RMS Emittance Measurements Using Optical Transition Radiation Interferometry at the Jefferson Lab FEL

M. A. Holloway, R. B. Fiorito, A. G. Shkvarunets, P. G. O'Shea

Institute for Research in Electronics and Applied Physics and
The Department of Electrical and Computer Engineering
University of Maryland
College Park, MD 20742, USA

S. V. Benson, W. Brock, J. L. Coleman, D. Douglas, R. Evans,
P. Evtushenko, K. Jordan, D. Sexton

Jefferson Lab
Newport News, VA 23606, USA

Work supported by the Office of Naval Research and the Joint Technology Office
Overview

- To apply Optical Transition Radiation Interferometry (OTRI) techniques to high current accelerators
- Investigate the ability of OTRI to measure complex beam distributions
- Further develop an all optical method of phase space mapping

First step: RMS emittance measurements
OTRI as an Emittance Diagnostic

Measure RMS beam size and RMS divergence at a waist condition to calculate the emittance

RMS emittance

\[\tilde{\varepsilon}_x = \left(\frac{\left(x^2 \right)}{\left(x' \right)^2} - \left(xx' \right)^2 \right) \frac{1}{2} \]

At a beam waist

\[\tilde{\varepsilon}_x = x_{rms} x'_{rms} \]

where: \(x_{rms} = \sqrt{\langle x^2 \rangle} \) and \(x'_{rms} = \sqrt{\langle x'^2 \rangle} \)
Two thin parallel metal foils

phase term

Vacuum coherence length

\[\phi = \frac{L}{L_v} \]

\[L_v = \left(\frac{\lambda}{\pi} \right) \left(\frac{1}{\gamma^{-2} + \theta^2} \right) \]

Spectral-angular distribution of two foil OTR

\[
\frac{dI_{\text{tot}}}{d\omega d\theta} = \frac{\alpha}{\pi} \frac{\theta^2}{(\gamma^{-2} + \theta^2)^2} \left| 1 - e^{-i\phi} \right|^2
\]
Effect of Beam Parameters on Fringe Visibility

Interference fringes are highly sensitive to:
1. Optical bandwidth
2. Energy spread
3. Divergence

We want divergence to dominate the fringe visibility effects

Gaussian angular distribution function

\[P(\sigma, \theta) = \left(\frac{1}{2\sigma^2} \right)^{\frac{1}{2}} e^{-\frac{\theta^2}{2\sigma^2}} \]

Normalized divergence

\[s = \gamma \sigma \]
Experimental Setup

Interferometer location

Experimental beam conditions

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Beam Energy</td>
<td>115 MeV</td>
</tr>
<tr>
<td>Macro Pulse Width</td>
<td>100μs</td>
</tr>
<tr>
<td>Micro Pulse rep rate</td>
<td>2MHz</td>
</tr>
<tr>
<td>Charge per bunch</td>
<td>135 pC</td>
</tr>
<tr>
<td>Beam Current (Avg)</td>
<td>~150μA</td>
</tr>
</tbody>
</table>
Optical Arrangement

- Beam imaging camera
- Beam splitter
- Optical band-pass filter
- Angular distribution camera
- View ports
- Interferometer
- Electron beam Direction
Beam Size Measurements

Beam image profile is complex
Beam Size Measurement

<table>
<thead>
<tr>
<th>Waist</th>
<th>filter</th>
<th>σ_1 (μm)</th>
<th>σ_2 (μm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>650x10 nm</td>
<td>134.4 +/- 1.4</td>
<td>380.1 +/- 5.6</td>
</tr>
<tr>
<td>X</td>
<td>450x10 nm</td>
<td>144.9 +/- 2.6</td>
<td>390.7 +/- 16.9</td>
</tr>
<tr>
<td>Y</td>
<td>650x10 nm</td>
<td>56.4 +/- 0.59</td>
<td>410.7 +/- 11.0</td>
</tr>
<tr>
<td>Y</td>
<td>450x10 nm</td>
<td>49.4 +/- 1.0</td>
<td>380.5 +/- 14.8</td>
</tr>
</tbody>
</table>
Divergence Measurements

Simple Gaussian does not work

- Sector scan of far field image provides intensity profile
- Computer code used to fit intensity profile
Divergence Measurements

Two Gaussian fit works remarkable well

<table>
<thead>
<tr>
<th>Waist</th>
<th>Filter</th>
<th>(\theta_1) (mrad)</th>
<th>(\theta_2) (mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Y</td>
<td>650x10 nm</td>
<td>0.54+/-0.01</td>
<td>2.3+/-0.1</td>
</tr>
<tr>
<td>Y</td>
<td>450x10 nm</td>
<td>0.55+/-0.01</td>
<td>2.4+/-0.08</td>
</tr>
<tr>
<td>X</td>
<td>650x10 nm</td>
<td>0.43+/-0.01</td>
<td>1.4+/-0.08</td>
</tr>
<tr>
<td>X</td>
<td>450x10 nm</td>
<td>0.45+/-0.01</td>
<td>1.3+/-0.07</td>
</tr>
</tbody>
</table>

Y waist \(\lambda = 650 \text{nm} \)

Calculated Fit:
- \(\sigma_1 = 0.54+/-0.01 \text{mrad} \)
- \(\sigma_2 = 2.3+/-0.08 \text{mrad} \)

Data:
- \(1.3+/-0.07 \text{nm} \)
- \(0.45+/-0.01 \text{nm} \)
- \(650 \text{nm} \)

\(X \) and \(\theta_2 \) (mrad)
Emittance Measurements

<table>
<thead>
<tr>
<th>Waist</th>
<th>filter</th>
<th>Inner (\sigma) (mm-mrad)</th>
<th>Outer (\sigma) (mm-mrad)</th>
</tr>
</thead>
<tbody>
<tr>
<td>X</td>
<td>650x10 nm</td>
<td>13 +/- .4</td>
<td>117.2 +/- 7.7</td>
</tr>
<tr>
<td>X</td>
<td>450x10 nm</td>
<td>14.7 +/- .7</td>
<td>126.5 +/- 14.0</td>
</tr>
<tr>
<td>Y</td>
<td>650x10 nm</td>
<td>6.8 +/- .2</td>
<td>212.5 +/- 14.9</td>
</tr>
<tr>
<td>Y</td>
<td>450x10 nm</td>
<td>6.0 +/- .2</td>
<td>205.4 +/- 14.9</td>
</tr>
</tbody>
</table>

Conclusion

- OTRI has shown potential to measure multiple spatial and angular components within the beam
- Need to use a method to correspond spatial and angular data
Next Step: Optical Masking and Optical Phase Space Mapping

Measure position

Measure divergence and centroid shift

Special thanks to all the Jefferson Lab personnel