended to include the additional effects of a solenoidal magnetic field and gas ionization. Analytical studies show that a sufficiently large solenoidal magnetic field can increase the degree of current neutralization of the ion beam pulse. The linear system of equations has been solved analytically in Fourier space. For a strong enough applied magnetic field, poles emerge in Fourier space. These poles are an indication that whistler waves and lower hybrid waves are excited by the beam pulse.

 
 
THPAS084 Calculation of the Charge-changing Cross Sections of Ions or Atoms colliding with Fast Ions using the Classical Trajectory Method ion, electron, target, plasma 3678
 
  • A. Shnidman
  • R. C. Davidson, I. Kaganovich
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U. S. Department of Energy under the auspices of the Heavy Ion Fusion Science Virtual National Laboratory.

Evaluation of ion-atom charge-changing cross sections is needed for many accelerator applications. The validity of the classical trajectory approximation has been studied by comparing the results of simulations with available experimental data and full quantum-mechanical calculations [1]. Additionally, a theoretical criterion has been developed for the validity of the classical trajectory approximation [2]. For benchmarking purposes, a Classical Trajectory Monte Carlo simulation (CTMC) is used to calculate ionization and charge exchange cross sections for most simple, hydrogen and helium targets in collisions with various ions. The calculated cross sections compare favorably with the experimental results for projectile velocities near the projectile velocity corresponding to the maximum of cross section as a function of projectile velocity. At higher or lower velocities, quantum-mechanical effects become more significant and the CTMC results agree less well with the experimental values of the cross sections.

[1] I. D. Kaganovich, et al., , New Journal of Physics 8, 278 (2006).
[2] Igor D. Kaganovich, et al., Nucl. Instr. and Methods A 544, 91(2005).

 
 
THPAS085 Kinetic Equilibrium and Stability Properties of 3D High-Intensity Charged Particle Bunches coupling, collective-effects, transverse-dynamics, plasma 3681
 
  • H. Qin
  • R. C. Davidson, E. Startsev
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U. S. Department of Energy.

In 3D high-intensity bunched beams, the collective effects associated with strong coupling between the longitudinal and transverse dynamics are of fundamental importance. A direct consequence of this coupling is that the particle dynamics does not conserve transverse energy and longitudinal energy separately, and there exists no exact kinetic equilibrium which has an anisotropic energy in the transverse and longitudinal directions. The strong coupling also introduces a mechanism for the electrostatic Harris-type instability driven by strong temperature anisotropy, which exists naturally in beams that have been accelerated to large velocities. The self-consistent Vlasov-Maxwell equations are applied to high-intensity bunched beams, and a generalized low-noise delta-f particle simulation algorithm is developed for bunched beams with or without energy anisotropy. Systematic studies are carried out that determine the particle dynamics, the approximate equilibrium, and stability properties under conditions corresponding to strong 3D nonlinear space-charge force. Finite bunch-length effects on collective excitations and anisotropy-driven instabilities are also investigated.

 
 
THPAS086 Beam Emittance Simulations for a High Gradient Pulsed DC/RF Gun gun, emittance, acceleration, electron 3684
 
  • P. Chen
  • R. Yi, D. Yu
    DULY Research Inc., Rancho Palos Verdes, California
  Funding: Work supported by DOE SBIR Grant No. DE-FG02-03ER83878.

One of the most important targets for building modern particle accelerators is to increase the beam brightness. The purposes of building a dc/rf gun are to seek high bunch charge and low beam transverse emittance, two key parameters for enhancing brightness of accelerators. We present simulation results of the beam emittance changes in a dc/rf gun under different gun voltages. SUPERFISH and PARMELA were used to simulate the beam dynamics in the gun. These simulations indicate that a small beam transverse emittance (< 0.5 mm.mrad) can be obtained when the voltage on the dc gap is lower than 200 kV and the bunch charge is 200 pc, and increments of dc gap voltages will greatly improve the emittances.

 
 
THPAS087 ACCELVIEW: A Graphical Means for Driving Integrated Numerical Experiments lattice, controls, linac, quadrupole 3687
 
  • N. Barov
  • S. Reiche
    UCLA, Los Angeles, California
  Funding: Work supported by the US Department of Energy.

Many simulation efforts make use of integrated numerical experiments, where the inputs and outputs of several accelerator codes are tied together. This is usually accomplished by writing custom scripts that launch the underlying programs and perform data format translation. We present a way to simplify this process by using a graphical user interface that allows one to describe the data flow in the style of the LabVIEW and Simulink environments. A module to support a new accelerator code involves writing data translators to/from a common format (SDDS or HDF5), and a function to generate an input file based on a standard way of specifying an accelerator lattice (such as Accelerator Markup Language, or AML).

 
 
THPAS090 A Multipurpose Coherent Instability Simulation Code radiation, damping, synchrotron, dipole 3690
 
  • M. Blaskiewicz
  Funding: Work performed under the United States Department of Energy Contract No. DE-AC02-98CH1-886

A multipurpose coherent instability simulation code has been written, documented, and released for use. TRANFT (tran-eff-tee) uses fast Fourier transforms to model transverse wakefields, transverse detuning wakes and longitudinal wakefields in a computationally efficient way. Dual harmonic RF allows for the study of enhanced synchrotron frequency spread. When coupled with chromaticity, the theoretically challenging but highly practical post head-tail regime is open to study. Detuning wakes allow for transverse space charge forces in low energy hadron beams, and a switch allowing for radiation damping makes the code useful for electrons.

 
 
THPAS091 BPM Calibration Independent LHC Optics Correction quadrupole, optics, heavy-ion, alignment 3693
 
  • R. Calaga
  • R. Tomas, F. Zimmermann
    CERN, Geneva
  Funding: This work is partially supported by the U. S. DOE

The tight mechanical aperture for the LHC imposes severe constraints on both the beta and dispersion beating. Robust techniques to compensate these errors are critical for operation of high intensity beams in the LHC. We present simulations using realistic errors from magnet measurements and alignment tolerances in the presence of BPM noise. Correction reveals that the use of BPM calibration and model independent observables are key ingredients to accomplish optics correction. Experiments at RHIC to verify the algorithms for optics correction are also presented.

 
 
THPAS092 Electron Cooling in the Presence of Undulator Fields electron, ion, undulator, heavy-ion 3696
 
  • A. V. Fedotov
  • G. I. Bell, D. L. Bruhwiler, A. V. Sobol
    Tech-X, Boulder, Colorado
  • I. Ben-Zvi, D. Kayran, V. Litvinenko, E. Pozdeyev
    BNL, Upton, Long Island, New York
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
  Funding: Work supported by the U. S. Department of Energy.

The traditional electron cooling system used in low-energy coolers employs an electron beam immersed in a longitudinal magnetic field. In the first relativistic cooler, which was recently commissioned at Fermilab, the friction force is dominated by the non-magnetized collisions between electrons and antiprotons. The design of the higher-energy cooler for Relativistic Heavy Ion Collider (RHIC) recently adopted a non-magnetized approach which requires a low temperature electron beam. However, to avoid significant loss of heavy ions due to recombination with electrons in the cooling section, the temperature of the electron beam should be very high. These two contradictory requirements are satisfied in the design of the RHIC cooler with the help of the undulator fields. The model of the friction force in the presence of an undulator field was benchmarked vs direct numerical simulations with an excellent agreement. Simulations of ion beam dynamics in the presence of such a cooler and helical undulator is discussed in detail, including recombination suppression and resulting luminosities.

 
 
THPAS093 High-Energy Electron Cooling Based on Realistic Six-Dimensional Distribution of Electrons electron, ion, emittance, space-charge 3699
 
  • A. V. Fedotov
  • I. Ben-Zvi, D. Kayran, E. Pozdeyev
    BNL, Upton, Long Island, New York
  • A. O. Sidorin, A. V. Smirnov
    JINR, Dubna, Moscow Region
  Funding: Work supported by the U. S. Department of Energy.

The low-energy electron cooling system is based on an electron beam immersed in a longitudinal magnetic field of a solenoid. The coupling of the horizontal and vertical motion allows representation of the friction force as a sum of the transverse and longitudinal components. The analytic treatment proceeds by allowing several approximations, for example, uniform transverse density distribution of electron beam and Maxwellian distribution in the velocity space. The high-energy electron cooling system for RHIC is unique compared to standard coolers. It requires bunched electron beam. Electron bunches are produced by an Energy Recovery Linac (ERL), and cooling is planned without a longitudinal magnetic field. To address the unique features of the RHIC cooler, a generalized 3-D treatment of the cooling force was introduced in the BETACOOL code which allows to calculate the friction force from an arbitrary six-dimensional distribution of the electrons. Results based on this treatment are compared to typical approximations. Simulations for the RHIC cooler based on a realistic electron distribution from the ERL are presented.

 
 
THPAS094 Transverse to Longitudinal Emittance Exchange Beamline at the A0 Photoinjector emittance, dipole, quadrupole, radiation 3702
 
  • R. P. Fliller
  • D. A. Edwards, H. Edwards
    Fermilab, Batavia, Illinois
  • K. C. Harkay, K.-J. Kim
    ANL, Argonne, Illinois
  • T. W. Koeth
    Rutgers University, The State University of New Jersey, Piscataway, New Jersey
  Funding: Work supported by Universities Research Association Inc. under contract DE-AC02-76CH00300 with the U. S. DOE.

The A0 photoinjector is being reconfigured to test the principal of transverse to longitudinal emittance exchange as proposed by Emma et. al., Kim and Sessler, and others. The ability to perform such an exchange could have major advantages to FELs by reducing the transverse emittance. Several schemes to carry out the exchange are possible and will be reported separately. At the Fermilab A0 Photoinjector we are constructing a beamline to demonstrate this transverse to longitudinal emittance exchange. This beamline will consist of a dogleg, and a TM110 5 cell copper cavity followed by another dogleg. The beamline is designed to reuse the bunch compressor dipoles of the photoinjector, along with some existing diagnostics. Beamline layout and optics discussed along with inital data. Future possibilites of performing a similar experiment at the proposed NML facility at Fermilab are also discussed.

 
 
THPAS095 Ferrite-lined HOM Absorber for the e-Cool ERL dipole, resonance, damping, electron 3705
 
  • H. Hahn
  • L. R. Hammons, D. Naik
    BNL, Upton, Long Island, New York
  Funding: Work performed under Contract No. DE-AC02-98CH1-886 with the U. S. Department of Energy.

