A   B   C   D   E   F   G   H   I   K   L   M   O   P   Q   R   S   T   U   V   W  

insertion-device

Paper Title Other Keywords Page
TUPMN004 Final Adjustment of the Magnetic Field of the LNLS VUV Undulator. multipole, undulator, radiation, insertion 917
 
  • G. Tosin
  • R. Basilio, J. F. Citadini, M. Potye
    LNLS, Campinas
  The first insertion device built at LNLS was an elliptically polarized undulator, designed to cover the vacuum ultraviolet and the soft X-ray spectrum. Its magnetic characterization was done using two techniques: Hall probes, for local field measurements, and rotating coil, operating in a way similar to flip-coil, to determine the integrated multipoles. Final results for the phase errors as well as the procedures used to correct the integrated multipoles are presented.  
 
TUPMN006 Apple-II and TESLA FEL Undulators at Danfysik A/S undulator, insertion, electron, multipole 923
 
  • C. W.O. Ostenfeld
  • F. Bødker, M. Bøttcher, H. Bach, E. B. Christensen, M. Pedersen
    Danfysik A/S, Jyllinge
  Danfysik A/S* has recently designed and produced a high-performance Apple-II type insertion device for the Australian Synchrotron Project, with low variation of the first integrals versus gap and phase, and minimal phase error. Thanks to software assistance, and an unconventional keeper design, the total time spent on magnet mounting, shimming and final magnetic testing was reduced to 5 weeks. Furthermore, in order to negate the second-order tune effect of the insertion device on the dynamic aperture, ESRF-type tune shims were designed and installed. Danfysik is manufacturing and assembling one of three undulator prototypes for the TESLA FEL project at DESY. The prototype is based on a design made by DESY, but with changes implemented by Danfysik. A major part of the project is to make an industrial study that will recommend where design efforts on the next prototype generation shall be focused.

* http://www.danfysik.com/

 
 
TUPMN009 Commissioning of the SOLEIL Synchroton Radiation Source feedback, injection, insertion, coupling 932
 
  • A. Nadji
  • J. C. Besson, F. Bouvet, P. Brunelle, A. Buteau, L. Cassinari, M.-E. Couprie, J.-C. Denard, J.-M. Filhol, C. Herbeaux, J.-F. Lamarre, V. Le Roux, P. Lebasque, M.-P. Level, A. Loulergue, P. Marchand, L. S. Nadolski, R. Nagaoka, B. Pottin, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette
  The French 3rd generation synchrotron light source, SOLEIL, was successfully commissioned in 2006. The Linac and the Booster are operational at their design performances. During the early phase of the storage ring commissioning, the essential design parameters were reached very quickly while the project incorporates some innovative techniques such as the use of a superconducting RF cavity, solid state RF amplifiers, NEG coating for all straight parts of the storage ring and new BPM electronics. Prior to the start of the commissioning, some insertion devices and most of the insertion devices low gap vacuum vessels, including 10 mm inner vertical aperture vessels for the Apple-II type, were installed on the ring. The main results of the commissioning will be reviewed here, including discussion on diagnostics performances, orbit stability and control, optics correction, Top-up and the challenges in achieving operational status. The 10 beamlines of phase 1 are now under commissioning and regular user operation will start by spring 2007.  
 
TUPMN010 Latest Developments of Insertion Devices at ACCEL Instruments undulator, insertion, electron, storage-ring 935
 
  • D. Doelling
  • A. Hobl, H.-U. Klein, P. A. Komorowski, D. Krischel, M. Meyer-Reumers
    ACCEL, Bergisch Gladbach
  ACCEL Instruments GmbH has designed, manufactured, assembled, and tested several insertion devices for many synchrotron light sources and free electron lasers around the world. Besides the superconducting (sc) wavelength shifters, sc-wigglers and sc-Undulators, ACCEL has entered the pure permanent magnet based insertion device market. The latest progress of the ID group was the production of 6 identical PPM Undulators for the SPARC FEL project in Frascati (Italy), the production of a prototype Undulator and an industrial study on large scale Undulator production for the European X-FEL project in Hamburg (Germany). ACCEL has signed a know how and license agreement with the ID group of the ESRF in order to be able to supply customers with high quality insertion devices in short delivery times. Therefore ACCEL has setup an standard ESRF 7 m granite measuring bench. Design efforts, measurement techniques, and performance results will be presented.  
 
