Generation and Control of High Precision Beams at Lepton Accelerators

Experience of Parity Quality Beam Delivery at CEBAF

Yu-Chiu ChaoTJNAF

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

This Talk Represents Work by:

H. Areti, D. Armstrong, S. Bailey, D. Beck, J. Benesch, B. Bevins, A. Bogacz, Y. Chao, S. Chattopadhyay, R. Dickson, A. Freyberger, J. Grames, J. Hansknecht, A. Hutton, M. Joyce, L. Kaufman, R. Kazimi, K. Nakahara, K. Paschke, M. Pitt, M. Poelker, Y. Roblin, M. Spata, R. Suleiman, M. Tiefenback, Y. Zhang

And the CEBAF Operations Staff

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

CEBAF and Parity Experiments

Parity Experiments Measure "Asymmetry" in elastic electron-nucleon scattering. Electrons are polarized (P>70%).

Measure asymmetry in scattering cross sections between L-R helicities.

Parity Violation Experiments at CEBAF

- **Asymmetry is of order few ppm**
- ⇒ **Systematic errors must be kept to < 100 ppb**
- ⇒ **Exacting demands on CEBAF performance**
- ⇒ **Tight specs on Helicity-Correlated beam parameters (position, angle, intensity, ……).**

Tolerance on Helicity Correlated Values

efferson

¾Circularly polarized light incident on photocathode creates polarized electrons.

¾Light (circular) polarization comes from Pockels cell under a voltage.

¾Polarity of voltage applied to Pockels cell determines light polarization, and in turn electron polarization.

¾Linear component in the light causes asymmetric transmission and electron production for opposite helicities [⇒]**Helicity-Correlated Intensity**

 \triangleright Whatever effect can produce H-C intensity can also produce H-C orbit, if it has a gradient across the beam profile [⇒]**Helicity-Correlated Orbit**

¾Other sources of H-C; Most come from the polarization process.

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

 \mathcal{G} efferson

Helicity Correlated Orbit

Helicity correlated orbit contributes to systematic error in the asymmetry through dependence of scattering cross section on orbit.

1 ppm Asymmetry, 5% Relative Error, 10% Uncertainty in Beam Based Correction

⇒**On Target: <** ∆ **X >** ≤ **2 nm, <** ∆**X' >** ≤ **2 nrad Averaged over Run**

What Can be Done?

Minimizing helicity correlated systematics associated with polarized beam formation

Thomas Jefferson National Accelerator Fac.

Adiabatic damping of orbit amplitude ~ 100 from cathode to 3 GeV)

Correction of beam transport anomalies - Can obliterate natural damping

⇒ Combination of XY coupling and near-singular transport can grossly compromise damping.

⇒ Must ensure their absence over 6 km transport & 4 decades of momentum gain.

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

efferson C

Observation of Damping (or Lack thereof) - 100 keV to 60 MeV

- Propagation of PZT (spot motion on cathode) orbit through Injector indicates **orbit blowup**.
- Blowups coincide with SRF components (Cryo-modules).
- XY coupling from HOM couplers
- Near singular transport from imperfect low energy modeling.

100 keV

⇒ **A Potent Combination**

GUN

(efferson C

d l Skew

CEBAF Injector 100 keV-60 MeV

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Cryo Cryo

Unit

Unit

Observation of Damping (or Lack thereof) – Injector to Main Acc.

This is more betatron mismatch than XY coupling Mostly due to imperfect model, field cross talk, and inaccurate linac energy profile.

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

What Exactly, Is the Problem? What Is To Be Accomplished?

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Normally, need transport to ensure a good final beam spot $(\epsilon, \alpha, \beta)$ only.

Now, good transport is needed for an independent orbit (X, X', Y, Y').

Helicity correlated orbit is typically 100-1000 times smaller than spot size, thus can be much more mismatched to optics without being noticed.

⇒ This can be a hidden challenge to later attempts to control it.