An R&D facility for an Energy Recovery Linac (ERL) intended as part of the 'Electron-Cooling Xperiment' for RHIC is being constructed at this laboratory. The center piece of the project is the experimental 5-cell 703.75 MHz superconducting ECX cavity. Successful operation will depend on effective HOM suppression, and it is planned to achieve HOM damping exclusively with room temperature ferrite absorbers. A ferrite-lined pillbox model with dimensions reflecting the operational unit was assembled, and the cavity resonances and quality factors were determined from scattering coefficient measurements and were interpreted as surface impedance. Results from a 5-cell copper cavity with an attached ferrite absorber prototype are used for the prediction of the ECX cavity HOM damping. A rotational symmetric ferrite-lined pillbox was analyzed theoretically and compared with the simulation codesμWave Studio, GdfidL, and Superfish. Discrepancies of the resonance frequencies and Q-values were found, and steps to reach agreement are discussed.

 
 
THPAS096 Optics of a Two-Pass ERL as an Electron Source for a Non-Magnetized RHIC-II Electron Cooler electron, linac, emittance, gun 3708
 
  • D. Kayran
  • I. Ben-Zvi, R. Calaga, X. Chang, J. Kewisch, V. Litvinenko, E. Pozdeyev
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the U. S. Department of Energy contract No DE-AC02-98CH1-886 with support from the US Department of Defense.

Non-magnetized electron cooling of RHIC requires an electron beam energy of 54.3 MeV, electron charge per bunch of 5 nC, normalized rms beam emittance of 4 mm-mrad, and rms energy spread of 3·10-4 *. In this paper we describe a lattice of a two-pass SCRF energy recovery linac (ERL) and results of a PARMELA simulation that provides electron beam parameters satisfying RHIC electron cooling requirements.

* A. Fedotov, Electron Cooling Studies for RHIC II http://www.bnl.gov/cad/ecooling/docs/PDF/Electron_Cooling.pdf

 
 
THPAS103 Design of a Thin Quadrupole to be Used in the AGS Synchrotron quadrupole, multipole, sextupole, acceleration 3723
 
  • N. Tsoupas
  • L. Ahrens, R. Alforque, M. Bai, K. A. Brown, E. D. Courant, J. Glenn, H. Huang, A. K. Jain, W. W. MacKay, M. Okamura, T. Roser, S. Tepikian
    BNL, Upton, Long Island, New York
  Funding: Work supported by the US Department of Energy

The AGS synchrotron employs two partial helical snakes* to preserve the polarization of the proton beam during acceleration in the AGS. The effect of the helical snakes on the beam optics is significant at injection energy, with the effect greatly diminishing early in the acceleration cycle. In order to compensate for the effect of the snakes on the beam optics, we have introduced eight compensation quadrupoles in straight sections of the AGS at the proximity of the partial snakes. At injection the strength of these eight quads is set at a high value but ramped down to zero when the effect of the snakes diminishes. Four of the compensation quadrupoles had to be placed in very short straight sections therefore had to be 'thin' with a length of ~30 cm. The 'thin' quadrupoles were laminated and designed to minimize the strength of the dodecoupole harmonic. The thickness of the lamination was also calculated** to keep the ohmic losses generated by the eddy currents in the laminations below an acceptable limit. Comparison of the measured and calculated harmonics will be presented and the ohmic losses due to the eddy currents, as a function of time during rumping will be discussed.

* H. Huang, et al., Proc. EPAC06, (2006), p. 273.** OPERA computer code. Vector Fields Inc.

 
 
THPAS104 Simulations of RHIC Coherent Stabilities Due To Wakefield and Electron Cooling electron, ion, impedance, damping 3726
 
  • G. Wang
  • M. Blaskiewicz
    BNL, Upton, Long Island, New York
  A circulating ion beam in the presence of electron cooling can experience varies instabilities if the electron beam intensity is above a certain threshold. Firstly the electric field generated by the electron beam can introduce two stream instabilities of varies modes; this has already been observed in the Fermilab Recycler ring. Secondly, longitudinal cooling of the momentum spread will reduce the Landau damping efficiency and thus may make the overcooled ion beam unstable. The thresholds and growth rates of varies two stream instability modes are discussed for the existing RHIC electron cooler design. Both simulation and theoretical results are shown for the thresholds of the instabilities caused by overcooling.  
 
FRYAB01 A Multi-beamlet Injector for Heavy Ion Fusion: Experiments and Modeling emittance, ion, plasma, extraction 3777
 
  • G. A. Westenskow
  • F. M. Bieniosek, J. W. Kwan
    LBNL, Berkeley, California
  • D. P. Grote
    LLNL, Livermore, California
  Funding: This work has been performed under the auspices of the US DOE by UC-LBNL under contract DE-AC03-76SF00098 and by UC-LLNL under contract W-7405-ENG-48.

To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion, we have performed experiments to study a proposed merging beamlet approach for the injector. We used an RF plasma source to produce the initial beamlets. An extraction current density of 100 mA/cm2 was achieved, and the thermal temperature of the ions was below 1 eV. An array of converging beamlets was used to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment has possible significant economical and technical impacts on the architecture of HIF drivers.

 
slides icon Slides  
 
FROBAB01 Simulation-driven Optimization of Heavy-ion Production in ECR Sources ion, plasma, electron, ion-source 3786
 
  • P. Messmer
  • D. L. Bruhwiler, D. W. Fillmore, P. J. Mullowney, K. Paul, A. V. Sobol
    Tech-X, Boulder, Colorado
  • D. Leitner, D. S. Todd
    LBNL, Berkeley, California
  Funding: Work supported by the U. S. DOE Office of Science, Office of Nuclear Physics, under grant DE-FG02-05ER84173.

Next-generation heavy-ion beam accelerators require a great variety of high charge state ion beams (from protons to uranium) with up to an order of magnitude higher intensity than demonstrated with conventional Electron Cyclotron Resonance (ECR) ion sources. Optimization of the ion beam production for each element is therefore required. Efficient loading of the material into the ECR plasma is one of the key elements for optimizing the ion beam production. High-fidelity simulations provide a means to understanding where along the interior walls the uncaptured metal atoms are deposited and, hence, how to optimize loading of the metal into the ECR plasma. We are currently extending the plasma simulation framework VORPAL with models to investigate effective loading of heavy metals into ECR ion sources via alternate mechanisms, including vapor loading, ion sputtering and laser ablation. Here we will present the models, simulation results of vapor loading and initial comparisons with experiments at the VENUS source at LBNL.

 
slides icon Slides  
 
FROBAB02 Inhomogeneities in Beams Extracted from ECR Ion Sources ion, ion-source, sextupole, plasma 3789
 
  • J. W. Stetson
  • P. S. Spaedtke
    GSI, Darmstadt
  Funding: This work has been supported by National Science Foundation under grant PHY-0110253 and EURONS Contract 506065

An examination of heavy ion beam profiles using viewing targets and CCD cameras at both the GSI and NSCL shows highly structured patterns. These structures generally have a 3-fold symmetry reflecting the highly-magnetized nature of the ion formation within the plasma chamber. A program of experiment and three-dimensional modeling with KOBRA3d is continuing. Results of this program to date are discussed.

 
slides icon Slides  
 
FROAC03 The Commissioning of the LHC Technical Systems cryogenics, dipole, insertion, extraction 3801
 
  • R. I. Saban
  • R. Alemany-Fernandez, V. Baggiolini, A. Ballarino, E. Barbero-Soto, B. Bellesia, F. Bordry, D. Bozzini, M. P. Casas Lino, V. Chareyre, S. D. Claudet, G.-J. Coelingh, K. Dahlerup-Petersen, R. Denz, M. Gruwe, V. Kain, G. Kirby, M. Koratzinos, R. J. Lauckner, S. L.N. Le Naour, K. H. Mess, F. Millet, V. Montabonnet, D. Nisbet, B. Perea-Solano, M. Pojer, R. Principe, S. Redaelli, A. Rijllart, F. Rodriguez-Mateos, R. Schmidt, L. Serio, A. P. Siemko, M. Solfaroli Camillocci, H. Thiesen, W. Venturini Delsolaro, A. Vergara-Fernandez, A. P. Verweij, M. Zerlauth
    CERN, Geneva
  • SF. Feher, R. H. Flora, R. Rabehl
    Fermilab, Batavia, Illinois
  The LHC is an accelerator with unprecedented complexity; in addition, the energy stored in magnets and the beams exceeds other accelerators by one to two orders of magnitude. To avoid a plague of technical problems and ensure a safe machine start-up, the hardware commissioning phase was emphasized: the thorough commissioning of technical systems (vacuum, cryogenics, quench protection, power converters, electrical circuits, AC distribution, ventilation, demineralised water, injection system, beam dumping system, beam instrumentation, etc) is carried-out without beam. Activity started in June 2005 with the commissioning of individual systems, followed by operating a full sector of the machine as a whole. LHC architecture allows the commissioning of each of the eight sectors independently from the others, before the installation of other sectors is complete. Important effort went into the definition of the programme and the organization of the coordination in the field, as well as in the tools to record and analyze test results. This paper presents the experience with this approach, results from the commissioning of the first LHC sectors and gives an outlook for future activities.  
slides icon Slides  
 
FRYC01 ILC RF System R&D klystron, electron, focusing, gun 3813
 
  • C. Adolphsen
  Funding: Work Supported by DOE Contract DE-AC02-76F00515

The ILC Linac Group at SLAC is actively pursuing a broad range of R&D to improve the reliability and reduce the cost of the L-band (1.3 GHz) rf system and normal-conducting accelerators. Current activities include the development of a Marx-style modulator and a 10 MW sheet-beam klystron, operation of an L-band (1.3 GHz) rf source using an SNS HVCM modulator and commercial klystron, construction of an rf distribution system with adjustable power tap-offs and custom hybrids, tests of cavity coupler components to understand rf processing limitations, simulation of multipacting in the couplers, optimization of the cavity fill parameters for operation with a large spread in sustainable cavity gradients and operation of a 5-cell prototype positron capture cavity. This paper surveys the results from the past year and reviews L-band R&D at other labs, in particular, that at DESY for the XFEL project.

 
slides icon Slides  
 
FRPMN004 Storage Ring Turn-By-Turn BPMs At The Australian Synchrotron storage-ring, coupling, synchrotron, injection 3865
 
  • Y. E. Tan
  • M. J. Boland, R. T. Dowd, G. LeBlanc, M. J. Spencer
    ASP, Clayton, Victoria
  The Australian Synchrotron's Storage Ring is equipped with a full compliment of 98 Libera Electron Beam Position Processors from I-Tech (EBPPs) [1]. The EBPPs are capable of measuring beam position data at turn-by-turn (TBT) rates and have long history buffers. TBT data from the EBPPs has been used to determine the linear optics of the storage ring lattice using techniques developed at other facilities. This is a useful complement to other methods of determining the linear optics such as LOCO. Characteristics of the EBPPs such as beam current dependence have been studied during commissioning and will also be presented.  
 
