Keyword: optics
Paper Title Other Keywords Page
MOPOST024 A Local Modification of HL-LHC Optics for Improved Performance of the Alice Fixed-Target Layout target, proton, collimation, experiment 108
 
  • M. Patecki, D. Kikoła
    Warsaw University of Technology, Warsaw, Poland
  • A.S. Fomin, P.D. Hermes, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme, grant agreement number 101003442 - FIXEDTARGETLAND.
The Large Hadron Col­lider (LHC) at the Eu­ro­pean Or­ga­ni­za­tion for Nu­clear Re­search (CERN) is the world’s largest and most pow­er­ful par­ti­cle ac­cel­er­a­tor col­lid­ing beams of pro­tons and lead ions at en­er­gies up to 7 TeV and 2.76 TeV, re­spec­tively. ALICE is one of the de­tec­tor ex­per­i­ments op­ti­mised for heavy-ion col­li­sions. A fixed-tar­get ex­per­i­ment in ALICE is con­sid­ered to col­lide a por­tion of the beam halo, split using a bent crys­tal, with an in­ter­nal tar­get placed a few me­ters up­stream of the de­tec­tor. Fixed-tar­get col­li­sions offer many physics op­por­tu­ni­ties re­lated to hadronic mat­ter and the quark-gluon plasma to ex­tend the re­search po­ten­tial of the CERN ac­cel­er­a­tor com­plex. Pro­duc­tion of physics events de­pends on the par­ti­cle flux on tar­get. The ma­chine lay­out for the fixed-tar­get ex­per­i­ment is being de­vel­oped to pro­vide a flux of par­ti­cles on a tar­get high enough to ex­ploit the full ca­pa­bil­i­ties of the ALICE de­tec­tor ac­qui­si­tion sys­tem. In this paper, we dis­cuss a method of in­creas­ing the sys­tem’s per­for­mance by ap­ply­ing a local mod­i­fi­ca­tion of op­tics to set the crys­tal at the op­ti­mal be­ta­tron phase.
marcin.patecki@pw.edu.pl
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST024  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST039 Algorithm to Mitigate Magnetic Hysteresis in Magnets with Unipolar Power Supplies quadrupole, power-supply, ISAC, cyclotron 156
 
  • J. Nasser, R.A. Baartman, O.K. Kester, S. Kiy, T. Planche, S.D. Rädel, O. Shelbaya
    TRIUMF, Vancouver, Canada
 
  Funding: National Research Council Canada
The ef­fects of hys­tere­sis on the fields pro­duced by mag­netic lenses are not ac­counted for in TRI­UMF’s mod­els of the ac­cel­er­a­tors. Under cer­tain con­di­tions, such as quadrupoles with unipo­lar power sup­plies op­er­at­ing at low cur­rents, these ef­fects have in­tro­duced sig­nif­i­cant field er­rors with con­se­quences upon tran­verse tunes. To com­bat these un­cer­tain­ties and make the fields more re­pro­ducible and sta­ble, a tech­nique new to TRI­UMF has been im­ple­mented. This tech­nique ramps the cur­rent cycli­cally about the de­sired set­point to reach a re­pro­ducible field that is in­de­pen­dent of its his­tory. Re­sults of mag­netic mea­sure­ments at TRI­UMF using this tech­nique are pre­sented, as well as the ex­pected im­prove­ments to the ac­cu­racy of the beam op­tics model, par­tic­u­larly for unipo­lar quadrupoles.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST039  
About • Received ※ 03 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST041 Dynamic Aperture Studies for the Transfer Line From FLUTE to cSTART storage-ring, quadrupole, simulation, linac 164
 
  • J. Schäfer, B. Härer, A.-S. Müller, A.I. Papash, R. Ruprecht, M. Schuh
    KIT, Karlsruhe, Germany
 
  Funding: J. Schäfer acknowledges the support by the DFG- funded Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology".
The com­pact STor­age ring for Ac­cel­er­a­tor Re­search and Tech­nol­ogy cSTART pro­ject will de­liver a new KIT ac­cel­er­a­tor test fa­cil­ity for the ap­pli­ca­tion of novel ac­cel­er­a­tion tech­niques and di­ag­nos­tics. The goal is to demon­strate stor­ing an elec­tron beam of a Laser Plasma Ac­cel­er­a­tor (LPA) in a com­pact cir­cu­lar ac­cel­er­a­tor for the first time. Be­fore in­stalling an LPA, the Far-In­frared Linac and Test Ex­per­i­ment (FLUTE) will serve as a full en­ergy in­jec­tor for the com­pact stor­age ring, pro­vid­ing sta­ble bunches with a length down to a few fem­tosec­onds. The trans­port of the bunches from FLUTE to the cSTART stor­age ring re­quires a trans­fer line which in­cludes hor­i­zon­tal, ver­ti­cal and cou­pled de­flec­tions which leads to cou­pling of the dy­nam­ics in the two trans­verse planes. In order to re­al­ize ul­tra-short bunch lengths at the end of the trans­port line, it re­lies on spe­cial op­tics which in­vokes high and neg­a­tive dis­per­sion. This con­tri­bu­tion pre­sents dy­namic aper­ture stud­ies based on six-di­men­sional track­ing through the lat­tice of the trans­fer line.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST041  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT020 Longitudinal Phase Space Diagnostics with Corrugated Structure at the European XFEL electron, diagnostics, FEL, laser 275
 
  • S. Tomin, W. Decking, N. Golubeva, A.I. Novokshonov, T. Wohlenberg, I. Zagorodnov
    DESY, Hamburg, Germany
 
  Char­ac­ter­i­za­tion of the lon­gi­tu­di­nal phase space (LPS) of the elec­tron beam after the FEL process is im­por­tant for its study and tun­ing. At the Eu­ro­pean XFEL, a sin­gle plate cor­ru­gated struc­ture was in­stalled after the SASE2 un­du­la­tor to mea­sure the LPS of the elec­tron beam. The beam pass­ing near the plate’s cor­ru­ga­tions cre­ates wake­fields, which in­duce a cor­re­la­tion be­tween time and the trans­verse dis­tri­b­u­tion of the beam. The lon­gi­tu­di­nal phase space of the beam is then an­a­lyzed on a scin­til­lat­ing screen mon­i­tor placed in the dis­per­sion sec­tion. In this paper, we pre­sent the re­sult of com­mis­sion­ing the cor­ru­gated struc­ture and the first LPS mea­sure­ment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT020  
About • Received ※ 12 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT031 Renovation of the SR Beam Profile Monitors with Novel Polycrystalline Diamond Mirrors at the SuperKEKB Accelerator extraction, laser, radiation, synchrotron 313
 