Doesn't matching the beam spot fix the problem? **NO**

¾Beam spot is not necessarily congruent with HC orbit

¾Demand on beam spot matching is less stringent

 \triangleright Herein lies an opportunity \Rightarrow Bias toward matching HC orbit

Bottom Line:

⇒ Need exquisite transport, far more than is adequate for beam spot transport alone

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

A Technicality

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Courant Snyder Factor (CS) Will be Used in All Subsequent Contexts to Quantify Mismatch

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

What's so Bad about Coupling + Singularity?

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Near-Singular Transport

Transport that leads to excessive correlation between independent coordinates → **Effectively no longer independent for given precision in measurement and control.**

Consequences Excessive increase in projected coordinates

Extreme demand on the accuracy to measure or control

Extreme sensitivity to minor perturbations

Large projected emittance growth from (otherwise benign) optical errors

Last two points are why One can't wait until the end before fixing a near-singular transport.

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Tiny XY coupling can cause major uncorrectable blowup under near-singular transport

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Coupling and Transport Singularity – Injector

4D Transfer Matrix 100 keV-60 MeV

$\left(\begin{array}{ccc ccc} -1.228 & 1.057 & 0.416 & 0.184 \ -0.084 & 0.07 & 0.029 & 0.018 \end{array} \right)$		
\langle -0.023 $\,$ 0.015 $\,$ -0.012 $\,$ -0.018 \rangle	-0.144 0.187 -0.068 0.157	

4D Transfer Matrices measured across cryo-unit and each cryo-module.

- ¾**Difference orbit with high statistics; Good accuracy (Explains data well)**
- ¾**Global Matrix (100 keV-60 MeV) is 4D Symplectic** ⇒ **Only linear effects at work**

¾**Strong Singularity**

flerson C

¾**Do not see ~13 reduction in matrix elements**

¾**In-plane & Cross-plane effects exacerbate each other.** ⇒ **Must be fixed at the same time.**

Thomas Jefferson National

U.S. DEPARTMENT OF ENERG

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Coupling and Transport Singularity – Beyond Injector

Simulation Based onA systematic effect - Can add coherently – Weak, no problem if no mismatch

A betatron mismatch CS ≠ **1 from the Injector into the main accelerator,**

Compounded by above cumulative skew quad effects.

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Strategy for Suppressing Coupling and Transport Singularity

4D Symplecticity is Intact

⇒ **Only Linear Elements Are Needed (Quads + Skew Quads)**

Case One: – 100 keV to 60 MeVWith accurately measured transport and sufficient correction elements ⇒ **A model-based solution is possible.**

Can accurately measure the transport (Big IF). Solution works, and can be accurately implemented. Machine does not change too much in between.

Case Two: – 60 MeV to 3 GeVOptimizing global transport, lacking accurate long-range modeling ⇒ **An empirical approach is more practical.**

Clear, stable signal can be used as tuning guidance. Orthogonal, effective knobs can be used for control. Machine is sufficiently forgiving.

efferson ϵ

Fixing Transport 100 keV-60 MeV(Empirical) Model Based

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Dedicated Optimization Program to Obtain Matching Solutions

Many Control Knobs, But Also Many Constraints beyond Fixing Coupling

¾**Exhaustive Scan in Parameter Space for Decoupled Thin Lens Solutions**

¾**Multiple Constraints to Isolate Viable Solution Neighborhoods**

- **Reduction in Transport Singularity**
- **Beam/Orbit Compatibility with Downstream Optics**
- **Beam Size/Orbit Amplitude at ALL Locations**
- **Quad/Skew Quad Strength (Field Quality and Alignment Concerns)**
- **Response Orthogonality for Feedback System**
- **Operational Concerns (Scraping, Beam Line Function Modularity, ……)**

¾**Local Thick Lens Optimization for Final Solution(s)**

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Cefferson C

Suppression of Coupling and Transport Singularity – 100 keV to 60 MeV

Real Beam-Based Measurements Before and After Correction

100 keV-60 MeV Transfer Before

100 keV-60 MeV Transfer After

Proper damping is evident from the magnitude of the new matrix elements

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Fixing Transport 60 MeV-3 GeVEmpirical Tuning