FRPMN007 Image Charge Effects in Dynamics of Intense Off-Axis Beams emittance, resonance, coupling, focusing 3880
 
  • K. Fiuza
  • R. Pakter, F. B. Rizzato
    IF-UFRGS, Porto Alegre
  Funding: CNPq, Brasil.

This paper analyzes the combined envelope-centroid dynamics of magnetically focused high-intensity charged beams surrounded by conducting walls. Similarly to the case were conducting walls are absent, we show that the envelope and centroid dynamics decouples from each other. Mismatched envelopes still decay into equilibrium with simultaneous emittance growth, but the centroid keeps oscillating with no appreciable energy loss. Some estimates are performed to analytically obtain some characteristics of halo formation seen in the full simulations.

 
 
FRPMN008 Wave Breaking and Particle Jets in Inhomogeneous Beams emittance, focusing, plasma, beam-transport 3886
 
  • R. P. Nunes
  • Y. Levin, R. Pakter, F. B. Rizzato
    IF-UFRGS, Porto Alegre
  Funding: CNPq, Brasil and AFOSR under grant FA9550-06-1-0345.

We analyze the dynamics of inhomogeneous, magnetically focused high-intensity beams of charged particles. While for homogeneous beams the whole system oscillates with a single frequency, any inhomogeneity leads to propagating transverse density waves which eventually result in a singular density build up, causing wave breaking and jet formation. The theory presented in this paper allows to analytically calculate the time at which the wave breaking takes place. It also gives a good estimate of the time necessary for the beam to relax into the final stationary state consisting of a cold core surrounded by a halo of highly energetic particles.

 
 
FRPMN012 Bias on Absolute Luminosity Measurements at the ILC from Beam-Beam Space Charge Effects luminosity, scattering, space-charge, linear-collider 3907
 
  • C. Rimbault
  • P. Bambade
    LAL, Orsay
  • K. Moenig
    DESY Zeuthen, Zeuthen
  • D. Schulte
    CERN, Geneva
  A way to determine luminosity at the International Linear Collider (ILC) is to measure the Bhabha event rate in a finely segmented calorimeter (LumiCal) at very low polar angles in the very forward region of the detector. An absolute precision between 10-4 and 10-3 is needed for a number of key physics measurements. Besides theoretical uncertainties on the Bhabha cross section and experimental errors when identifying Bhabha events in the LumiCal, the very strong beam-beam space charge effects which characterise the ILC e+e- collisions lead to a major bias in the counting rate, which drastically limits the luminosity measurement if uncorrected. In this paper, Bhabha event samples produced with the BHLUMI generator are used in the context of the GUINEA-PIG beam-beam simulation to study how beamstrahlung radiation and electromagnetic deflections affect the proposed experimental selections. A corrective method based on determining the luminosity spectrum within the LumiCal is suggested to minimise the resulting errors. The expected residual uncertainty after correction is estimated based on simulations with realistic beam conditions.  
 
FRPMN013 Precise Tune Measurements from Multiple Beam Position Monitors storage-ring, optics, lattice, synchrotron 3913
 
  • Ch. Skokos
  • J. Laskar
    IMCCE, Paris
  • Y. Papaphilippou
    CERN, Geneva
  Funding: Work supported by the Marie Curie Intra-European Fellowship No MEIF-CT-2006-025678

One of the main limitations for precise tune measurements using kicked turn-by-turn data is the beam decoherence, which can limit the available signal to a reduced number of turns. Applying Laskar's frequency analysis, on measurements from several beam position monitors, a fast and accurate determination of the real tune is possible. The efficiency of the method is demonstrated when applied in turn-by-turn data from the ESRF storage ring and CERN's Super Proton Synchrotron. Estimates from tracking simulations and analytical considerations are further compared with the experimental results.

 
 
FRPMN014 3D Simulation of Coherent Instabilities in Long Bunches Induced by the Kicker Impedances in the FAIR Synchrotrons impedance, space-charge, damping, kicker 3919
 
  • O. Boine-Frankenheim
  • V. Kornilov
    GSI, Darmstadt
  Funding: Work supported by the European Community under the FP6 programme: Structuring the European Research Area - Specific Support Action - DESIGN STUDY (contract 515873 - DIRACsecondary-Beams).

3D simulation studies of the transverse impedance budget for long bunches in the FAIR synchrotrons have been started. Important transverse instability driving sources are the thin resistive wall and the kicker impedances. Major concerns are the required low momentum spreads and the additional loss of Landau damping due to the space charge tune shift. The simulation code PATRIC has been extended in order to predict coherent instability thresholds with space charge and for broadband impedance sources. Examples of code benchmarking using the numerical Schottky noise, analytical stability boundaries and comparisons with other codes will be discussed. The improvement of transverse stability in long bunches relative to a coasting beam is analyzed for different rf wave forms. Conclusions for the impedance budget in the FAIR synchrotrons are drawn.

 
 
FRPMN015 Simulation of Synchrotron Radiation at the First Bunch Compressor of FLASH radiation, synchrotron, synchrotron-radiation, vacuum 3925
 
  • A. Paech
  • W. Ackermann, T. Weiland
    TEMF, Darmstadt
  • O. Grimm
    DESY, Hamburg
  Funding: This project is supported by the Helmholtz Association under contract HGF-VH-FZ-006

One method to measure the bunch shape at the FLASH facility at DESY, Hamburg is based on the observation of synchrotron radiation generated at the first bunch compressor. For the correct interpretation of the results it is mandatory to know how various parameters of the real setup, in contrast to theoretical assumptions, influence the observed spectrum. The aim of this work therefore is to calculate the generation of synchrotron radiation of a moving point charge inside the bunch compressor with the emphasis of including the effects of the vertical and horizontal vacuum chamber walls in the vicinity of the last dipole magnet. Because of the small wavelength in comparison with the chamber geometries this is a demanding task. One idea to cope with the difficulties is to use optical methods such as the uniform theory of diffraction (UTD). In this paper the applicability and limitations of the proposed method are discussed. Furthermore a comparison of simulated and new measured fields is shown.

 
 
FRPMN016 Wake Field Computations for the PITZ Photoinjector diagnostics, electron, vacuum, gun 3931
 
  • E. Arevalo
  • W. Ackermann, R. Hampel, W. F.O. Muller, T. Weiland
    TEMF, Darmstadt
  Funding: This work is supported in part by the EU under contract number RIDS-011935 (EUROFEL).

The computation of wake fields excited by ultra short electron bunches in accelerator components with geometrical discontinuities is a challenging problem, as an accurate resolution for both the small bunch and the large model geometry are needed. Several computational codes (PBCI, ROCOCO, CST PARTICLE STUDIO etc.) have been developed to deal with this type of problems. Wake field simulations of the RF electron gun of the Photoinjector Test Facility at DESY Zeuthen (PITZ) are performed whith different specialized codes. Here we present a comparison of the wake potentials calculated numerically obtained from the different codes. Several structures of the photoinjector are considered.

 
 
FRPMN028 Design and E. M. Analysis of the New DAFNE Interaction Region impedance, vacuum, coupling, shielding 3988
 
  • F. Marcellini
  A new interaction region (IR) vacuum chamber has been designed for the DAFNE upgrade aimed at testing of the crabbed waist collision scheme. Compared to the existing IR vacuum chamber, the new one has a simplified design and consists essentially of the confluence of straight tubes, having a double Y shape. Sharp discontinuities have been avoided to limit the beam impedance of the structure. However, the study of the electromagnetic interaction with the beam is necessary in order to avoid excessive power loss due to eventual higher order modes (HOM) trapped in the Y-shape chamber. With HFSS the first design of the chamber has been analyzed and HOMs have been found and characterized. On the basis of these results some modifications in the geometry of the IR chamber have been introduced to eliminate or attenuate these trapped resonances. The results of these simulations are presented.  
 
FRPMN037 Ion Instability in the ILC Damping Ring ion, damping, feedback, electron 4030
 
  • E.-S. Kim
  • K. Ohmi
    KEK, Ibaraki
  Ions created by electron beam trapped in a bunch oscillate with a certain frequency, with the result that the beam oscillate with the same frequency. Recent high intensity and low emittance rings, the growth rate of this ion instability is very rapid. Super B factory and ILC damping ring, which are similar design parameter, are extremely low emittance. We discuss the ion instability for these rings.  
 
FRPMN038 Simulation of Synchro-betatron Sideband Instability caused by Electron Clouds at KEKB electron, betatron, emittance, feedback 4033
 
  • J. W. Flanagan
  • E. Benedetto
    CERN, Geneva
  • J. Hyunchang
    POSTECH, Pohang, Kyungbuk
  • K. Ohmi
    KEK, Ibaraki
  Electron cloud causes a fast head-tail instability above a threshold density. Experiments at KEKB showed synchro-betatron sideband, which indicates the head-tail instability. The sideband appears near νy+kνs, where 1<k<2, that differs from ordinary instability seen near νys. We investigate the origin of the sideband using a computer simulation.  
 
FRPMN041 Study on the Longitudinal Impedance of BPM for KEKB and Super KEKB impedance, resonance, damping, luminosity 4048
 
  • K. Shibata
  • H. Fukuma, S. Hiramatsu, Y. Suetsugu, M. Tejima, M. Tobiyama
    KEK, Ibaraki
  The longitudinal impedance of the KEK B-factory (KEKB) button-type beam position monitors (BPMs) was recalculated by MAFIA in preparation for a future plan to increase the beam current. The diameter and the gap of the button electrode were 12 mm and 1 mm, respectively. For High Energy Ring (HER), an asymmetric structure was applied to extract the TE110 mode into the coaxial cable. The Q-value and shunt impedance were estimated at 91 and 17 Ω (at 7.6 GHz) respectively, and the beam current limit for longitudinal multi-bunch instability was 2.6 A. On the other hand, the electrode of Low Energy Ring (LER) BPM had a symmetric structure and the Q-value and shunt impedance were estimated at 133 and 8 Ω (at 7.6 GHz). In this case, the current limit was 1.7 A. Based on the experiences at the KEKB, the new BPM was designed for the Super KEKB, a future high-intensity B-factory at KEK. In order to reduce the impedance the electrode diameter was cut down to 6 mm from 12 mm. The Q-value and shunt impedance were estimated at 23 and 2 Ω (at 13 GHz). The current limit was expected to be about 7 A in full bucket operation (5120 bunches), and more than 10 kA in 4-bucket spacing operation.  
 