TUPMN030 Development of the Mechanical Structure for FERMI@elettra APPLE II Undulators undulator, polarization 980
 
  • D. La Civita
  • L. Bregant, C. Poloni
    Units, Trieste
  • B. Diviacco, C. Knapic, M. Musardo, D. Zangrando
    ELETTRA, Basovizza, Trieste
  A conceptual design study of the mechanical structure for the APPLE II undulators of the FERMI@elettra project has been carried using FEM structural analysis program and multiobject optimization software. In this paper the undulator performance, taking into account the predicted mechanical deformations due to the varying magnetic forces, will be evaluated and the resulting magnetic field and optical phase error discussed.  
 
TUPMN042 Simulation Study of Resistive-wall Beam Breakup for ERLs simulation, focusing, vacuum, insertion 1010
 
  • N. Nakamura
  • H. Sakai, H. Takaki
    ISSP/SRL, Chiba
  For future ERL-based light sources, average beam current is required to be up to 100 mA. Such a high-current multi-bunch beam may generate and cumulate strong long-range wake-fields by interaction with accelerator components such as superconducting cavities and vacuum ducts, and as a result, strong beam breakup(BBU) may occur. Resistive-wall BBU due to narrow and resistive vacuum ducts has been hardly studied, though the effects of BBU due to HOMs of superconducting cavities were much investigated. Asymptotic expressions of transverse resistive-wall BBU were derived for a beam that passes through a uniform resistive pipe under uniform external focusing*. However the expressions are valid only for limited parameter ranges and initial conditions. Therefore we have developed a computer simulation program to study transverse multi-bunch resistive-wall BBU more minutely and generally. In this paper, we will present the simulation results obtained by the simulation program and also compare them with the asymptotic expressions.

* J. M. Wang and J. Wu, PRST-AB 7, 034402(2004)

 
 
TUPMN045 PF-Ring and PF-AR Operational Status injection, undulator, insertion, photon 1019
 
  • Y. Kobayashi
  • S. Asaoka, W. X. Cheng, K. Haga, K. Harada, T. Honda, T. Ieiri, S. Isagawa, M. Izawa, T. Kageyama, T. Kasuga, M. Kikuchi, K. Kudo, H. Maezawa, A. Mishina, T. Mitsuhashi, T. Miyajima, H. Miyauchi, S. Nagahashi, T. T. Nakamura, H. Nakanishi, T. Nogami, T. Obina, K. Oide, M. Ono, T. Ozaki, C. O. Pak, H. Sakai, Y. Sakamoto, S. Sakanaka, H. Sasaki, Y. Sato, T. Shioya, M. Tadano, T. Takahashi, S. Takasaki, Y. Tanimoto, M. Tejima, K. Tsuchiya, T. Uchiyama, A. Ueda, K. Umemori, S. Yamamoto, Ma. Yoshida, S. I. Yoshimoto
    KEK, Ibaraki
  In KEK, we have two synchrotron light sources which were constructed in the early 1980s. One is the Photon Factory storage ring (PF-ring) and the other is the Photon Factory advanced ring (PF-AR). The PF-ring is usually operated at 2.5 GeV and sometimes ramped up to 3.0 GeV to provide photons with the energy from VUV to hard X-ray region. The PF-AR is mostly operated in a single-bunch mode of 6.5 GeV to provide pulsed hard X-rays. Operational performances of them have been upgraded through several reinforcements. After the reconstruction of the PF-ring straight sections from March to September 2005, two short-gap undulators were newly installed. They allow us to produce higher brilliant hard X-rays even at the energy of 2.5 GeV. At present we are going to prepare a top-up operation for the PF-ring. In the PF-AR, new tandem undulators have been operated in one straight section since September 2006 to generate much stronger pulsed hard X-rays for the sub-ns resolved X-ray diffraction experiments. In this conference, we report operational status of the PF-ring and the PF-AR including other machine developments.  
 