  • G. Mitsuka, H. Ikeda, T.M. Mitsuhashi
    KEK, Ibaraki, Japan
 
  SR beam pro­file mon­i­tors are fun­da­men­tal to per­form the sta­ble beam op­er­a­tion of Su­perKEKB. To sup­press ther­mal de­for­ma­tion of SR ex­trac­tion mir­rors–a long-stand­ing issue in SR mon­i­tors–, we de­vel­oped plat­inum coated di­a­mond mir­rors in 2019. The di­a­mond mir­rors are made with op­ti­cal-qual­ity poly­crys­tal-di­a­mond-sub­strate with ex­tremely large ther­mal con­duc­tiv­ity, and have a size of 20 mm (W) x 30 mm (H) x 2 mm (D). Sur­face flat­ness bet­ter than λ/5 was ob­served in an op­ti­cal test­ing with a laser in­ter­fer­om­e­ter. The di­a­mond mir­rors have been in­stalled in HER and LER in 2020 sum­mer and 2021 sum­mer, re­spec­tively. Through ir­ra­di­a­tion for an year at the beam cur­rent greater than 800 mA, no sig­nif­i­cant de­for­ma­tion of the di­a­mond mir­rors has been ob­served. In this talk, we will dis­cuss the de­sign, con­struc­tion, and op­ti­cal test­ing of the poly­crys­tal di­a­mond mir­rors. Also beam mea­sure­ments per­formed using an in­ter­fer­om­e­ter, a coro­n­a­graph, a streak cam­era, and a fast gate cam­era will be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT031  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT047 Experimental Demonstration of Machine Learning Application in LHC Optics Commissioning quadrupole, MMI, simulation, diagnostics 359
 
  • E. Fol, F.S. Carlier, J. Dilly, M. Hofer, J. Keintzel, M. Le Garrec, E.H. Maclean, T.H.B. Persson, F. Soubelet, R. Tomás García, A. Wegscheider
    CERN, Meyrin, Switzerland
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
 
  Re­cently, we con­ducted suc­cess­ful stud­ies on the suit­abil­ity of ma­chine learn­ing (ML) meth­ods for op­tics mea­sure­ments and cor­rec­tions, in­cor­po­rat­ing novel ML-based meth­ods for local op­tics cor­rec­tions and re­con­struc­tion of op­tics func­tions. After per­form­ing ex­ten­sive ver­i­fi­ca­tions on sim­u­la­tions and past mea­sure­ment data, the newly de­vel­oped tech­niques be­came op­er­a­tional in the LHC com­mis­sion­ing 2022. We pre­sent the ex­per­i­men­tal re­sults ob­tained with the ML-based meth­ods and dis­cuss fu­ture im­prove­ments. Be­sides, we also re­port on im­prov­ing the Beam Po­si­tion Mon­i­tor (BPM) di­ag­nos­tics with the help of the anom­aly de­tec­tion tech­nique ca­pa­ble to iden­tify mal­func­tion­ing BPMs along with their pos­si­ble fault causes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT047  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT054 A Modified Nomarski Interferometer to Study Supersonic Gas Jet Density Profiles laser, vacuum, experiment, diagnostics 385
 
  • C. Swain, O. Apsimon, A. Salehilashkajani, C.P. Welsch, J. Wolfenden, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • Ö. Apsimon, A. Salehilashkajani, C. Swain, C.P. Welsch, J. Wolfenden, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
 
  Funding: This work is supported by the AWAKE-UK phase II project grant No. ST/T001941/1, the STFC Cockcroft core grant No. ST/G008248/1 and the HL-LHC-UK phase II project funded by STFC under Grant Ref: ST/T001925/1.
Gas jet-based non-in­va­sive beam pro­file mon­i­tors, such as those de­vel­oped for the high lu­mi­nos­ity Large Hadron Col­lider (HL-LHC) up­grade, re­quire ac­cu­rate, high res­o­lu­tion meth­ods to char­ac­terise the su­per­sonic gas jet den­sity pro­file. This paper pro­poses a mod­i­fied No­marski in­ter­fer­om­e­ter to non-in­va­sively study the be­hav­iour of these jets, with noz­zle di­am­e­ters of 1 mm or less in di­am­e­ter. It dis­cusses the ini­tial de­sign and re­sults, along­side plans for fu­ture im­prove­ments. De­vel­op­ing sys­tems such as this which can image on such a small scale al­lows for im­proved mon­i­tor­ing of su­per­sonic gas jets used in sev­eral areas of ac­cel­er­a­tor sci­ence, thus al­low­ing for im­prove­ments in the ac­cu­racy of ex­per­i­ments they are utilised in.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT054  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK002 Fast Orbit Response Matrix Measurement via Sine-Wave Excitation of Correctors at Sirius storage-ring, synchrotron, quadrupole, lattice 425
 
  • M.M.S. Velloso, M.B. Alves, F.H. de Sá
    LNLS, Campinas, Brazil
 
  Sir­ius is the new 4th gen­er­a­tion stor­age ring based syn­chro­tron light source built and op­er­ated by the Brazil­ian Syn­chro­tron Light Lab­o­ra­tory (LNLS). In this work, we re­port on the im­ple­men­ta­tion at Sir­ius of a fast method for orbit re­sponse ma­trix (ORM) mea­sure­ment which is based on sine-wave par­al­lel ex­ci­ta­tion of orbit cor­rec­tor mag­nets’ strength. This ‘‘AC method" has re­duced the ORM mea­sure­ment time from  ∼ 25 min­utes to 2.5-3 min­utes and dis­played in­creased pre­ci­sion if com­pared to the stan­dard se­r­ial mea­sure­ment pro­ce­dure. When used as input to the Lin­ear Op­tics from Closed Or­bits (LOCO) cor­rec­tion al­go­rithm, the AC ORM yielded sim­i­lar op­tics cor­rec­tions with less ag­gres­sive quadrupoles strength changes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK002  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK004 Status of the Soleil Upgrade Lattice Robustness Studies lattice, injection, MMI, simulation 433
 