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Suppression of Coupling and Transport Singularity– 60 MeV to 3 GeV

Fixing transport over long range, lacking accurate modeling ⇒ **Empirically optimize global PZT amplitude by adjusting matching.**

¾**The major area to fix is the mismatch from Injector into the main accelerator: 60 MeV to ~200 MeV**

¾**Also, we would like to bias the match more in favor of PZT defined phase space.** ⇒ **Shape downstream acceptance to match PZT coordinates**

¾**This is done with moderation to prevent adverse effects on beam matching.**

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Suppression of Coupling and Transport Singularity – 60 MeV to 800 MeV

Re-matching of PZT into the main linacs resulted in greatly reduced blowup ⇒ **Otherwise irrecoverable due to coupling**

Momentum normalized X & Y components of X (Y) PZT in row 1 (2) for **Injector, North & South Linacs** Red: original; Blue: after Injector Matching by PZT

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Global Damping Seen at 3 GeV

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Suppression of Coupling and Transport Singularity – 100 keV to 3 GeV

Momentum Normalized Amplitude of PZT from Cathode to Target in mm*Sqrt(MeV/C)

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Damping Observed in Hall A at 3 GeV ⇒ **PZT Signal**

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Gun-to-Target Damping Observed in Hall A & C ⇒ **Helicity Correlated Orbit**

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Gun-to-Target Damping Observed in Hall A & C ⇒ **Helicity Correlated Orbit**

[2] Laser alignment work also made helicity correlated orbit small in the Injector

Direct benefit on HC orbit from improved beam transport, as reported by HAPPEX, is about a factor of 5-30.

Transport fix was sufficiently robust against rare occurrence of helicity correlated orbit degradation from the source.

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

What's Next ?

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

What's Next?

Need to Meet Tightening Future Specs on Helicity Correlated Position & Angle

- \blacksquare *Fundamentals :*
	- ¾ **100 keV Model**
	- ¾ **100 keV Tuning Strategy & Configuration**
	- ¾ **Improved Transfer Matrix Measurements**
	- ¾ **Control of Optics beyond 100 keV**
- $\overline{}$ *Methodology / Tool / Logistics :*
	- ¾ **Improved Global Optimization Process (Speed & resolution)**
	- ¾ **Automated PZT Matching from Injector to Main Accelerator**
	- ¾ **Populating HC-capable beam monitors in Main Accelerator**
	- ¾ **PZT Booster development (Operability and accuracy)**
	- ¾ **More efficient 100 keV Tuning Tool focused on coupling suppression**
	- ¾ **Deterministic matching using linac FODO lattice**

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

efferson C

Deterministic Matching from Injector into the Main Accelerator

0.04 **Automated betatron** \blacktriangleright **Data in XMatch to matching engine exists 01-09-2007Beam**0.02**capable of finding global** 0.4 -0.2

-0.02

-0.02

-0.04

-0.05

-0.05

-0.05

-0.05

-0.07

-0 **matching solutions.** -0.6 6 -0.4 -0.2 \setminus \setminus \setminus 0.2 0.4 0.6 ¾ **Goal: Shape accelerator acceptance to "ease" PZT** -0.02 **trajectory into it.** ¾ **Should not cause mismatch** -0.04**in the beam. Match to Trajectory 1 Trajectory 2 Beam Trajectory 1 Trajectory 2 Beam Trajectory 1 Trajectory 2 Beam 1.04459.06447 Trajectory 2 Beam**
 1.04559.06447 Prayer