TUPMN071 Planning of Insertion Devices for 3 GeV Taiwan Photon Source undulator, photon, insertion, wiggler 1082
 
  • C.-S. Hwang
  The Taiwan Photon Source (TPS) has 24 straight sections (10.9 m x6,5.7 m x18). It has at least three long straight and 18 medium straight for installing insertion devices. Most of the insertion devices are the in-vacuum undulator and produce intense X-rays with a brilliance of up to 1x1020 photons/s/mr2/mm2/0.1%bw. However, the cryogenic permanent magnet undulator with a periodic length of 1.8 cm (CU1.8) will be developed to provide an energy over 20 keV. One or two types of undulators can be installed in the long straight section to provide low photon energy or enable experiments to be conducted in situ in a single beam line. Meanwhile, some elliptically polarized undulators (APPLE II structure) are planned to provide circular and any linear polarization light. One or two superconducting wigglers with a field strength of 3.5 T will be used to yield the photons with energies of over 25 keV. A study project of superconducting undulator is for the energies of 2.5 - 25 keV. This work will report the design philosophy for the insertion devices and what kinds of insertion devices will be operated at TPS.  
 
TUPMN101 A Study of the Minimum Wall Thickness for an Extruded Aluminum Vacuum Chamber vacuum, undulator, insertion, synchrotron 1151
 
  • E. Trakhtenberg
  • G. E. Wiemerslage
    ANL, Argonne, Illinois
  Funding: Work at Argonne National Laboratory is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences under contract # DE-Ac02-06CH11357.

Multiple vacuum chambers for the insertion devices with 1-mm wall thickness were developed at Argonne for the APS and many other synchrotron radiation facilities.* Using the extrusion for the insertion device vacuum chamber (ID VC) for the DESY FEL project with a 9.5-mm inner diameter, we decreased the wall thickness to 0.6, 0.5, and 0.4 mm to test the vacuum integrity for a thin wall in these extrusions. A special ultrasonic transducer with a 1/8" diameter was required to do the job. Also some additional short samples, machined exactly as the experimental piece, were used to verify wall thickness mechanically. Experimental setup and test results are presented.

* Trakhtenberg E., Wiemerslage G., Den Hartog P. "New insertion device vacuum chambers at the Advanced Photon Source", PAC 2003 Particle Accelerator Physics Conference; Portland, OR.

 
 
TUPMS002 Successful Completion of the Femtosecond Slicing Upgrade at the ALS undulator, insertion, coupling, laser 1194
 
  • C. Steier
  • P. A. Heimann, S. Marks, D. Robin, R. W. Schoenlein, W. Wan
    LBNL, Berkeley, California
  • W. Wittmer
    SLAC, Menlo Park, California
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, U. S. Department of Energy under Contract No. DE-AC02-05CH11231.

An upgraded femtosecond slicing facility has been commissioned successfully at the Advanced Light Source. In contrast to the original facility at the ALS which pioneered the concept, the new beamline uses an undulator (the first in-vacuum undulator at the ALS) as the radiator producing the user photon beam. To spatially separate the femtosecond slices in the radiator, a local vertical dispersion bump produced with 12 skew quadrupoles is used. The facility was successfully commissioned during the last 1.5 years and is now used in routine operation.