  • O.R. Blanco-García
    INFN/LNF, Frascati, Italy
  • D. Amorim, A. Loulergue, L.S. Nadolski, R. Nagaoka
    SOLEIL, Gif-sur-Yvette, France
  • M.A. Deniaud
    JAI, Egham, Surrey, United Kingdom
 
  The SOLEIL syn­chro­tron has en­tered its Tech­ni­cal De­sign Re­port (TDR) phase for the up­grade of its stor­age ring to a fourth gen­er­a­tion syn­chro­tron light source. Ver­i­fi­ca­tion of the equip­ment spec­i­fi­ca­tions (align­ment, mag­nets, power sup­plies, BPMs), and the method­ol­ogy for op­tics cor­rec­tions are crit­i­cal in order to en­sure the fea­si­bil­ity of rapid com­mis­sion­ing restor­ing full per­for­mance for daily op­er­a­tions. The end-to-end sim­u­la­tion, from beam thread­ing in the first turns to beam stor­age and stack­ing, should be han­dled with a com­pre­hen­sive model close to the ac­tual com­mis­sion­ing pro­ce­dure, tak­ing into ac­count all prac­ti­cal steps. Dur­ing 2021 and 2022, the CDR lat­tice has un­der­gone sig­nif­i­cant mod­i­fi­ca­tions in re­sponse to ad­di­tional con­straints. In this paper, we pre­sent an up­date of the ro­bust­ness stud­ies for the TDR base­line lat­tice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK004  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK006 Off-Energy Operation for the ESRF-EBS Storage Ring SRF, injection, sextupole, lattice 437
 
  • L. Hoummi, T. Brochard, N. Carmignani, L.R. Carver, J. Chavanne, S.M. Liuzzo, T.P. Perron, R. Versteegen, S.M. White
    ESRF, Grenoble, France
  • P. Raimondi
    SLAC, Menlo Park, California, USA
 
  The ESRF-EBS is the first 4th gen­er­a­tion source mak­ing use of the Hy­brid Multi-Bend Achro­mat (HMBA) lat­tice cell, reach­ing an equi­lib­rium hor­i­zon­tal emit­tance of 140 pm.​rad in user mode (in­ser­tion de­vices (ID) gaps open). The in­jec­tion in the stor­age ring (SR) is con­ducted with a short booster, op­er­ated off-en­ergy. The RF fre­quency is in­creased com­pared to the nom­i­nal one to put the beam on a dis­per­sive orbit, thus going off-axis in quadrupoles. The in­duced dipo­lar feed down ef­fects re­duce the booster hor­i­zon­tal emit­tance. The same strat­egy is ex­tended to the ESRF-EBS SR, for an ex­pected emit­tance re­duc­tion of about 20 pm.​rad. A first ap­proach shifts the RF fre­quency by +300 Hz to op­er­ate at -1% en­ergy off­set. Op­ti­mal quadru­pole and sex­tu­pole set­tings are de­fined for this off-en­ergy op­er­a­tion based on sim­u­la­tions. The set­tings are then tested in the SR in terms of dy­namic aper­ture and in­jec­tion ef­fi­ciency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK006  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK013 Machine Learning Based Surrogate Model Construction for Optics Matching at the European XFEL simulation, quadrupole, electron, FEL 461
 
  • Z.H. Zhu, Y. Chen, W. Qin, M. Scholz, S. Tomin
    DESY, Hamburg, Germany
 
  Beam op­tics match­ing is a daily rou­tine in the op­er­a­tion of an X-ray free-elec­tron laser fa­cil­ity. Usu­ally, lin­ear op­tics is em­ployed to con­duct the beam match­ing in the con­trol room. How­ever, the col­lec­tive ef­fects like space charge dom­i­nate the elec­tron bunch in the low-en­ergy re­gion which de­creases the ac­cu­racy of the ex­ist­ing tool. There­fore, we pro­posed a scheme to con­struct a sur­ro­gate model with non­lin­ear op­tics and col­lec­tive ef­fects to speed up the op­tics match­ing in the Eu­ro­pean XFEL in­jec­tor sec­tion. This model also fa­cil­i­tates fur­ther re­search on beam dy­nam­ics for the space-charge dom­i­nated beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK013  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK014 Optics of a Recirculating Beamline for MESA experiment, target, injection, scattering 465
 
  • C.P. Stoll, A. Meseck
    KPH, Mainz, Germany
 
  The Mainz En­ergy-re­cov­er­ing Su­per­con­duct­ing Ac­cel­er­a­tor (MESA) is an En­ergy Re­cov­ery Linac (ERL) fa­cil­ity under con­struc­tion at the Jo­hannes Guten­berg-Uni­ver­sity in Mainz. It pro­vides the op­por­tu­nity for pre­ci­sion physics ex­per­i­ments with a 1 mA c.w. elec­tron beam in its ini­tial phase. In this phase ex­per­i­ments with un­po­larised, high-den­sity 1019 atoms per cm2 gas jet tar­gets are fore­seen at the Mainz Gas In­ter­nal Tar­get Ex­per­i­ment (MAGIX). To allow ex­per­i­ments with thin po­larised gas tar­gets with suf­fi­ciently high in­ter­ac­tion rates in a later phase, the beam cur­rent must be in­creased to up to 100 mA, which would pose sig­nif­i­cant chal­lenges to the ex­ist­ing ERL ma­chine. Thus, it is pro­posed here to use MESA in pulsed op­er­a­tion with a rep­e­ti­tion rate of sev­eral kHz to fill a re­cir­cu­lat­ing beam­line, pro­vid­ing a quasi c.w. beam cur­rent to a thin gas tar­get. The op­tics nec­es­sary for this re­cir­cu­lat­ing beam­line are pre­sented here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK014  
About • Received ※ 01 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK028 Zero Dispersion Optics to Improve Horizontal Emittance Measurements at the CERN Proton Synchrotron emittance, quadrupole, simulation, space-charge 503
 
  • W. Van Goethem, F. Antoniou, F. Asvesta, H. Bartosik, A. Huschauer
    CERN, Meyrin, Switzerland
 