2.75647 Prayer **0.02302142.47653Trajectory 1 20.008678680.0131682.403482Beam** ¾ **An algorithm is developed Trajectory providing a continuous 0.02437720.009799970.02123120.008870850.00546820.00848583??? 0.0445891 1.000000 0.0220931 1.97726 0.0166431 3.19222 ??? ??? interpolation of biases, from** Traiectory Mismatch Factor $CS_n = \sqrt{Y}^T$. $\nabla^{\perp} \cdot \vec{Y}$ $\overline{CS_n} = \sqrt{\overline{Y}_n \cdot \overline{Y}_n \cdot \overline{Y}}$ **completely beam-dictated to** *T*<u>in the second contract of the second </u> -1**A Systematic Recipe to Deterministically completely PZT-dictated**) $\frac{1}{1}$ *<u>Orbit Matching at the</u>* **Handle Beam and Orbit Matching at the matching targets. Same Time** ame Time
 $\begin{pmatrix} 1 & \mathbf{Z}_B = \mathbf{Z}_B \\ -\alpha_B & \gamma_B \end{pmatrix}$, $\begin{pmatrix} X_T = \mathbf{Z}_T \\ X_T \end{pmatrix}$ Μ-1 $\overline{\mathit{\Sigma}}_{\,M}$ Σ*X*== ⁼ , , Β*T*'β γ *x***Thomas Jefferson National Accelerator Facility** Μ Μ α −αefferson C Β*T*Β**U.S. DEPARTMENT OF**

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

PZT "Booster"

Empirical transport matching guided by PZT signals has many shortcomings:

- ¾ **Weak signal (20-50** µ**m at 60 MeV, much smaller at higher energy)**
	- ¾ **Aperture and linearity/abberation constraints in Injector**
	- ¾ **Damping**
- ¾ **CW beam required to enhance signal stability**
	- ¾ **Impose extra operational limitations (beamline setup, beam loss trips, ……)**
	- ¾ **Cannot see multiple pass transport**
- **Solution: "Boosting" the PZT Signal to more visible amplitude**

Turning 4-D Helicity Feedback System into Empirical Amplifier with Gain >>1

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Conclusion

Parity Violation Experiments at CEBAF Measure Asymmetry to State-of-the-Art Level, Imposing Exacting Demands on Beam Transport Quality.

Transport Singularity is a Potent Source of Uncorrectable Blowup – Caught Attention Due to Helicity-Correlated Orbit Issues.

Techniques Developed to Minimize Helicity Correlated Beam Parameters include ¾**Precision Setup of Laser System (Alignment, Tuning, etc.)**

¾**Precision Measurement and Correction of global transport Model-Based 4D Transport Optimization 100 keV-60 MeV Empirical PZT-Guided Tuning 60 MeV-3 GeV Improvement by Factor of 5-30 Robust against Occasional Source Degradation**

JLAB Parity Experiment Achieved <100 ppb Precision in Asymmetry at 3 GeV in 2005.

Subsequent Parity Experiments Met Respective Precision Specs at Still Lower Energies (340-650 MeV).

Future Improvements Focus on Even Tighter Transport and More Efficient Tools.

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

BACKUP SLIDES

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Minimizing Energy Spread

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Generation of Helicity Flipped Electron Beam

Electron beam comes in pairs of 33.3 ms windows of opposite longitudinal polarization – Flipping Pockels cell voltage at 30 hz.

The overall polarity of each pair is randomized.

 \mathbf{A}_{PV} (raw) is obtained from each pair to minimize systematics.

-Correction is applied to A_{PV} to account for beam parameter induced systematics.

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

33.3 ms

efferson C

Yu-Chiu Chao PAC 2007

U.S. DEPARTMENT OF

All assume 100 m β function, which may be too large in Injector

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Cefferson C

Beam Based Correction to Asymmetry

Correcting for A_{PV} with beam-based calibration:

$$
A_{PV} = A_{DET} - A_Q \frac{|\partial A_E| - \sum \beta_i | \Delta X_i|}{\partial A}
$$

$$
\beta_i = \frac{\partial A}{\partial (\Delta X_i)}, \alpha = \frac{\partial A}{\partial \Delta E}
$$

Sensitivity coefficients α , β are determined by measuring dependence of detector rates on beam parameters (energy, position and angle).

Beam parameter asymmetries are monitored during data runs.

Raw asymmetry A_{DET} **is corrected by subtracting off false** contribution due to beam parameter variation.

Inherent correlation of beam parameter to helicity states introduces systematic error through errors in α , β etc.