 
 
TUPMS045 Improvements to the Aladdin Synchrotron Light Source insertion, synchrotron, quadrupole, undulator 1290
 
  • K. Jacobs
  • J. Bisognano, R. A. Bosch, D. Eisert, M. V. Fisher, M. A. Green, R. G. Keil, K. J. Kleman, R. A. Legg, G. C. Rogers, J. P. Stott
    UW-Madison/SRC, Madison, Wisconsin
  Funding: Work supported by the U. S. National Science Foundation under Award No. DMR-0537588.

Aladdin is an IR to soft x-ray synchrotron light source operated by the University of Wisconsin at Madison. As part of the ongoing program of upgrades and improvements, several changes have recently been made to the ring. It had previously been determined that physical apertures (BPMs) at the QF quadrupoles were limiting beam lifetime when the ring was operated in its low emittance configuration. Increasing the size of these apertures has resulted in a significant increase in lifetime. Also as part of the aperture opening process, a number of ring components were redesigned and replaced, lowering the ring impedance. This has led to an increase in the threshold beam current for microwave instability. Another modification was the design and installation of discrete trim coils on the quadrupole pole-tips to facilitate using the quads as steering correctors. Details of these and other improvements will be presented.

 
 
TUPMS071 Upgrade Alternatives for the NSLS Superconducting Wiggler wiggler, photon, radiation, insertion 1335
 
  • M. G. Fedurin
  • P. Mortazavi, J. B. Murphy, G. Rakowsky
    BNL, Upton, Long Island, New York
  The superconducting wiggler (SCW) with 4.2 Tesla field in 5 main poles has been in operation on the NSLS X-ray storage ring for more than 20 years. The inefficient cryogenic system of this wiggler uses a closed-cycle refrigerator requiring constant maintenance. It is possible to replace this insertion device with a 13-pole SCW originally built by Oxford Instruments. The cryostat of this device could be upgraded to reduce the liquid He consumption using cryocoolers, thereby greatly reducing the refrigerator operating expense. A second option is a new design of a SCW with a magnetic period and number of poles appropriate to the current users needs. All these upgrade possibilities will be described in the paper.  
 
TUPMS073 Dispersion Tolerance Calculation for NSLS-II emittance, insertion, wiggler, damping 1341
 
  • W. Guo
  • S. Krinsky, F. Lin
    BNL, Upton, Long Island, New York
  The approach for the proposed National Synchrotron Light Source II to reach small transverse emittances is to deploy damping wigglers. In the ideal lattice the dispersion is zero in the straight sections, therefore the damping wigglers supply only damping effect. In reality the residual dispersion can be generated by the lattice errors, trim dipoles, and the insertion devices. We will discuss dispersion introduced by different sources and calculate the tolerances. Possible correction schemes will also be presented.  
 
TUPMS086 Insertion Device R&D for NSLS-II undulator, insertion, wiggler, emittance 1368
 
  • T. Tanabe
  • D. A. Harder, G. Rakowsky, T. V. Shaftan, J. Skaritka
    BNL, Upton, Long Island, New York
  NSLS-II is a medium energy storage ring of 3GeV electron beam energy with sub-nm.rad horizontal emittance and top-off capability at 500mA. Damping wigglers will be used not only to reduce the beam emittance but also for broadband sources for users. Cryo-Permanent Magnet Undulators (CPMUs) are considered for hard X-ray linear device, and permanent magnet based Elliptically Polarized Undulators(EPUs) are for polarization control. Rigorous R&D plans have been established to pursue the performance enhancement of the above devices as well as building new types of insertion devices such as high temperature superconducting wiggler/undulators. This paper describes the details of these activities and discuss technical issues.  
 