  In mod­ern par­ti­cle ac­cel­er­a­tors, the hor­i­zon­tal dis­per­sion func­tion is forced to zero at lo­ca­tions with in­stru­men­ta­tion mea­sur­ing the trans­verse beam dis­tri­b­u­tion, in order to re­move the dis­per­sive con­tri­bu­tion to the hor­i­zon­tal beam size. The de­sign of the CERN Pro­ton Syn­chro­tron did not fore­see such a zero-dis­per­sion in­ser­tion, mak­ing it chal­leng­ing to get a good pre­ci­sion on the beam size mea­sure­ments. In this con­tri­bu­tion, we pre­sent a new op­tics con­fig­u­ra­tion, which al­lows to reach zero hor­i­zon­tal dis­per­sion at the lo­ca­tions of dif­fer­ent beam size mea­sure­ment lo­ca­tions. This can be achieved by pow­er­ing a set of trim quadrupoles, the so-called Low En­ergy Quadrupoles (LEQ). We in­ves­ti­gate how the re­sult­ing op­tics per­tur­ba­tion af­fects beam pa­ra­me­ters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK028  
About • Received ※ 07 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK029 Improved Low-Energy Optics Control for Transverse Emittance Preservation at the CERN Proton Synchrotron emittance, space-charge, quadrupole, lattice 507
 
  • W. Van Goethem, F. Antoniou, F. Asvesta, H. Bartosik, A. Huschauer
    CERN, Meyrin, Switzerland
 
  Preser­va­tion of the trans­verse emit­tances across the CERN ac­cel­er­a­tor chain is an im­por­tant re­quire­ment for beams pro­duced for the Large Hadron Col­lider (LHC). In the CERN Pro­ton Syn­chro­tron (PS), high bright­ness LHC-type beams are stored on a long flat bot­tom for up to 1.2 sec­onds. Dur­ing this stor­age time, di­rect space charge ef­fects may lead to res­o­nance cross­ing and sub­se­quent growth of the trans­verse emit­tances. Pre­vi­ous stud­ies showed an im­por­tant emit­tance in­crease when the PS work­ing point is moved near in­te­ger tune val­ues. Sub­se­quent sim­u­la­tion stud­ies con­firmed that this ob­ser­va­tion is caused by an in­ter­play of space charge ef­fects and the op­tics beat­ings in­duced by the Low En­ergy Quadrupoles (LEQ). A new op­tics con­fig­u­ra­tion using these quadrupoles to re­duce the op­tics beat­ing and the emit­tance growth was de­vel­oped and ex­per­i­men­tally val­i­dated. The re­sults of sim­u­la­tion and ex­per­i­men­tal stud­ies are pre­sented in this con­tri­bu­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK029  
About • Received ※ 07 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK032 An N-BPM Momentum Reconstruction for Linear Transverse Coupling Measurements in LHC and HL-LHC coupling, lattice, resonance, controls 519
 
  • A. Wegscheider, R. Tomás García
    CERN, Meyrin, Switzerland
 
  The mea­sure­ment and con­trol of lin­ear trans­verse cou­pling is im­por­tant for the op­er­a­tion of an ac­cel­er­a­tor. The cal­cu­la­tion of the lin­ear trans­verse cou­pling res­o­nance dri­ving terms (RDTs) ’1001 and ’1010 re­lies on the com­plex spec­trum of the turn-by-turn mo­tion. To ob­tain the com­plex sig­nal, a re­con­struc­tion of the par­ti­cle mo­tion is needed. For this pur­pose, the sig­nal of a sec­ond BPM with a suit­able phase shift is usu­ally used. In this work, we ex­plore the pos­si­bil­ity of in­clud­ing more BPMs in the re­con­struc­tion of the trans­verse mo­men­tum, which could re­duce the ef­fects of sta­tis­ti­cal er­rors and sys­tem­atic un­cer­tain­ties. This, in turn, could im­prove the pre­ci­sion and ac­cu­racy of the RDTs, which could be of great ben­e­fit for lo­ca­tions where an exact knowl­edge of the trans­verse cou­pling or other RDTs is im­por­tant. We pre­sent the de­vel­op­ment of a new method to re­con­struct the par­ti­cle’s mo­men­tum that uses a sta­tis­ti­cal analy­sis of sev­eral nearby BPMs. The im­proved pre­ci­sion is demon­strated via sim­u­la­tions of LHC and HL-LHC lat­tices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK032  
About • Received ※ 08 June 2022 — Revised ※ 23 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK036 Studies of the Vertical Excursion Fixed Field Alternating Gradient Accelerator lattice, closed-orbit, quadrupole, simulation 535
 
  • M.E. Topp-Mugglestone, S.L. Sheehy
    JAI, Oxford, United Kingdom
  • J.-B. Lagrange, S. Machida
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  The Ver­ti­cal Ex­cur­sion Fixed Field Al­ter­nat­ing Gra­di­ent Ac­cel­er­a­tor (VFFA) con­cept of­fers a num­ber of ad­van­tages over ex­ist­ing ac­cel­er­a­tor ar­che­types, as dis­cussed in pre­vi­ous works. How­ever, the VFFA has non­pla­nar or­bits by de­sign and un­avoid­able trans­verse cou­pling. Hence, cur­rent un­der­stand­ing of the dy­nam­ics of this ma­chine is lim­ited; this paper pre­sents some in-depth study of its be­hav­iour using a com­bi­na­tion of an­a­lyt­i­cal and nu­mer­i­cal tech­niques.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK036  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK037 Impact of Insertion Devices on Diamond-II Lattice insertion, insertion-device, emittance, lattice 539
 
  • B. Singh, R.T. Fielder, H. Ghasem, J. Kallestrup, I.P.S. Martin, T. Olsson
    DLS, Oxfordshire, United Kingdom
 
