Paper | Title | Other Keywords | Page | ||
---|---|---|---|---|---|
THPMN087 | Simulations of the Rotating Positron Target in the Presence of OMD Field | target, simulation, positron, linear-collider | 2909 | ||
|
Funding: US Department of Energy |
For an ILC undulator-based positron source target configuration, a strong optical matching device (OMD) field is needed inside the target to increase the positron yield (by more than 40%)[1]. It is also required that the positron target is constantly rotated to reduce thermal and radiation damage. We report on a simulation of the rotating metal target wheel under a strong magnetic field. By rearranging Maxwell?s equations for a rotating frame and using FEMLAB, we have solved the detailed magnetic field distribution and eddy current of a rotating metal disk in magnetic field, and so the required power to drive the target wheel. In order to validate the simulation process, we have compared our results with previous experimental data [2] and found they are in very good agreement, but differ from previous approximate models [3]. Here we give detailed results on the proposed ILC target system, such as induced magnetic field (dipole and higher orders), eddy current distribution and the driving force requirements. The effect of these higher order fields on the positron beam dynamics is also considered. |
|