WEPMN016 Installation and Commissioning of the New 150 kW Plant for the Elettra RF System Upgrade power-supply, booster, insertion, klystron 2080
 
  • A. Fabris
  • M. Bocciai, C. Pasotti, M. Rinaldi
    ELETTRA, Basovizza, Trieste
  Elettra is the Italian third generation light source in operation in Trieste since 1993. The project of upgrade of the Elettra RF system has become necessary to provide the needed operating margins when all the insertion devices are operational and in view of possible increases in beam current and energy. The first phase of the project regards one of the four plants, which has been upgraded from 60 to 150 kW cw. The power amplifier has been built combining two 80 kW IOTs (inductive output tubes) by means of a switchless combiner. The amplifier and the power plant components have been installed in the second half of year 2006. A coaxial to waveguide transition has been specially designed to interface the coaxial coupler of the cavity to the waveguide power transmission system, taking into account the risks connected to power from the higher order modes excited by the beam in the cavity. After giving an overview of the project, this paper discusses the technical choices adopted, the tests performed during the installation phase and the commissioning of the new system with beam during machine operation.  
 
FRYKI03 New Developments in Light Source Magnet Design undulator, insertion, lattice, radiation 3751
 
  • S. Prestemon
  • S. Marks, D. Schlueter
    LBNL, Berkeley, California
  The rapid growth in the light source community throughout the world has served to motivate innovation in the magnet technologies that serve as the foundations for both the storage ring lattice magnet systems and the primary radiation sources, the insertion devices. Here a sampling of magnet system developments being pursued at diverse facilities are discussed, including combined-function magnets that minimize space requirements and improve accelerator performance, high performance bend magnets that provide enhanced radiation characteristics, and novel and untested concepts for future lattice magnets. Finally, we review developments in insertion devices that promise new performance characteristics to better serve the light source community.  
slides icon Slides  
 
FRPMN084 Beam Trip Event Diagnostic System for the TLS diagnostics, controls, kicker, insertion 4264
 
  • K. H. Hu
  • J. Chen, K. T. Hsu, C. H. Kuo, C. Y. Wu
    NSRRC, Hsinchu
  The beam trip event diagnostic system includes several eight channels high-speed digitizer for data acquisition, PC base computer and optical fibre network applies to capture data. The PC are also to serve signal processing, beam trip event analysis and archive. This system can integrate beam trip, interlock signal of SRF, waveform of the injection kicker, quench and interlock signal of the superconducting insertion device, and instability of the stored beam. This diagnostic system can be routine monitor signal and record beam trip event. Design consideration and details of the implementation will be summarized in this report.  
 
FRPMN106 Progress toward a Hard X-ray Insertion Device Beam Position Monitor at the Advanced Photon Source photon, target, insertion, undulator 4342
 
  • G. Decker
  • P. K. Den Hartog, O. Singh
    ANL, Argonne, Illinois
  • G. Rosenbaum
    UGA, Athens, Georgia
  Funding: Work supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.

Long-term pointing stability at synchrotron light sources using conventional rf-based particle beam position monitoring is limited by the mechanical stability of the pickup electrode assembly. Photoemission-based photon beam position monitors for insertion device beams suffer from stray radiation backgrounds and other gap-dependent systematic errors. To achieve the goal of 500-nanoradian peak-to-peak pointing stability over a one-week period, the development of a photon beam position detector sensitive only to hard x-rays (> several keV) using copper x-ray fluorescence has been initiated. Initial results and future plans are presented.

 
 
FRPMS113 Touschek Lifetime Calculations and Simulations for NSLS-II emittance, insertion, controls, damping 4375
 
  • C. Montag
  • J. Bengtsson, B. Nash
    BNL, Upton, Long Island, New York
  Funding: Work performed under the auspices of the US Department of Energy.

The beam lifetime in most medium-energy synchrotron radiation sources is limited by the Touschek effect, which describes the momentum transfer from the transverse into the longitudinal direction due to binary collisions between electrons. While an analytical formula exists to calculate the resulting lifetime, the actual momentum acceptance necessary to perform this calculation can only be determined by tracking. This is especially the case in the presence of small vertical apertures at insertion devices. In this case, nonlinear betatron coupling leads to beam losses at these vertical aperture restrictions. In addition, a realistic model of the storage ring is necessary for calculation of the equilibrium beam sizes (particularly in the vertical direction) which are important for a self-consistent lifetime calculation.