  Funding: DLS ltd
The DI­A­MOND-II lat­tice is based on the ESRF-EBS cell, with the cen­tre di­pole re­placed by a (chro­matic) mid-straight, and a -I trans­former, higher order achro­mat (HOA) & dis­per­sion bumps to con­trol the non­lin­ear dy­nam­ics. The ma­jor­ity of in­ser­tion de­vices cur­rently on op­er­a­tion in Di­a­mond will be ei­ther re­tained or up­graded as part of the Di­a­mond-II pro­gram, and the new mid straights allow the total num­ber of ID beam­lines to be in­creased from 28 to 36.​Therefore, it is im­por­tant to in­ves­ti­gate how IDs will af­fect the emit­tance, en­ergy spread and lin­ear and non­lin­ear beam dy­nam­ics. The kickmap ap­proach has been used to model all IDs, in­clud­ing AP­PLE-II and AP­PLE-II Knot with ac­tive shim wires. In this paper, the out­come of these in­ves­ti­ga­tions will be pre­sented and dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK037  
About • Received ※ 04 June 2022 — Accepted ※ 30 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK038 BPM Analysis with Variational Autoencoders network, focusing, diagnostics, GPU 543
 
  • C.C. Hall, J.P. Edelen, J.A. Einstein-Curtis, M.C. Kilpatrick
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of High Energy Physics under Award Number DE-SC0021699.
In par­ti­cle ac­cel­er­a­tors, beam po­si­tion mon­i­tors (BPMs) are used ex­ten­sively as a non-in­ter­cept­ing di­ag­nos­tic. Sig­nif­i­cant in­for­ma­tion about beam dy­nam­ics can often be ex­tracted from BPM mea­sure­ments and used to ac­tively tune the ac­cel­er­a­tor. How­ever, com­mon mea­sure­ment tools, such as mea­sure­ments of kicked beams, may be­come more dif­fi­cult when very strong non­lin­ear­i­ties are pre­sent or when data is very noisy. In this work, we ex­am­ine the use of vari­a­tional au­toen­coders (VAEs) as a tech­nique to ex­tract mea­sure­ments of the beam from sim­u­lated turn-by-turn BPM data. In par­tic­u­lar, we show that VAEs may have the pos­si­bil­ity to out­per­form other di­men­sion­al­ity re­duc­tion tech­niques that have his­tor­i­cally been used to an­a­lyze such data. When the data col­lec­tion pe­riod is lim­ited, or the data is noisy, VAEs may offer sig­nif­i­cant ad­van­tages.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK038  
About • Received ※ 09 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK046 Design Concept for a Second Interaction Region for the Electron-Ion Collider electron, hadron, collider, detector 564
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, T.J. Michalski, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, C. Weiss, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, K.A. Drees, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177, Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and UT-Battelle, LLC, under contract No. DE-AC05-00OR22725
In ad­di­tion to the day-one pri­mary In­ter­ac­tion Re­gion (IR), the de­sign of the Elec­tron Ion Col­lider (EIC) must sup­port op­er­a­tion of a 2nd IR po­ten­tially added later. The 2nd IR is en­vi­sioned in an ex­ist­ing ex­per­i­men­tal hall at RHIC IP8, com­pat­i­ble with the same beam en­ergy com­bi­na­tions as the 1st IR over the full cen­ter of mass en­ergy range of ~20 GeV to ~140 GeV. The 2nd IR is de­signed to be com­ple­men­tary to the 1st IR. In par­tic­u­lar, a sec­ondary focus is added in the for­ward ion di­rec­tion of the 2nd IR hadron beam­line to op­ti­mize its ca­pa­bil­ity in de­tect­ing par­ti­cles with mag­netic rigidi­ties close to those of the ion beam. We pro­vide the cur­rent de­sign sta­tus of the 2nd IR in terms of pa­ra­me­ters, mag­net lay­out and beam dy­nam­ics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK046  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK050 Linac Optics Optimization with Multi-Objective Optimization linac, lattice, quadrupole, controls 572
 
  • I. Neththikumara, T. Satogata
    ODU, Norfolk, Virginia, USA
  • R.M. Bodenstein, S.A. Bogacz, T. Satogata
    JLab, Newport News, Virginia, USA
  • A. Vandenhoeke
    ULB, Bruxelles, Belgium
 
  Funding: This material is based upon work supported by the U.S. Department of Energy under contract DE-AC05-06OR23177.
The beam­line de­sign of re­cir­cu­lat­ing linacs re­quires spe­cial at­ten­tion to avoid beam in­sta­bil­i­ties due to RF wake­fields. A pro­posed high-en­ergy, multi-pass en­ergy re­cov­ery demon­stra­tion at CEBAF uses a low beam cur­rent. Stronger fo­cus­ing at lower en­er­gies is nec­es­sary to avoid beam breakup(BBU) in­sta­bil­i­ties, even with this small beam cur­rent. The CEBAF linac op­tics op­ti­miza­tion bal­ances over-fo­cus­ing at higher en­er­gies and beta ex­cur­sions at lower en­er­gies. Using proper math­e­mat­i­cal ex­pres­sions, linac op­tics op­ti­miza­tion can be achieved with evo­lu­tion­ary al­go­rithms. Here, we pre­sent the op­ti­miza­tion process of North Linac op­tics using multi-ob­jec­tive op­ti­miza­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK050  
About • Received ※ 31 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK053 RLAs with FFA Arcs for Protons and Electrons cavity, linac, SRF, hadron 584
 
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J.F. Benesch, R.M. Bodenstein, S.A. Bogacz, A. Coxe, K.E. Deitrick, D. Douglas, B.R. Gamage, G.A. Krafft, K.E.Price. Price, Y. Roblin, A. Seryi
    JLab, Newport News, Virginia, USA
  • J.S. Berg, S.J. Brooks, F. Méot, D. Trbojevic
    BNL, Upton, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Authored in part by UT-Battelle, LLC, Jefferson Science Associates, LLC, and Brookhaven Science Associates, LLC under Contracts DE-AC05-00OR22725, DE-AC05-06OR23177, and DE-SC0012704 with the US DOE.
Re­cir­cu­lat­ing Lin­ear Ac­cel­er­a­tors (RLAs) pro­vide an ef­fi­cient way of pro­duc­ing high-power, high-qual­ity, con­tin­u­ous-wave hadron and lep­ton beams. How­ever, their at­trac­tive­ness had been lim­ited by the cum­ber­some­ness of mul­ti­ple re­cir­cu­lat­ing arcs and by the com­plex­ity of the spreader and re­com­biner re­gions. The lat­ter prob­lem sets one of the prac­ti­cal lim­i­ta­tions on the max­i­mum num­ber of re­cir­cu­la­tions. We pre­sent an RLA de­sign con­cept where the prob­lem of mul­ti­ple arcs is solved using the Fixed-Field Al­ter­nat­ing gra­di­ent (FFA) de­sign as in CBETA. The spreader/re­com­biner de­sign is greatly sim­pli­fied using an adi­a­batic match­ing ap­proach. It al­lows for the spreader/re­com­biner func­tion to be ac­com­plished by a sin­gle beam line. The con­cept is ap­plied to the de­signs of a high-power hadron ac­cel­er­a­tor being con­sid­ered at ORNL and a CEBAF elec­tron en­ergy dou­bling pro­ject, FFA@​CEBAF, being de­vel­oped at Jef­fer­son lab.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK053  
About • Received ※ 10 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOZSP1 Prospects for Optics Measuements in FCC-ee damping, dipole, collider, radiation 827
 