FRPMN042 Continued Study on Photoelectron and Secondary Electron Yield of TiN Coating and NEG (Ti-Zr-V) Coatings at the KEKB Positron Ring electron, photon, positron, synchrotron 4054
 
  • Y. Suetsugu
  • H. Hisamatsu, K.-I. Kanazawa, K. Shibata
    KEK, Ibaraki
  In order to investigate a way to mitigate the electron-cloud instability (ECI), the secondary electron and photoelectron yields (SEY and PEY) of a TiN coating and a NEG (Ti-Zr-V) coating have been studied at the KEK B-Factory (KEKB) positron ring. Following the previous study at an arc section*, the test chambers were installed a straight section, where the line density was less than 1/10 of that at the arc section. The number of electrons around the beam orbit was measured up to a stored beam current of about 1.7 A (1389 bunches). The electron current of the NEG-coated and TiN-coated chambers were about 60% and 30% of that for a copper chamber, respectively. The difference between the copper and the NEG coating was clearer than the measurement at the arc section, where the intense SR obscured the effect of SEY. The evaluated max values for the TiN coating, the NEG coating and the copper were 0.9 - 1.0, 1.0 - 1.1 and 1.3 - 1.4, respectively, which were almost consistent with the previous results. The experiments using a beam duct with ante-chambers are also briefly touched upon.

* Y. Suetsugu et al., NIM-PR-A, Vol.556 (2006) 399.

 
 
FRPMN046 Effects of Magnetic Field Tracking Errors on Beam Dynamics at J-PARC RCS resonance, space-charge, betatron, quadrupole 4078
 
  • H. Hotchi
  • S. Machida
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  • F. Noda
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken
  The 3-GeV Rapid-Cycling Synchrotron (RCS) of J-PARC aims at providing a 1-MW proton beam at a repetition rate of 25 Hz for an injection energy of 400 MeV. In this paper, we discuss influences of field tracking errors between dipoles and quadrupoles and between different families of quadrupoles on beam dynamics in combination with effects of the space charge and intrinsic nonlinear fields for the J-PARC RCS.  
 
FRPMN053 Beam Instability and Correction for "DRAGON-I" induction, electron, impedance, laser 4114
 
  • W. W. Zhang
  • Y. Li
    CAEP, Mainyang, Sichuan
  'Dragon-I' is a high current pulse electron linear induction accelerator designed and constructed in IFP/CAEP. It generates a 20MeV, 2.5kA, 60ns pulse electron beam. The whole facility has three parts: injector; accelerator and beam focus system. The accelerator consists of 72 induction cells and 18 connection cells. A solenoid was installed inside each cell forming beam transport sysem. During the initial beam test both high frequency and low frequency oscillation were found. A lot of simulation and experiment investigations were done to get the transverse impedance of the cells and the corkscrew motion of the electron beam. Details of both the simulation and the experimental methods to correct the instability are presented.  
 
FRPMN054 The Design Study of IP-BPM for the ILC dipole, coupling, extraction, controls 4120
 
  • S. H. Shin
  • Y. Honda, J. Urakawa
    KEK, Ibaraki
  • E.-S. Kim, H.-S. Kim
    Kyungpook National University, Daegu
  Beam position monitors (BPMs) with a resolution in a few nanometers range are required to control beams in the locations that are close to the interaction point (IP) of the International Linear Collider (ILC). ATF2 at KEK has considered as a test facilitiy to investigate this requirement. We have performed the design study for IP-BPM by using of the electromagnetic simulation program MAFIA and HFSS. The designed IP-BPM consists of one cell sensor cavity and one cell reference cavity. The results of the design studies showed signal decay time of 20 ns and orbit sensitivity of a few nm. The signal voltage from sensor cavity showed increasing of a factor of 3 and 2 in horizontal and vertical directions, respectively, than the IP-BPM that was installed ATF extraction beam line. We present the results of design studies in which include effects of common mode contamination in the IP-BPM.  
 
FRPMN060 Beam Loss Simulation of SNS LINAC linac, radiation, beam-losses, monitoring 4138
 
  • A. P. Zhukov
  • S. Assadi
    ORNL, Oak Ridge, Tennessee
  Funding: SNS is managed by UT-Batelle, LLC, under contract DE-AC05-00OR22725 for the U. S. Department of Energy.

We are developing a sophisticated system of beam loss pattern evaluation and residual radiation estimation. We have installed a number of Neutron Detectors and Ionization Chambers along LINAC. In this paper we present our implementation and simulation of the losses by inserting Faraday Cups, using Beam Stops and running Wire Scanners at different energies. The measured losses are simulated by 3-D transport codes (GEANT4, SHIELD, MCNPX). We compare two different sets of Beam Loss Monitors: Ionization Chambers (detecting X-ray and gamma radiation) and Photo-Multiplier Tubes with a neutron converter (detecting neutrons) and outline that such a combination is a better way to measure beam losses than relying on detectors of one type. We interpret the loss signal in terms of beam current lost in the SNS LINAC with accurate longitudinal loss distribution and plan to automate beam steering according to loss monitors readings by using vast Loss Pattern Database developed by simulating different loss scenarios with the transport codes.

 
 
FRPMN062 OTR Interferometry Diagnostic for the A0 Photoinjector electron, scattering, radiation, diagnostics 4144
 
  • G. M. Kazakevich
  • H. Edwards, R. P. Fliller, V. A. Lebedev, S. Nagaitsev, R. Thurman-Keup
    Fermilab, Batavia, Illinois
  Funding: Operated by Universities Research Association, Inc. for the U. S. Department of Energy under contract DE-AC02-76CH03000.

OTR interferometry (OTRI) is an attractive diagnostic for investigation of relativistic electron beam parameters. The diagnostic is currently under development at the A0 Photoinjector. This diagnostic is applicable for NML accelerator test facility that will be built at Fermilab. The experimental setups of the OTR interferometers for the Photoinjector prototype are described in the report. Results of simulations and measurements are presented and discussed.

 
 
FRPMN065 Fast Vertical Single-Bunch Instability at Injection in the CERN SPS - An Update impedance, space-charge, emittance, injection 4162
 
  • G. Arduini
  • T. Bohl, H. Burkhardt, E. Metral, G. Rumolo
    CERN, Geneva
  • B. Salvant
    EPFL, Lausanne
  Following the first observation of a fast vertical instability for a single high-brightness bunch at injection in the SPS in 2003, a series of detailed measurements and simulations has been performed in order to assess the resulting potential intensity limitations for the SPS, as well as possible cures. During the 2006 run, the characteristics of this instability were studied further, extending the intensity range of the measurements, and comparing the experimental data with simulations that take into account the latest measurements of the transverse machine impedance. In this paper, we summarize the outcome of these studies and our understanding of the mechanisms leading to this instability. The corresponding intensity limitations were also determined.  
 
FRPMN067 Collision Rate Monitors for LHC luminosity, radiation, proton, optics 4171
 
  • E. Bravin
  • A. Brambilla, M. Jolliot, S. Renet
    CEA, Grenoble
  • S. Burger, C. Dutriat, T. Lefevre, V. Talanov
    CERN, Geneva
  • J. M. Byrd, K. Chow, H. S. Matis, M. T. Monroy, A. Ratti, W. C. Turner
    LBNL, Berkeley, California
  Collision rate monitors are essential in bringing particle beams into collision and optimizing the performances of a collider. In the case of LHC the relative luminosity will be monitored by measuring the flux of small angle neutral particles produced in the collisions. Due to the very different luminosity levels at the four interaction regions (IR) of LHC two different types of monitors have been developed. At the high luminosity IR (ATLAS and CMS) fast ionization chambers will be installed while at the other two (ALICE and LHC-b) solid state polycrystalline Cadmium Telluride (CdTe) detectors will be used. The ionization chambers are being developed by Lawrence Berkeley National Lab (Berkeley CA, USA) while the CdTe monitors are being developed by CERN and CEA-LETI (Grenoble, FR) This paper describes the system with particular emphasis on the monitors based on CdTe detectors, detailed description of the ionisation chambers being available in separate papers.  
 
FRPMN070 Controlled Longitudinal Emittance Blow-up in the CERN PS emittance, injection, quadrupole, acceleration 4186
 
  • H. Damerau
  • M. Morvillo, E. N. Shaposhnikova, J. Tuckmantel, J.-L. Vallet
    CERN, Geneva
  The longitudinal emittance of the bunches in the CERN PS must be increased before transition crossing to avoid beam loss due to a fast vertical instability. This controlled blow-up is essential for all high-intensity beams in the PS, including those for transfer to the LHC. The higher harmonic 200 MHz RF system (six cavities) used for this blow-up has to generate a total RF voltage which, for the most demanding blow-up, is comparable to the voltage of the main RF cavities. The system is presently subject to a major upgrade and a possible reduction in the number of higher harmonic RF cavities installed is under consideration. To determine the minimum required, detailed simulations and machine development studies to optimize the longitudinal blow-up have been performed. Further options to produce the required longitudinal emittance using other RF systems are also analyzed. The results obtained for the different scenarios for the longitudinal blow-up are presented and compared in this paper.  
 
FRPMN071 The LHC Beam Loss Measurement System beam-losses, radiation, quadrupole, vacuum 4192
 
  • B. Dehning
  • E. Effinger, J. E. Emery, G. Ferioli, G. Guaglio, E. B. Holzer, D. K. Kramer, L. Ponce, V. Prieto, M. Stockner, C. Zamantzas
    CERN, Geneva
  One of the most important elements for the protection of CERN's Large Hadron Collider (LHC) is its beam loss monitoring system. It aims to prevent the super conducting magnets from quenching and to protect the machine components from damages, as a result of critical beam losses. This contribution reviews the design requirements: a high reliability to insure a safe protection and a high availability, a high dynamic range required by the beam dump trigger generation and beam tuning and finally a high radiation tolerance to be able to install the front-end electronics in the LHC tunnel. Examples of the reliability studies using the reliability ISOGRAPH fault tree software package are shown to explain the particular design. Measurement results from the LHC beam loss system installed at HERA (DESY) and at the SPS (CERN) are given to demonstrate its functionality. The detector design of the ionisation chambers and the secondary emission monitors are summarized and measurements with high and low intensity beams as well as with continuous and pulsed proton, muon and neutron beams are discussed.  
 
FRPMN072 LHC Beam Loss Detector Design: Simulations and Measurements proton, electron, radiation, hadron 4198
 
  • B. Dehning
  • E. Effinger, J. E. Emery, G. Ferioli, E. B. Holzer, D. K. Kramer, L. Ponce, M. Stockner, C. Zamantzas
    CERN, Geneva
  The LHC beam loss monitoring system must prevent the super conducting magnets from quenching and protect the machine components from damage. 4000 gas filled ionization chambers are installed all around the LHC ring. They probe the far transverse tail of the hadronic shower induced by lost beam particles. Secondary emission chambers are placed in very high radiation areas for their lower sensitivity. This paper focuses on the signal response of the chambers to various particle types and energies and the simulated prediction of the hadronic shower tails. Detector responses were measured with continuous and bunched proton and mixed particle beams of 30 MeV to 450 GeV at PSI and CERN. Additional test measurements with 662 keV gammas and 174 MeV neutrons were performed on the ionization chamber. The measured signal speed, shape and absolute height are compared to GEANT4 and Garfield simulations. Aging data of SPS ionization chambers are shown. The far transverse tail of the hadronic shower induced by 40 GeV and 920 GeV protons impacting on the internal beam dump of HERA at DESY have been measured and compared to GEANT4 simulations.  
 