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Cefferson C

$$
A_{PV} = -A_{DET} - \alpha A_E - \sum_{i} \beta_i \Delta X_i
$$

\n
$$
A_{DET} \approx \frac{\sigma_R + \left(\frac{\partial \sigma}{\partial X}\right) \cdot \delta X_R - \sigma_L - \left(\frac{\partial \sigma}{\partial X}\right) \cdot \delta X_L}{2\sigma}
$$

\n
$$
= \frac{\sigma_R - \sigma_L}{2\sigma} + \left(\frac{\partial \sigma}{\partial X}\right) \cdot \left(\frac{\delta X_R - \delta X_L}{2\sigma}\right)
$$

\n
$$
= A_{PV} + \left(\frac{\partial \sigma}{\partial X}\right) \cdot \Delta X
$$

\n
$$
= A_{PV} + \beta \cdot \Delta X
$$

\n
$$
\beta = \frac{\partial \sigma}{\partial X} = \frac{\partial A_{DET}}{\partial \Delta X}
$$

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Constraints on Helicity Correlated Orbits

$$
A_{PV} = A_{DET} - A_Q - \alpha A_E - \sum_i \beta_i \Delta X_i
$$

$$
\beta_i = \frac{\partial A}{\partial (\Delta X_i)}, \alpha = \frac{\partial A}{\partial \Delta E}
$$

For asymmetry of 1 ppm and allowed relative error of 5% \rightarrow precision = 50 ppb

Allowing for 10 ppb error budget for each correction

β*x=*40 ppb/nm, β*x'=*40 ppb/nrad. Assume 10% uncertainty:

 \rightarrow Helicity correlated beam parameters after averaging:

<∆**X>**≤ 2 nm, **<**∆**X' >**≤ 2 nrad

Thomas Jefferson National Accelerator Facility

efferson C

Helicity Flipping and Source of Helicity-Correlated Beam Parameters

¾Circularly polarized light incident on photocathode creates polarized electrons.

¾Polarity of voltage applied to Pockels cell determines light polarization, and in turn electron polarization.

¾Linear component in the light causes asymmetric transmission and electron production at the photocathode for opposite helicities. [⇒]**Helicity-Correlated Intensity**

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

efferson C

Yu-Chiu Chao PAC 2007

U.S. DEPARTMENT OF ENERG

Source of Helicity-Correlated Beam Parameters

■Helicity–Correlated Intensity \blacktriangleright Linearly polarized component in the laser $+$ Analyzing power of photocathode or other elements Helicity–Correlated Orbit: ¾Non-uniform H-C intensity across laser/beam profile ***** Linear polarized component in the laser **❖ Analyzing power of photocathode** ¾Dependence of laser profile on Pockels cell voltage **≻Beam scraping at tight apertures Can be magnified by erratic beam transport!** G. Cates, PAVI04 No HV $HV +$ $HV -$

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

efferson C

Correcting for Asymmetry A_{PV} with beam-based calibration:

$$
A_{PV} = A_{DET} - A_q \left[\alpha A_E - \sum_i \beta_i \Delta X_i \right] \quad \beta_i = \frac{\partial A}{\partial (\Delta X_i)},
$$

$$
\sum_{i} \beta_{i} \Delta X_{i} \qquad \beta_{i} = \frac{\partial A}{\partial(\Delta X_{i})}, \alpha = \frac{\partial A}{\partial \Delta E}
$$

- Sensitivity coefficients on beam parameters (energy, position and angle) α , β are empirically measured.
- Beam parameter asymmetries are monitored during data runs.
- \blacksquare False contributions are subtracted off raw asymmetry A_{DET} .
- Helicity correlated beam parameters introduce systematic error through errors in α , β etc.
- 1 ppm Asymmetry, 5% Relative error, 10% Uncertainty in β*x &* β*x'* :
	- \rightarrow precision = 50 ppb

Tellerson C

- Allowing for 10 ppb error budget for each correction
- $\beta x=40$ ppb/nm, $\beta x'=40$ ppb/nrad. Assume 10% uncertainty:
- \rightarrow Helicity correlated beam parameters after averaging:

⇒ $\langle \Delta X \rangle \leq 2$ nm, $\langle \Delta X' \rangle \leq 2$ nrad Averaged over Run

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Suppression of Coupling and Transport Singularity – General

4D symplecticity guarantees transport fix by quads and skew quads alone. ¾**Eliminate XY coupling**

¾**Reduce transport singularity** ⇒ **Must do BOTH**

- **What makes this program challenging?**
- ¾**High precision measurements needed to battle singularity**
- ¾**Unfriendly machine configuration (degenerate optics)**
- ¾**Inaccurate modeling of optics**
- ¾**Stability/reproducibility of 6 km of beam line**
- ¾**Long range transport over 4 decades of momentum range**
- ¾**Weak, noise-saturated signal**
- ¾**Aperture constraints for difference orbit measurements**
- ¾**Inaccuracy / side effects of correction magnets (quad & skew quad)**

¾**Reconciling between beam spot and orbit.**

¾**Multiple constraints that must be satisfied simultaneously**

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

 \mathcal{G} efferson

Coupling and Transport Singularity – Beyond Injector

Simulation Based onA systematic effect - Can add coherently – Weak, no problem if no mismatch

A betatron mismatch CS ≠ **1 from the Injector into the main accelerator, Compounded by above cumulative skew quad effects,**

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Compounded Effects of Coupling and Transport Singularity – Observation in CEBAF: Case One – 100 keV to 60 MeV

4 by 4 Transfer matrix is empirically measured across the cryo-unit

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Compounded Effects of Coupling and Transport Singularity – Observation in CEBAF: Case One – 100 keV to 60 MeV

4 by 4 Transfer matrix is empirically measured across the cryo-modules

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Transport within the Main Accelerator

Transport consistent with proper adiabatic damping

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

(efferson C

CS Mismatch on 06/16/07: 5.6 in X, 4.0 in Y

Thomas Jefferson National Accelerator Facility

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Compounded Effects of Coupling and Transport Singularity – Observation in CEBAF: Case Two – 60 MeV to 3 GeV

Initial Betatron Mismatch Also Drives Incongruence between (Helicity Correlated) Orbit and Beam Spot, Making Simultaneous Matching of BOTH Difficult.

Real Measured Phase Space Coordinates for PZT Orbits (RED & GREEN), and Beam Spot (BLUE) of 01/09/2007 at IHA0L10

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Compounded Effects of Coupling and Transport Singularity– 60 MeV to 3 GeV

- **Service Service** Real problem with reducing orbit amplitude is its incompatibility with the beam spot in phase space.
- Ξ This is exacerbated by coupling.
- **Beam-Orbit Mismatch** $CS_{\text{B}} = \sqrt{\gamma_B \cdot \chi_T^2 + 2 \cdot \alpha_B \cdot \chi_T \cdot \chi_T^2 + \beta_B \cdot \chi_T^2}$ \equiv if \bm{X} \bm{r} $\bm{\cdot}$ $\bm{\Sigma}$ \bm{r} $\bm{\cdot}$ $\overrightarrow{X}_T \cdot \sum_{B}^{\text{-}1} \cdot \overrightarrow{X}_T$ $_{T}^{\mathsf{T}}$ • \sum_{B}^{-1}

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy

Ξ

 $\mathcal{L}_{\mathcal{A}}$

 \blacksquare

Yu-Chiu Chao PAC 2007

U.S. DEPARTMENT OF

PZT "Booster"

Empirical transport matching guided by PZT signals has many shortcomings:

- ¾ **Weak signal (20-50** µ**m at 60 MeV, much smaller at higher energy)**
	- ¾ **Aperture and linearity/abberation constraints in Injector**
	- ¾ **Damping**
- ¾ **CW beam required to enhance signal stability**
	- ¾ **Impose extra operational limitations (beamline setup, beam loss trips, ……)**
	- ¾ **Cannot see multiple pass transport**
- **Solution: "Boosting" the PZT Signal to more visible amplitude**

Turning 4-D Helicity Feedback System into Empirical Amplifier with Gain >>1

Operated by Jefferson Science Associates, LLC for the U.S. Department of Energy