  • J. Keintzel, R. Tomás García, F. Zimmermann
    CERN, Meyrin, Switzerland
 
  Within the frame­work of the Fu­ture Cir­cu­lar Col­lider Fea­si­bil­ity Study, the de­sign of the elec­tron-positron col­lider FCC-ee is op­ti­mised, as a pos­si­ble fu­ture dou­ble col­lider ring, cur­rently fore­seen to start op­er­a­tion dur­ing the 2040s. With close to 100 km of cir­cum­fer­ence and strong syn­chro­tron ra­di­a­tion damp­ing at high­est beam en­ergy, ad­e­quate beam mea­sure­ments are needed to con­trol the op­tics at the de­sired level. Var­i­ous pos­si­ble tech­niques to mea­sure the op­tics in FCC-ee are ex­plored, in­clud­ing the op­tion of turn-by-turn mea­sure­ments in com­bi­na­tion with an AC-di­pole.  
slides icon Slides TUOZSP1 [2.738 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOZSP1  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS006 FILO: A New Application to Correct Optics in the ESRF-EBS Storage Ring SRF, quadrupole, lattice, operation 1401
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Farvacque, L. Hoummi, T.P. Perron, B. Roche, B. Vedder, S.M. White
    ESRF, Grenoble, France
 
  A new op­tics cor­rec­tion ap­pli­ca­tion (Fit and Im­prove­ment of Lin­ear Op­tics, FILO) was de­signed and set in place for the ESRF-EBS stor­age ring. The widely used soft­ware LOCO* is not avail­able at ESRF and de­spite a few tri­als to set it in op­er­a­tion, it has been de­cided to write a new code. The ap­pli­ca­tion is flex­i­ble, may be used via the con­trol sys­tem sim­u­la­tors and is adapted to a user friendly op­er­a­tion thanks to a wiz­ard mode. Some fea­tures of LOCO are copied over, some oth­ers are yet to be im­ple­mented. The mea­sure­ment of on and off-en­ergy re­sponse ma­tri­ces using slow or fast steer­ers is in­te­grated in the same ap­pli­ca­tion. Re­sults ob­tained with this ap­pli­ca­tion are pre­sented to­gether with an overview of the fu­ture de­vel­op­ments.
*J Safranek, Experimental determination of storage ring optics using orbit response measurements, https://doi.org/10.1016/S0168-9002(97)00309-4
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS006  
About • Received ※ 19 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS008 Lifetime Correction Using Fast-Off-Energy Response Matrix Measurements sextupole, simulation, lattice, operation 1409
 
  • S.M. Liuzzo, N. Carmignani, L.R. Carver, L. Hoummi, T.P. Perron, B. Roche, S.M. White
    ESRF, Grenoble, France
 
  Fol­low­ing the mea­sure­ments done at MAX-IV * we try to ex­ploit for the ESRF-EBS Stor­age Ring (SR) off-en­ergy re­sponse ma­trix mea­sure­ment for the op­ti­miza­tion of Tou­schek life­time. The mea­sure­ments per­formed with fast AC steer­ers on- and off-en­ergy are an­a­lyzed and fit­ted pro­duc­ing an ef­fec­tive model in­clud­ing quadru­pole and sex­tu­pole er­rors. Sev­eral al­ter­na­tives to ex­trap­o­late sex­tupoles strengths for cor­rec­tion are com­pared in terms of life­time. For the time being none of the cor­rec­tions could pro­duce bet­ter life­time than the ex­ist­ing em­pir­i­cally op­ti­mized set of sex­tupoles.
*D.Olsson et al., Nonlinear optics from off-energy closed orbits, 10.1103/PhysRevAccelBeams.23.102803
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS008  
About • Received ※ 19 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS018 Error Analysis and Commissioning Simulation for the PETRA-IV Storage Ring lattice, simulation, MMI, storage-ring 1442
 
  • T. Hellert, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, Y.-C. Chae, D. Einfeld, M.A. Jebramcik, J. Keil
    DESY, Hamburg, Germany
 
  The up­grade of the PE­TRA-III stor­age ring into a dif­frac­tion lim­ited syn­chro­tron ra­di­a­tion source is near­ing the end of its de­tailed tech­ni­cal de­sign phase. We pre­sent a pre­lim­i­nary com­mis­sion­ing sim­u­la­tion for PE­TRA-IV demon­strat­ing that the final cor­rected ma­chines meet the per­for­mance de­sign goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS018  
About • Received ※ 10 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST008 Optics Correction Strategy for Run 3 of the LHC coupling, MMI, injection, quadrupole 1687
 
  • T.H.B. Persson, F.S. Carlier, A. Costa Ojeda, J. Dilly, V. Ferrentino, E. Fol, H. García Morales, M. Hofer, E.J. Høydalsvik, J. Keintzel, M. Le Garrec, E.H. Maclean, L. Malina, F. Soubelet, R. Tomás García, A. Wegscheider, L. van Riesen-Haupt
    CERN, Meyrin, Switzerland
  • J.F. Cardona
    UNAL, Bogota D.C, Colombia
 