FRPMN074 Simulation Study of the Horizontal Head-Tail Instability Observed at Injection of the CERN Proton Synchrotron coupling, impedance, space-charge, synchrotron 4210
 
  • E. Metral
  • G. Rumolo, R. R. Steerenberg
    CERN, Geneva
  • B. Salvant
    EPFL, Lausanne
  For many years, a horizontal head-tail instability has been observed at the CERN Proton Synchrotron during the long 1.2 s injection flat-bottom. This slow instability has been damped using linear coupling only, i.e. with neither octupoles nor feedbacks. Using the nominal machine and beam parameters for LHC, the sixth head-tail mode number is usually observed. Several other modes were also observed in the past by tuning the chromaticity, and these observations were found to be in good agreement with Sacherer's formula. The purpose of this paper is to present the results of assessing the effect of chromaticity and linear coupling on this slow head-tail instability using the HEADTAIL simulation code, and to compare these simulations with both measurements performed over the last few years, and theoretical calculations.  
 
FRPMN078 Improved Algorithms to Determine Non-Linear Optics Model of the SPS from Non-Linear Chromaticity multipole, injection, octupole, optics 4231
 
  • R. Tomas
  • G. Arduini, G. Rumolo, F. Zimmermann
    CERN, Geneva
  • R. Calaga
    BNL, Upton, Long Island, New York
  • A. Faus-Golfe
    IFIC, Valencia
  Funding: This work is partially supported by the U. S. DOE

In recent years several measurements of the SPS non-linear chromaticity have been performed in order to determine the non-linear optics model of the SPS machine at injection energy for different cycles. In 2006 additional measurements have been performed at injection and during the ramp for the cycle used to accelerate the LHC beam. New and more robust matching algorithms have been developed in 2006 to fit the model to the measurements up to arbitrary chromatic order. In this paper we describe the algorithms used in the analysis of the data and we summarize and compare the results from all experiments.

 
 
FRPMN091 Simulation of HOM Wakefields in the Main ILC Cavities linac, dipole, emittance, damping 4288
 
  • R. M. Jones
  • C. J. Glasman
    UMAN, Manchester
  We investigate the electromagnetic field (e.m.) excited by a train of multiple bunches in the main superconducting linacs of the ILC. These e.m. fields are represented as a wake-field. Detailed simulations are made for the modes which constitute the long-range wake-field in new high gradient cavity structures. In particular, we focus our study on the modes in re-entrant and low loss Ichiro cavities. Modes trapped within a limited number of cells can give rise to a significant diminution in the emittance of the beam and we pay particular attention to these modes. Beam tracking simulations on the resulting emittance dilution over the entire length of the linac are made in order to provide details on the damping which is necessary for modes with particularly large kick factors.  
 
FRPMN092 Beam Coupling Impedance Simulations and Laboratory Measurements for the LHC FP420 Detector impedance, resonance, coupling, proton 4294
 
  • F. Roncarolo
  • R. Appleby, R. M. Jones
    UMAN, Manchester
  The FP420 collaboration* aims at designing forward proton tagging detectors to be installed in the LHC sectors 420 meters downstream of the ATLAS detector and/or CMS detector. The experiment requires modification of the beam pipe material and geometry with a consequent impact on the LHC impedance budget and the circulating beam stability. This paper describes numerical simulations and laboratory measurements carried out to characterize the coupling impedance (longitudinal and transverse) and the associated loss factor of each insertion. The detectors are located in pockets of the beam tube. We study both single and multi-pocket configurations with a view to characterizing the impact on the beam dynamics. In addition, results are compared to available analytical calculations for the resistive wall impedance.

* Cox, Brian et al., "FP420 : An R&D Proposal to Investigate the Feasibility of Installing Proton Tagging Detectors in the 420 m Region of the LHC", CERN-LHCC-2005-025

 
 
FRPMN094 Beam Profile Measurements with the 2-D Laser-Wire at PETRA laser, electron, photon, positron 4303
 
  • M. T. Price
  • K. Balewski, Eckhard. Elsen, V. Gharibyan, H.-C. Lewin, F. Poirier, S. Schreiber, N. J. Walker, K. Wittenburg
    DESY, Hamburg
  • G. A. Blair, S. T. Boogert, G. E. Boorman, A. Bosco, S. Malton
    Royal Holloway, University of London, Surrey
  • T. Kamps
    BESSY GmbH, Berlin
  Funding: Work supported by the PPARC LC-ABD collaboration and the Commission of the European Communities under the 6th Framework Programme Structuring the European Research Area, contract number RIDS-011899.

The current PETRA II Laser-Wire system, being developed for the ILC and PETRA III, uses a piezo-driven mirror to scan laser light across an electron bunch. This paper reports on the recently installed electron-beam finding system, presenting recent horizontal and vertical profile scans with corresponding studies.

 
 
FRPMN103 Single-Bunch Instability Estimates for the 1-nm APS Storage Ring Upgrade with a Smaller Vacuum Chamber impedance, storage-ring, lattice, single-bunch 4330
 
  • Y.-C. Chae
  • Y. Wang, A. Xiao
    ANL, Argonne, Illinois
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

We recently studied a lattice achieving 1-nm emittance at the APS storage ring*. The successful design required very strong sextupoles in order to tune the machine to the desired positive chromaticity. A preliminary design of such magnets indicated saturation in the poles unless the vacuum chamber gets smaller by a factor of two compared to the existing APS chamber. Since the resistive wall impedance scales as 1/b3, where b is the radius of the chamber, we questioned how much current we can store in a single bunch at the 1-nm storage ring. In order to answer this question quantitatively, we calculated all wake potentials of impedance elements of the existing APS storage ring with the transverse dimension properly scaled but with the longitudinal dimension kept unchanged. With the newly calculated impedance of a smaller chamber, we estimated the single-bunch current limit. It turned out that the ring with a smaller chamber would not diminish the single-bunch current limit substantially. We present both wake potentials of 1-nm and the existing rings followed by the simulation results carried out for determining the accumulation limit to the ring.

* A. Xiao, "A 1-nm Lattice for the APS Storage Ring" these proceedings.

 
 
FRPMN104 Impedance Database II for the Advanced Photon Source Storage Ring impedance, storage-ring, single-bunch, photon 4336
 
  • Y.-C. Chae
  • Y. Wang
    ANL, Argonne, Illinois
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

The first Impedance Database* constructed at the Advanced Photon Source was successfully used in reproducing the main characteristics of single-bunch instabilities observed in the storage ring. However, the finite bandwidth of the corresponding impedance model was limited to 25 GHz, which happens to be the resolution limit of the density modulation observed in the microwave instability simulation. In order to resolve simulation results never verified in the experiments, we decided to extend the calculated bandwidth of impedance to 50 GHz by recalculating the wake potentials excited by a shorter bunch. Since low-order electromagnetic code requires 20-40 grid points per wavelength, reducing the bunch length required a large number of grids for the 3D structure. We used bunch lengths of 1- and 2-mm in the Gaussian distribution in the Impedance Database II project. For the large-scale computation we used the 3D electromagnetic code GdfidL ** for wake potential calculation at the cluster equipped with 240 GB of memory. The resultant wake potential excited by the short bunch together with application to the storage ring for collective effects is presented in the paper.

* Y.-C. Chae, "The Impedance Database and Its Application to the APS Storage Ring" Proc. 2003 PAC, p. 3017.** http://www.gdfidl.de

 
 
FRPMN105 The Wakefield Effects of Pulsed Crab Cavities at the Advanced Photon Source for Short-X-ray Pulse Generation single-bunch, impedance, storage-ring, photon 4339
 
  • Y.-C. Chae
  • V. A. Dolgashev
    SLAC, Menlo Park, California
  • G. J. Waldschmidt
    ANL, Argonne, Illinois
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

In recent years we have explored the application to the Advanced Photon Source (APS) of Zholents' crab-cavity-based scheme for production of short x-ray pulses. As a near-term project, the APS has elected to pursue a pulsed system using room-temperature cavities*. The cavity design has been optimized to heavily damp parasitic modes while maintaining large shunt impedance for the deflecting dipole mode**. We evaluated a system consisting of three crab cavities as an impedance source and determined their effect on the single- and multi-bunch instabilities. In the single-bunch instability we used the APS impedance model as the reference system in order to predict the overall performance of the ring when the crab cavities are installed in the future. For multi-bunch instabilities we used a realistic fill pattern, including hybrid-fill, and tracked multiple bunches where each bunch was treated as soft in distribution. To verify the electrical design, the realistic wake potential of the 3D structure was calculated using GdfidL and this wake potential was used in the multi-bunch simulations.

* M. Borland et al., "Planned Use of Pulsed Crab Cavities at the APS for Short X-ray Pulse Generation," these proceedings.** V. Dolgashev et al., "RF Design of Normal Conducting Deflecting Structures for the APS," these proceedings.

 
 
FRPMS001 Numerical Simulation of Optical Diffraction Radiation from a 7-GeV Beam radiation, polarization, photon, electron 3850
 
  • C. Yao
  • A. H. Lumpkin
    ANL, Argonne, Illinois
  • D. W. Rule
    NSWC, West Bethesda, Maryland
  Funding: Work supported by U. S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38.

Interest in nonintercepting (NI) beam size monitoring for top-up operations at the Advanced Photon Source (APS) motivated our investigations of optical diffraction radiation (ODR) techniques. We have reported our experiment results earlier. In particular, we wanted to monitor the beam size in the booster-to-storage ring (BTS) transport line using near-field ODR. An analytical model was numerically evaluated for the APS BTS beam size cases. In addition, the simulations show that near-field ODR profiles have sensitivity to beam size in the 20- to 50-μm region, which are relevant to X-ray FELs and the international linear collider (ILC). The simulation indicates that the orthogonal polarization component is close to a Gaussian distribution and more sensitive to beam size variations, and therefore is more suitable for beam size measurement. Under some circumstances the parallel polarization component shows a non-Gaussian distribution that is also beam size dependent. This report describes the simulation method, the results, and the comparison with experiment results.

 
 
FRPMS002 Parametric Modeling of Electron Beam Loss in Synchrotron Light Sources electron, beam-losses, synchrotron, scattering 3853
 
  • B. Sayyar-Rodsari
  • W. J. Corbett, M. J. Lee, P. Lui, J. M. Paterson
    SLAC, Menlo Park, California
  • E. Hartman, C. A. Schweiger
    Pavilion Technologies, Inc, Austin, Texas
  Funding: DOE Phase II STTR: DE-FG02-04ER86225

Synchrotron light is used for a wide variety of scientific disciplines ranging from physical chemistry to molecular biology and industrial applications. As the electron beam circulates, random single-particle collisional processes lead to decay of the beam current in time. We report a simulation study in which a combined neural network (NN) and first-principles (FP) model is used to capture the decay in beam current due to Touschek, Bremsstralung, and Coulomb effects. The FP block in the combined model is a parametric description of the beam current decay where model parameters vary as a function of beam operating conditions (e.g. vertical scraper position, RF voltage, number of the bunches, and total beam current). The NN block provides the parameters of the FP model and is trained (through constrained nonlinear optimization) to capture the variation in model parameters as operating condition of the beam changes. Simulation results will be presented to demonstrate that the proposed combined framework accurately models beam decay as well as variation to model parameters without direct access to parameter values in the model.

 
 
FRPMS004 Geometrical Interpretation of Nonlinearities from a Cylindrical Pick-up pick-up 3862
 
  • R. Miyamoto
  • A. Jansson, M. J. Syphers
    Fermilab, Batavia, Illinois
  • S. E. Kopp
    The University of Texas at Austin, Austin, Texas
  In many accelerators, cylindrical pick-ups are used to measure transverse beam position. Although theoretically signals from these pick-ups are related to infinite power series of the beam position, in practice only finite number of terms are considered. Hence, the position measurements degrade when the beam position is far from the center of the pick-up. This paper shows that the power series of the beam position signal actually converges into a compact form with simple geometrical interpretation. It is then proven that with help of these geometrical relations the beam position can be expressed as a compact function of pick-up signals which includes infinite order of nonlinearities. The paper is concluded with a simple test of nonlinearities in signals using pick-ups of the Tevatron and numerical simulations to suggest a possible practical usage of this infinite order expression.  
 
FRPMS014 Chromaticity Measurement Using a Continuous Head-Tail Kicking Technique emittance, betatron, impedance, synchrotron 3916
 
  • C.-Y. Tan
  • V. H. Ranjbar
    Tech-X, Boulder, Colorado
  Funding: Operated by Universities Research Association Inc. under Contract No. DE-AC02-76CH03000 with the United States Department of Energy.

In the classical head-tail chromaticity measurement technique, a single large kick is applied transversely to the beam. The resulting phase difference between the head and the tail is measured and the chromaticity extracted. In the continuous head-tail kicking technique, a very small transverse kick is applied to the beam and the asymptotic phase difference between the head and the tail is found to be a function of chromaticity. The advantage of this method is that since the tune tracker PLL already supplies the small transverse kicks, no extra modulation is required.

 
 
FRPMS019 Measurement of the Propagation of EM Waves Through the Vacuum Chamber of the PEP-II Low Energy Ring for Beam Diagnostics electron, vacuum, positron, plasma 3946
 
  • S. De Santis
  • J. M. Byrd
    LBNL, Berkeley, California
  • M. T.F. Pivi
    SLAC, Menlo Park, California
  Funding: Work supported by the U. S. Department of Energy under Contract No. DE-AC0-05CH11231.

We present the results of measurements of the electron cloud intensity in the PEP-II low energy ring (LER) by propagating a TE wave into the beam pipe. Connecting a pulse generator to a beam position monitor button we can excite a signal above the vacuum chamber cut-off and measure its propagation with a spectrum analyzer connected to another button a few meters away. The measurement can be performed with different beam conditions and also at different settings of the solenoids used to reduce the build up of electrons. The presence of a modulation in the TE wave transmission, synchronous with the beam revolution frequency and only measurable with the solenoids off, would be directly correlated to the intensity of the electron cloud phenomenon in the relative region of the ring. In this paper we present and discuss our measurements taken near Interaction Region 12 on the LER, during 2006 and early 2007.

 
 
FRPMS022 Progress on Modeling of Ultrafast X-Ray Streak Cameras electron, cathode, acceleration, space-charge 3961
 
  • G. Huang
  • J. M. Byrd, J. Feng, J. Qiang, W. Wan
    LBNL, Berkeley, California
  Streak cameras continue to be useful tools for studying ultra phenomena on the sub-picosecond time scale and beyond. We have employed accelerator modeling tools to understand the key parts of the streak camera in order to improve the time resolution. This effort has resulted in an start-to-end model of the camera including a dedicated 3D modeling of time-dependent fields. This model has contributed to the recent achievement of 230 fsec (FWHM) resolution measured using 266 nm laserat the Advanced Light Source Streak Camera Laboratory. We will report on our model and its comparison with experiments. We also extrapolate the performance of this camera including several possible improvements.  
 
FRPMS026 Strong-Strong Simulation of Long-Range Beam-Beam Effects at RHIC emittance, sextupole, resonance, betatron 3979
 
  • J. Qiang
  • W. Fischer
    BNL, Upton, Long Island, New York
  • T. Sen
    Fermilab, Batavia, Illinois
  Funding: This work was supported by the U. S. Department of Energy under Contract no. DE-AC02-05CH11231.

Long-range beam-beam interactions can cause significant degrade of beam quality and lifetime in high energy ring colliders. At RHIC, a series of experiments were carried out to study these effects. In this paper, we report on numerical simulation of the long-range beam-beam interactions at RHIC using a parallel strong-strong particle-in-cell code, BeamBeam3D. The simulation includes nonlinearities from both the beam-beam interactions and the arc sextupoles. We observed significant emittance growth for beam separation below 4 σs under nominal tunes. A scan study in tune space shows strong emittance growth around 7th order resonance. Including the tune modulation due to chromaticity and synchrotron motion shows larger emittance growth than the case without the tune modulation.

 
 
FRPMS028 Simulations of Electron Cloud Effects on the Beam Dynamics for the FNAL Main Injector Upgrade electron, emittance, synchrotron, injection 3985
 
  • K. G. Sonnad
  • C. M. Celata, M. A. Furman, D. P. Grote, J.-L. Vay, M. Venturini
    LBNL, Berkeley, California
  Funding: Work supported by the U. S. DOE under Contract no. DE-AC02-05CH11231.

The Fermilab main injector (MI) is being considered for an upgrade as part of the high intensity neutrino source (HINS) effort. This upgrade will involve a significant increasing of the bunch intensity relative to its present value. Such an increase will place the MI in a regime in which electron-cloud effects are expected to become important. We have used the electrostatic particle-in-cell code WARP, recently augmented with new modeling capabilities and simulation techniques, to study the dynamics of beam-electron cloud interaction. This study involves a systematic assesment of beam instabilities due to the presence of electron clouds.

 
 
FRPMS032 High-Order Modeling of an ERL for Electron Cooling in the RHIC Luminosity Upgrade using MaryLie/IMPACT space-charge, electron, linac, luminosity 4000
 
  • V. H. Ranjbar
  • D. T. Abell, K. Paul
    Tech-X, Boulder, Colorado
  • I. Ben-Zvi, J. Kewisch
    BNL, Upton, Long Island, New York
  • J. Qiang, R. D. Ryne
    LBNL, Berkeley, California
  Funding: Work supported by the U. S. DOE Office of Science, Office of Nuclear Physics under grant DE-FG02-03ER83796.

Plans for the RHIC luminosity upgrade call for an electron cooling system that will place substantial demands on the energy, current, brightness, and beam quality of the electron beam. In particular, the requirements demand a new level of fidelity in beam dynamics simulations. New developments in MaryLie/IMPACT have improved the space-charge computations for beams with large aspect ratios and the beam dynamic computations for rf cavities. We present the results of beam dynamics simulations that include the effects of space charge and nonlinearities, and aim to assess the tolerance for errors and nonlinearities on current designs for a super-conducting ERL.

 
 
FRPMS034 Optical Diffraction-Dielectric Foil Radiation Interferometry Diagnostic for Low Energy Electron Beams radiation, electron, scattering, optics 4012
 
  • A. G. Shkvarunets
  • M. E. Conde, W. Gai, J. G. Power
    ANL, Argonne, Illinois
  • R. B. Fiorito, P. G. O'Shea
    UMD, College Park, Maryland
  Funding: ONR and the DOD/Joint Technology Office

We have developed a new optical diffraction radiation (ODR) - dielectric foil radiation interferometer to measure the divergence of the low energy (8 - 14 MeV) ANL - Advanced Wakefield Accelerator electron beam. The interferometer employs an electro-formed micromesh first foil, which overcomes the inherent scattering limitation in the solid first foil of a conventional OTR interferometer, and an optically transparent second foil. The interference of forward directed ODR from the mesh and optical radiation from the dielectric foil is observed in transmission. This geometry allows a small gap between the foils (1 - 2 mm), which is required to observe fringes from two foils at low beam energies. Our measurements indicate that a single Gaussian distribution is sufficient to fit the data.

correspondance email: shkvar@umd.edu

 
 
FRPMS035 Vector Diffraction Theory and Coherent Transition Radiation Interferometry in Electron Linacs radiation, electron, laser, photon 4015
 
  • T. J. Maxwell
  • C. L. Bohn, D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois
  Funding: Work supported by US. Department of Energy, under Contract No. DE-FG02-06ER41435 with Northern Illinois University

Electrons impinging on a thin metallic foil are seen to deliver small bursts of transition radiation (TR) as they cross the boundary from one medium to the next. A popular diagnostic application is found for compact electron bunches. In this case they will emit radiation more or less coherently with an N-squared enhancement of the intensity on wavelengths comparable to the bunch size, generating coherent transition radiation (CTR). Several detailed analytical descriptions have been proposed for describing the resulting spectral distribution, often making different simplifying assumptions. Given that bunches tenths of millimeters long can generate measurable spectra into the millimeter range, concern may arise as to weak diffraction effects produced by optical interference devices containing elements with dimensions in the centimeter range. The work presented here is a report on an upcoming graduate thesis exploring these effects as they apply to the Fermilab/NICADD photoinjector laboratory using a minimal C++ code that implements the methods of virtual quanta and vector diffraction theory.

 
 
FRPMS037 Impact of Transverse Irregularities at the Photocathode on High-Charge Electron Bunches laser, emittance, space-charge, dipole 4027
 
  • M. M. Rihaoui
  • C. L. Bohn, P. Piot
    Northern Illinois University, DeKalb, Illinois
  • J. G. Power
    ANL, Argonne, Illinois
  Electron beam properties in photoinjectors are strongly dependent on the initial conditions, e.g., non-uniformities in the drive-laser pulse and/or the photocathode surface. We explore the impact of well-defined transverse perturbation modes on the evolution of the electron beam phase space, and paying special attention to how certain types of perturbations mix. Numerical simulations performed with IMPACT-T (both the standard version and a new wavelet-based version) are presented along with experimental results aimed at validating the simulation codes. The experiments are conducted at the Argonne Wakefield Accelerator facility.  
 