  After al­most 4 years of shut­down the LHC is again op­er­a­tional in 2022. Ex­pe­ri­ence from the pre­vi­ous Long Shut­down (LS) has shown that the local er­rors around the triplet mag­nets changed sig­nif­i­cantly and it is likely we will again see dif­fer­ent er­rors in 2022. In the LHC there is an in­ter­play be­tween the lin­ear and the non­lin­ear cor­rec­tion which can make the cor­rec­tions dif­fi­cult and time-con­sum­ing to find. In this ar­ti­cle, we de­scribe the mea­sure­ments and cor­rec­tions per­formed dur­ing the com­mis­sion­ing in 2022 in order to con­trol both the lin­ear and the non­lin­ear op­tics to high pre­ci­sion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST008  
About • Received ※ 08 June 2022 — Revised ※ 25 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST011 Studies on Top-Up Injection into the FCC-ee Collider Ring injection, kicker, collider, lattice 1699
 
  • P.J. Hunchak, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • W. Bartmann, Y. Dutheil, M. Hofer, R.L. Ramjiawan, F. Zimmermann
    CERN, Meyrin, Switzerland
  • M.J. Boland
    University of Saskatchewan, Saskatoon, Canada
 
  In order to max­i­mize the lu­mi­nos­ity pro­duc­tion time in the FCC-ee, top-up in­jec­tion will be em­ployed. The positron and elec­tron beams will be ac­cel­er­ated to the col­li­sion en­ergy in the booster ring be­fore being in­jected with ei­ther a small trans­verse or lon­gi­tu­di­nal sep­a­ra­tion to the stored beam. Using this scheme es­sen­tially keeps the beam cur­rent con­stant and, apart from a brief pe­riod dur­ing the in­jec­tion process, col­li­sion data can be con­tin­u­ously ac­quired. Two top-up in­jec­tion schemes, each with on- and off-mo­men­tum sub-schemes, vi­able for FCC-ee have been iden­ti­fied in the past and are stud­ied in fur­ther de­tail to find a suit­able de­sign for each of the four op­er­a­tion modes of the FCC-ee. In this paper, in­jec­tion straight op­tics, ini­tial in­jec­tion track­ing stud­ies and the ef­fect on the stored beam are pre­sented. Ad­di­tion­ally, a basic proxy error lat­tice is in­tro­duced as a first step to study­ing in­jec­tion into an im­per­fect ma­chine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST011  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST015 Implementation of a Tune Sweep Slow Extraction with Constant Optics at MedAustron extraction, simulation, betatron, operation 1715
 
  • P.A. Arrutia Sota, M.A. Fraser, B. Goddard, V. Kain, F.M. Velotti
    CERN, Meyrin, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
  • A. De Franco
    QST Rokkasho, Aomori, Japan
  • F. Kuehteubl, M.T.F. Pivi, D.A. Prokopovich
    EBG MedAustron, Wr. Neustadt, Austria
 
  Con­ven­tional slow ex­trac­tion dri­ven by a tune sweep per­turbs the op­tics and changes the pre­sen­ta­tion of the beam sep­a­ra­trix to the ex­trac­tion sep­tum dur­ing the spill. The con­stant op­tics slow ex­trac­tion (COSE) tech­nique, re­cently de­vel­oped and de­ployed op­er­a­tionally at the CERN Super Pro­ton Syn­chro­tron to re­duce beam loss on the ex­trac­tion sep­tum, was im­ple­mented at MedAus­tron to fa­cil­i­tate ex­trac­tion with a tune sweep of op­er­a­tional beam qual­ity. COSE fixes the op­tics of the ex­tracted beam by scal­ing all ma­chine set­tings with the beam rigid­ity fol­low­ing the ex­tracted beam’s mo­men­tum. In this con­tri­bu­tion the im­ple­men­ta­tion of the COSE ex­trac­tion tech­nique is de­scribed be­fore it is com­pared to the con­ven­tional tune sweep and op­er­a­tional be­ta­tron core dri­ven cases using both sim­u­la­tions and re­cent mea­sure­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST015  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST017 Design of a Collimation Section for the FCC-ee collimation, collider, operation, quadrupole 1722
 
  • M. Hofer, A. Abramov, R. Bruce, K. Oide, F. Zimmermann
    CERN, Meyrin, Switzerland
  • M. Moudgalya, T. Pieloni
    EPFL, Lausanne, Switzerland
  • K. Oide
    KEK, Ibaraki, Japan
 
  The de­sign pa­ra­me­ters of the FCC-ee fore­see op­er­a­tion with a total stored beam en­ergy of about 20 MJ, ex­ceed­ing those of pre­vi­ous lep­ton col­lid­ers by al­most two or­ders of mag­ni­tude. Given the in­her­ent dam­age po­ten­tial, a halo col­li­ma­tion sys­tem is stud­ied to pro­tect the ma­chine hard­ware, in par­tic­u­lar su­per­con­duct­ing equip­ment such as the final focus quadrupoles, from sud­den beam loss. The dif­fer­ent con­straints that led to ded­i­cat­ing one straight sec­tion to col­li­ma­tion will be out­lined. In ad­di­tion, a pre­lim­i­nary lay­out and op­tics for a col­li­ma­tion in­ser­tion are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST017  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST023 Design of a Very Low Energy Beamline for NA61/SHINE experiment, target, detector, radiation 1741
 
  • C.A. Mussolini, N. Charitonidis
    CERN, Meyrin, Switzerland
  • P. Burrows, C.A. Mussolini
    JAI, Oxford, United Kingdom
  • P. Burrows, C.A. Mussolini
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • Y. Nagai
    Colorado University at Boulder, Boulder, Colorado, USA
  • E.D. Zimmerman
    CIPS, Boulder, Colorado, USA
 
  A new, low-en­ergy branch is being de­signed for the H2 beam­line at the CERN North Ex­per­i­men­tal Area. This new low-en­ergy branch would ex­tend the ca­pa­bil­i­ties of the cur­rent in­fra­struc­ture en­abling the study of par­ti­cles in the low, 1 - 13 GeV/c, mo­men­tum range. The first ex­per­i­ment to profit from this new line will be NA61/SHINE (SPS Heavy Ion and Neu­trino Ex­per­i­ment), a multi-pur­pose ex­per­i­ment study­ing hadron pro­duc­tion in hadron-pro­ton, hadron-nu­cleus and nu­cleus-nu­cleus col­li­sions at the SPS. How­ever, other fu­ture fixed tar­get ex­per­i­ments or test-beam ex­per­i­ments in­stalled in the down­stream zones could also ben­e­fit from the low-en­ergy par­ti­cles pro­vided. The pro­posed lay­out and ex­pected per­for­mance of this line, along with es­ti­mates of par­ti­cle rates, and con­sid­er­a­tions on the tech­ni­cal im­ple­men­ta­tion of the beam­line are pre­sented in this con­tri­bu­tion. A de­scrip­tion on the in­stru­men­ta­tion, which will en­able par­ti­cle-by-par­ti­cle tag­ging, cru­cial for the ex­per­i­ments scope, is also dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST023  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 29 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST024 Physics Beyond Colliders: The Conventional Beams Working Group experiment, proton, kaon, target 1745
 