FRPMS048 Characterization of a High Current Induction Accelerator Electron Beam via Optical Transition Radiation from Dielectric Foils diagnostics, electron, radiation, induction 4087
 
  • V. Tang
  • C. G. Brown, T. L. Houck
    LLNL, Livermore, California
  Funding: This work was performed under the auspices of the U. S. Department of Energy by University of California, Lawrence Livermore National Laboratory under Contract W-7405-Eng-48.

Traditionally, thin metal foils are employed for optical transition radiation (OTR) beam diagnostics but the possibility of plating or shorting accelerator insulating surfaces precludes their routine use on high-demand machines. The successful utilization of dielectric foils in place of metal ones would alleviate this issue but necessitates more modeling and understanding of the OTR data for inferring desired beam parameters because of the dielectric's finite permittivity. Additionally, the temperature dependence of the relevant foil parameters must be accounted for due to instantaneous beam heating. Here, we analyze quartz and kapton foil OTR data from the Flash X-Ray (FXR) induction linear accelerator using a model that includes these effects and discuss the resultant FXR beam profiles.

 
 
FRPMS050 LANSCE-Linac Beam-Centroid Jitter in Transverse Phase Space target, quadrupole, diagnostics, dipole 4093
 
  • B. Blind
  • J. D. Gilpatrick
    LANL, Los Alamos, New Mexico
  Funding: Work supported by the US Department of Energy under contract DE-AC52-06NA25396.

In order to characterize the beam-centroid jitter in transverse phase space, sets of position data of the 100-MeV H+ beam and 800-MeV H- beam were taken in the transport lines of the Los Alamos Neutron Science Center (LANSCE) accelerator complex. Subsequent data evaluation produced initially puzzling inconsistencies in the phase-space plots from different pairs of beam-position monitors. It is shown that very small random measurement errors will produce systematic differences between plots that should nominally be identical. The actual beam-centroid jitter and the amount of random error in the measurements can be extracted from the data by performing simulations and determining the parameters for which the resulting plots are consistent with the results from the data. Examples will be shown.

 
 
FRPMS051 Proposed Beam Diagnostics Instrumentation for the LANSCE Refurbishment Project linac, instrumentation, bunching, beam-losses 4099
 
  • J. D. Gilpatrick
  • B. Blind, M. J. Borden, J. L. Erickson, M. S. Gulley, S. S. Kurennoy, R. C. McCrady, J. F. O'Hara, M. A. Oothoudt, C. Pillai, J. F. Power, L. Rybarcyk, F. E. Shelley
    LANL, Los Alamos, New Mexico
  Funding: *Work supported by the U. S. Department of Energy.

Presently, the Los Alamos National Laboratory is in the process of planning a refurbishment of various sub-systems within its Los Alamos Neutron Science Center accelerator facility. A part of this LANSCE facility refurbishment will include some replacement of and improvement to existing older beam diagnostics instrumentation. While plans are still being discussed, some instrumentation that is under improvement or replacement consideration are beam phase and position measurements within the 805-MHz side-coupled cavity linac, slower wire profile measurements, typically known as wire scanners, and possibly additional installation of fast ionization-chamber loss monitors. This paper will briefly describe the requirements for these beam measurements, what we have done thus far to answer these requirements, and some of the technical issues related to the implementation of these instrumentation.

 
 
FRPMS053 Electromagnetic Modeling of Beam Position and Phase Monitors for LANSCE Linac linac, coupling, pick-up, diagnostics 4111
 
  • S. S. Kurennoy
  Electromagnetic modeling has been used to compare pickup designs of the beam position and phase monitors (BPPM) for the Los Alamos Neutron Science Center (LANSCE) linac. This study is a part of the efforts to upgrade LANSCE beam diagnostics*. MAFIA 3-D time-domain simulations with an ultra-relativistic beam allow computing the signal amplitudes and phases on the BPPM electrodes for the given processing frequency, 402.5 MHz, as functions of the beam transverse position. An analytical model can be applied to extrapolate the simulation results to lower beam velocities. Based on modeling results, a BPPM design with 4 one-end-shorted electrodes each covering 60-degree subtended angle, similar to the SNS linac BPPM**, appears to provide the best combination of mechanical and diagnostics properties for the LANSCE side-coupled linac.

* J. D. Gilpatrick et al. These proceedings.** S. S. Kurennoy and R. E. Shafer, EPAC 2000 (Vienna, Austria, 2000), 1768.

 
 
FRPMS059 Generation and Analysis of Subpicosecond Double Electron Bunch at the Brookhaven Accelerator Test Facility electron, linac, radiation, synchrotron 4132
 
  • X. P. Ding
  • M. Babzien, K. Kusche, V. Yakimenko
    BNL, Upton, Long Island, New York
  • D. B. Cline
    UCLA, Los Angeles, California
  • W. D. Kimura
    STI, Washington
  • F. Zhou
    SLAC, Menlo Park, California
  Funding: U. S.DOE of Science

Two compressed electron beam bunches from a single 60-MeV bunch have been generated in a reproducible manner during compression in the magnetic chicane - "dog leg" arrangement at ATF. Measurements indicate they have comparable bunch lengths (~100-200 fs) and are separated in energy by ~1.8 MeV with the higher-energy bunch preceding the lower-energy bunch by 0.5-1 ps. Some simulation results for analyzing the double-bunch formation process are also presented.

 
 
FRPMS061 Impedance and Single Bunch Instability Calculations for the ILC Damping Rings impedance, lattice, damping, single-bunch 4141
 
  • K. L.F. Bane
  • S. A. Heifets, Z. Li, C.-K. Ng, A. Novokhatski, G. V. Stupakov, R. L. Warnock
    SLAC, Menlo Park, California
  • M. Venturini
    LBNL, Berkeley, California
  Funding: Work supported by US Department of Energy contract DE-AC02-76SF00515

One of the action items for the damping rings of the International Linear Collider (ILC) is to compute the broad-band impedance and, from it, the threshold to the microwave instability. For the ILC it is essential that the operating current be below threshold. Operating above threshold would mean that the longitudinal emittance of the beam would be increased. More seriously, above threshold there is the possibility of time dependent variation in beam properties (e.g. the "sawtooth" effect) that can greatly degrade collider performance. In this report, we present the status of our study including calculations of: an impedance budget, a pseudo-Green's function suitable for Haissinski equation and instability calculations, and instability calculations themselves.

 
 
FRPMS063 Material Effects and Detector Response Corrections for Bunch Length Measurements vacuum, radiation, electron, resonance 4147
 
  • W. D. Zacherl
  • I. Blumenfeld, M. J. Hogan, R. Ischebeck
    SLAC, Menlo Park, California
  • C. E. Clayton, P. Muggli, M. Zhou
    UCLA, Los Angeles, California
  Funding: Department of Energy contract DE-AC02-76SF00515

A typical diagnostic used to determine the bunch length of ultra-short electron bunches is the autocorrelation of coherent transition radiation. This technique can produce artificially short bunch length results due to the attenuation of low frequency radiation if corrections for the material properties of the Michelson interferometer and detector response are not made. Measurements were taken using FTIR spectroscopy to determine the absorption spectrum of various materials and the response of a Molectron P1-45 pyroelectric detector. The material absorption data will be presented and limitations on the detector calibration discussed.

 
 
FRPMS069 Simulations of Stretched Wire Measurements of 3.9GHz Cavities for the ILC impedance, dipole, scattering, coupling 4177
 
  • R. M. Jones
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster
  • N. Chanlek, B. Spencer
    UMAN, Manchester
  • P. Goudket
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  We present wake-field simulations on both the main superconducting cavities and on the beam delivery system crab cavities of the ILC. We utilize both finite difference and finite element computer codes to simulate the electromagnetic fields in these cavities in the presence of a stretched wire. This study is intended to both predict the wake-field in experiments on the modal characterisation of 3.9 GHz cavities in progress at the Cockcroft Institute and, to explore practical issues concerning the feasibility of using this stretched wire method to investigate modes in the ILC main cavities. Multi-cell scattering matrices and the modes in infinite periodic structures are calculated with a view to aiding the interpretation of experimental results. A modal convergence study is also included  
 
FRPMS073 Picosecond Bunch Length and Energy-z Correlation Measurements at SLAC's A-Line and End Station A linac, synchrotron, feedback, electron 4201
 
  • S. Molloy
  • V. Blackmore
    OXFORDphysics, Oxford, Oxon
  • P. Emma, J. C. Frisch, R. H. Iverson, D. J. McCormick, M. Woods
    SLAC, Menlo Park, California
  • M. C. Ross
    Fermilab, Batavia, Illinois
  • S. Walston
    LLNL, Livermore, California
  Funding: US DOE Contract #DE-AC02-76FS00515

We report on measurements of picosecond bunch lengths and the energy-z correlation of the bunch with a high energy electron test beam to the A-line and End Station A (ESA) facilities at SLAC. The bunch length and the energy-z correlation of the bunch are measured at the end of the linac using a synchrotron light monitor diagnostic at a high dispersion point in the A-line and a transverse RF deflecting cavity at the end of the linac. Measurements of the bunch length in ESA were made using high frequency diodes (up to 100 GHz) and pyroelectric detectors at a ceramic gap in the beamline. Modelling of the beam's longitudinal phase space through the linac and A-line to ESA is done using the 2-dimensional tracking program LiTrack, and LiTrack simulation results are compared with data. High frequency diode and pyroelectric detectors are planned to be used as part of a bunch length feedback system for the LCLS FEL at SLAC. The LCLS also plans precise bunch length and energy-z correlation measurements using transverse RF deflecting cavities.

 
 
FRPMS074 Measurements of the Transverse Collimator Wakefields due to Varying Collimator Characteristics controls, impedance, insertion, feedback 4207
 
  • S. Molloy
  • C. D. Beard, J.-L. Fernandez-Hernando
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire
  • A. Bungau
    UMAN, Manchester
  • S. Seletskiy, M. Woods
    SLAC, Menlo Park, California
  • J. D.A. Smith
    Cockcroft Institute, Warrington, Cheshire
  • A. Sopczak
    Lancaster University, Lancaster
  • N. K. Watson
    STFC/RAL/ASTeC, Chilton, Didcot, Oxon
  Funding: EUROtev Contract #011899RIDS US DOE Contract DEAC02-76SF00515

We report on measurements of the transverse wakefields induced by collimators of differing characteristics. An apparatus allowing the insertion of different collimator jaws into the path of a beam was installed in End Station A (ESA) in SLAC. Eight comparable collimator geometries were designed, including one that would allow easy comparison with previous results, and were installed in this apparatus. Measurements of the beam kick due to the collimator wakefields were made with a beam energy of 28.5 GeV, and beam dimensions of ~100 microns vertically and a range of 0.5 to 1.5 mm longitudinally. The trajectory of the beam upstream and downstream of the collimator test apparatus was determined from the outputs of ten BPMs (four upstream and six downstream), thus allowing a measurement of the angular kick imparted to the beam by the collimator under test. The transverse wakefield was inferred from the measured kick. The different aperture designs, data collection and analysis, and initial comparison to theoretical and analytic predictions are presented here.

* "An Apparatus for the Direct Measurement of Collimator Transverse Wakefields", P. Tenenbaum, PAC '99** "Direct Measurement of the Resistive Wakefield in Tapered Collimators", P Tenenbaum, PAC '04

 
 
FRPMS075 Modeling of the Sparks in Q2-bellows of the PEP-II SLAC B-factory vacuum, radiation, electromagnetic-fields, luminosity 4213
 
  • A. Novokhatski
  • J. Seeman, M. K. Sullivan
    SLAC, Menlo Park, California
  Funding: Work supported by USDOE contract DE-AC02-76SF00515

The PEP-II B-factory at SLAC has recently experienced unexpected aborts due to anomalously high radiation levels at the BaBar detector. Before the problem was finally traced we performed the wake field analysis of the Q-2 bellows, which is situated at a distance of 2.2 m from the interaction point. Analysis showed that electric field in a small gap between a ceramic tile and metal flange can be high enough to produce sparks or even breakdowns. Later the traces of sparks were found in this bellows.

 
 
FRPMS076 A New Q2-Bellows Absorber for the PEP-II SLAC B-Factory radiation, impedance, dipole, luminosity 4219
 
  • A. Novokhatski
  • S. DeBarger, S. Ecklund, N. Kurita, J. Seeman, M. K. Sullivan, S. P. Weathersby, U. Wienands
    SLAC, Menlo Park, California
  Funding: Work supported by US DOE contract DE-AC02-76SF00515

A new Q2-bellows absorber will damp only transverse wake fields and will not produce additional beam losses due to Cherenkov radiation. The design is based on the results of the HOM analysis. Geometry of the slots and absorbing tiles was optimized to get maximum absorbing effect.

 
 
FRPMS078 Numerical Study of RF-Focusing Using Fokker-Plank Equation focusing, electron, damping, synchrotron 4228
 
  • A. Novokhatski
  Funding: Work supported by US DOE contract DE-AC02-76SF00515

Based on numerical solution of the Fokker-Plank Equation we study the effect of longitudinal damping on the modulation of the bunch length in a storage ring with high RF voltage and momentum compaction

 
 
FRPMS079 SUPPRESSION OF SECONDARY ELECTRON EMISSION USING TRIANGULAR GROOVED SURFACE IN THE ILC DIPOLE AND WIGGLER MAGNETS electron, dipole, impedance, wiggler 4234
 
  • L. Wang
  • K. L.F. Bane, C. Chen, T. M. Himel, M. Munro, M. T.F. Pivi, T. O. Raubenheimer, G. V. Stupakov
    SLAC, Menlo Park, California
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515

The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit machine performance. The suppression of electrons in a magnet is a challenge for the positron damping ring of the International Linear Collider (ILC) as well as the Large Hadron Collider. Simulation show that grooved surfaces can significantly reduce the electron yield in a magnet. Some of the secondary electrons emitted from the grooved surface return to the surface within a few gyrations, resulting in a low effective secondary electron yield (SEY) of below 1.0 A triangular surface is an effective, technologically attractive mitigation with a low SEY and a weak dependence on the scale of the corrugations and the external magnetic field. A chamber with triangular grooved surface is proposed for the dipole and wiggler sections of the ILC and will be tested in PEP-II in 2007. The strategy of electron cloud control in ILC and the optimization of the grooved chamber such as the SEY, impedance as well as the manufacturing of the chamber, are also discussed.

SLAC-PUB-11933 & NIMA in publication

 
 
FRPMS080 Simulation of the Beam-Ion Instability in the Electron Damping Ring of the International Linear Collider ion, damping, emittance, electron 4240
 
  • L. Wang
  • Y. Cai, T. O. Raubenheimer
    SLAC, Menlo Park, California
  Funding: Work supported by the U. S. Department of Energy under contract DE-AC02-76SF00515

Ion induced beam instability is one critical issue for the electron damping ring of the International Linear Collider (ILC) due to its ultra small emittance of 2pm. Bunch train filling pattern is proposed to mitigate the instability and bunch-by-bunch feedback is applied to suppress it. Multi-bunch train fill pattern is introduced in the electron beam to reduce the number of trapped ions. Our study shows that the ion effects can be significantly mitigated by using multiple gaps. However, the beam can still suffer from the beam-ion instability driven by the accumulated ions that cannot escape from the beam during the gaps. The effects of beam fill pattern, emittance, vacuum and various damping mechanism are studied using self-consistent program, which includes the optics of the ring.

 
 
FRPMS081 Geometric Effects on Electron Cloud electron, beam-losses, vacuum, positron 4243
 
  • L. Wang
  • A. Chao
    SLAC, Menlo Park, California
  • J. Wei
    BNL, Upton, Long Island, New York
  The development of an electron cloud in the vacuum chambers of high intensity positron and proton storage rings may limit the machine performances by inducing beam instabilities, beam emittance increase, beam loss, vacuum pressure increases and increased heat load on the vacuum chamber wall. The electron multipacting is a kind of geometric resonance phenomenon and thus is sensitive to the geometric parameters such as the aperture of the beam pipe, beam shape and beam bunch fill pattern, etc. This paper discusses the geometric effects on the electron cloud build-up in a beam chamber and examples are given for different beams and accelerators.  
 
FRPMS092 Kinetic Description of Nonlinear Wave and Soliton Excitations in Coasting Charged Particle Beams plasma, longitudinal-dynamics 4291
 
  • R. C. Davidson
  • H. Qin, E. Startsev
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U. S. Department of Energy.

This paper makes use of a one-dimensional kinetic model based on the Vlasov-Maxwell equations to describe nonlinear wave and soliton excitations in coasting charged particle beams. The kinetic description makes use of the recently-developed g-factor model [1] that incorporates self-consistently the effects of transverse density profile shape at moderate beam intensities. The nonlinear evolution of wave and soliton excitations is examined for disturbances both moving faster and moving slower than the sound speed, incorporating the important effects of wave dispersion [2]. Analytical solutions are obtained for nonlinear traveling wave pulses with and without trapped particles, and the results of nonlinear perturabtive particle-in-cell simulations are presented that describe the stability properties and long-time evolution.

[1] R. C. Davidson and E. A. Startsev, Phys. Rev. ST Accel. Beams 7, 024401 (2004).[2] R. C. Davidson, Phys. Rev. ST Accel. Beams 7, 054402 (2004).

 
 
FRPMS093 Numerical Studies of the Electromagnetic Weibel Instability in Intense Charged Particle Beams with Large Temperature Anisotropy Using the Nonlinear BEST Darwin Delta-f Code plasma, background, electron, heavy-ion 4297
 
  • E. Startsev
  • R. C. Davidson, H. Qin
    PPPL, Princeton, New Jersey
  Funding: Research supported by the U. S.Department of Energy.

A numerical scheme for the electromagnetic particle simulation of high-intensity charged-particle beams has been developed which is a modification of the Darwin model. The Darwin model neglects the transverse induction current in Ampere?s law and therefore eliminates fast electromagnetic (light) waves from the simulations. The model has been incorporated into the nonlinear delta-f Beam Equilibrium Stability and Transport(BEST) code. As a benchmark, we have applied the model to simulate the transverse electromagnetic Weibel-type instability in a single-species charged-particle beam with large temperature anisotropy. Results are compared with previous theoretical and numerical studies using the eighenmode code bEASt. The nonlinear stage of the Weibel instability is also studied using BEST code, and the mechanism for nonlinear saturation is identified.

 
 
FRPMS094 Beam Breakup Instabilities in Dielectric Structures single-bunch, diagnostics, injection, controls 4300
 
  • A. Kanareykin
  • W. Gai, J. G. Power
    ANL, Argonne, Illinois
  • C.-J. Jing, A. L. Kustov, P. Schoessow
    Euclid TechLabs, LLC, Solon, Ohio
  Funding: This research is supported by the US Department of Energy

We report on the experimental and numerical investigation of beam breakup (BBU) effects in dielectric structures resulting from parasitic wakefields. The experimental program focuses on measurements of BBU in a number of wakefield devices: (a) a 26 GHz power extraction structure; (b) a high gradient dielectric wakefield accelerator; (c) a wakefield structure driven by a high current ramped bunch train for multibunch BBU studies. New beam diagnostics will provide methods for studying parasitic wakefields that are currently unavailable at the AWA facility. The numerical part of this research is based on a particle-Green's function based beam breakup code we are developing that allows rapid, efficient simulation of beam breakup effects in advanced linear accelerators. The goal of this work is to be able to compare the accurate numerical results obtained from the new BBU code with the results of the detailed experimental measurements. An external focusing system for the control of the beam in the presence of strong transverse wakefields is considered.

 
 
FRPMS096 Emittance Growth due to Beam-Beam Effect in RHIC emittance, beam-beam-effects, proton, luminosity 4306
 
  • J. Beebe-Wang
  Funding: Work performed under the United States Department of Energy Contract No. DE-AC02-98CH1-886.

The beam-beam interaction has a significant impact on the beam emittance growth and the luminosity lifetime in RHIC. A simulation study of the emittance growth was performed using the Lifetrac code. The operational conditions of RHIC 2006 100GeV polarized proton run were used in the study. In this paper, the result of this study is presented and compared to the experimental measurements.

 
 
FRPMS110 Online Nonlinear Chromaticity Correction Using Off-Momentum Tune Response Matrix sextupole, optics, dipole, betatron 4357
 
  • Y. Luo
  • W. Fischer, N. Malitsky, S. Tepikian, D. Trbojevic
    BNL, Upton, Long Island, New York
  Funding: Work supported by U. S. DOE under contract No DE-AC02-98CH10886.

With 8 arc sextupole families in each RHIC ring, the nonlinear chromaticities can be corrected on-line by matching the off-momentum tunes onto the wanted off-momentum tunes with linear chromaticity only. The Newton method with singular value decomposition (SVD) technique is used for this multi-dimensional nonlinear optimization, where the off-momentum tune response matrix with respect to sextupole strength changes is adopted to simplify and fasten the on-line optimization process. The off-momentum tune response matrix can be calculated with the on-line accelerator optics model or directly measured with the real beam. This correction method will be verified and used in the coming RHIC run'07.