  • C.A. Mussolini, D. Banerjee, A. Baratto Roldan, J. Bernhard, M. Brugger, N. Charitonidis, G.L. D’Alessandro, L. Gatignon, A. Gerbershagen, F. Metzger, R.P. Murphy, E.G. Parozzi, S.M. Schuh-Erhard, F.W. Stummer, M.W.U. Van Dijk
    CERN, Meyrin, Switzerland
  • F. Metzger
    HISKP, Bonn, Germany
  • R.P. Murphy, F.W. Stummer
    Royal Holloway, University of London, Surrey, United Kingdom
  • C.A. Mussolini, F.W. Stummer
    JAI, Oxford, United Kingdom
  • C.A. Mussolini
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • E.G. Parozzi
    Universita Milano Bicocca, MILANO, Italy
  • E.G. Parozzi
    INFN MIB, MILANO, Italy
 
  The Physics Be­yond Col­lid­ers ini­tia­tive aims to ex­ploit the full sci­en­tific po­ten­tial of the CERN ac­cel­er­a­tor com­plex and its sci­en­tific in­fra­struc­ture for par­ti­cle physics stud­ies, com­ple­men­tary to cur­rent and fu­ture col­lider ex­per­i­ments. Sev­eral ex­per­i­ments have been pro­posed to fully uti­lize and fur­ther ad­vance the beam op­tions for the ex­ist­ing fixed tar­get ex­per­i­ments pre­sent in the North and East Ex­per­i­men­tal Areas of the CERN SPS and PS ac­cel­er­a­tors. We re­port on progress with the RF-sep­a­rated beam op­tion for the AMBER ex­per­i­ment, fol­low­ing a re­cent work­shop on this topic. In ad­di­tion we cover the sta­tus of stud­ies for ion beams for the NA60+ ex­per­i­ment, as well as of those for high in­ten­sity beams for Kaon physics and fee­bly in­ter­act­ing par­ti­cle searches. With first beams avail­able in 2021 after a CERN-wide long shut­down, sev­eral muon beam op­tions were al­ready tested for the NA64mu, MUonE and AMBER ex­per­i­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST024  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT007 First Interaction Region Local Coupling Corrections in the LHC Run 3 coupling, quadrupole, MMI, experiment 1838
 
  • F. Soubelet, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Ö. Apsimon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This research is supported by the LIV. DAT Center for Doctoral Training, STFC and the European Organization for Nuclear Research
The suc­cess­ful op­er­a­tion of large scale par­ti­cle ac­cel­er­a­tors de­pends on the pre­cise cor­rec­tion of un­avoid­able mag­netic field or mag­net align­ment er­rors pre­sent in the ma­chine. Dur­ing the LHC Run 2, local lin­ear cou­pling in the in­ter­ac­tion re­gions (IR) was shown to have a sig­nif­i­cant im­pact on the beam size, mak­ing its proper han­dling a ne­ces­sity for Run 3 and the High Lu­mi­nos­ity LHC (HL-LHC). A new ap­proach to ac­cu­rately min­imise the local IR lin­ear cou­pling based on cor­re­lated ex­ter­nal vari­ables such as the |C-| had been pro­posed, which re­lies on the ap­pli­ca­tion of a rigid waist shift in order to cre­ate an asym­me­try in the IR op­tics. In this con­tri­bu­tion, pre­lim­i­nary cor­rec­tions from the 2021 beam test and the early 2022 com­mis­sion­ing are pre­sented, as well as first re­sults of the new method’s ex­per­i­men­tal con­fig­u­ra­tion tests in the LHC Run 3 com­mis­sion­ing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT007  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT008 Supervised Machine Learning for Local Coupling Sources Detection in the LHC coupling, quadrupole, network, simulation 1842
 
  • F. Soubelet, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Ö. Apsimon, C.P. Welsch
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Funding: This research is supported by the LIV. DAT Center for Doctoral Training, STFC and the European Organization for Nuclear Research
Local in­ter­ac­tion re­gion (IR) lin­ear cou­pling in the LHC has been shown to have a neg­a­tive im­pact on beam size and lu­mi­nos­ity, mak­ing its ac­cu­rate cor­rec­tion for Run 3 and be­yond a ne­ces­sity. In view of de­ter­min­ing cor­rec­tions, su­per­vised ma­chine learn­ing has been ap­plied to the de­tec­tion of lin­ear cou­pling sources, show­ing promis­ing re­sults in sim­u­la­tions. An eval­u­a­tion of dif­fer­ent ap­plied mod­els is given, fol­lowed by the pre­sen­ta­tion of fur­ther pos­si­ble ap­pli­ca­tion con­cepts for lin­ear cou­pling cor­rec­tions using ma­chine learn­ing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT008  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT010 Progress on Action Phase Jump for LHC Local Optics Correction simulation, quadrupole, operation, interaction-region 1850
 
  • J.F. Cardona, Y. Rodriguez Garcia
    UNAL, Bogota D.C, Colombia
  • H. García Morales, M. Hofer, E.H. Maclean, T.H.B. Persson, R. Tomás García
    CERN, Meyrin, Switzerland
  • Y. Rodriguez Garcia
    UAN, Bogotá D.C., Colombia
 
  The cor­rec­tion of the local op­tics at the In­ter­ac­tion Re­gions of the LHC is cru­cial to en­sure a good per­for­mance of the ma­chine. This is even more im­por­tant for the fu­ture LHC up­grade, HL-LHC, where the op­tics is more sen­si­tive to mag­netic er­rors. For that rea­son, it is im­por­tant to ex­plore al­ter­na­tive tech­niques for local op­tics cor­rec­tions. In this paper, we eval­u­ate the per­for­mance of the Ac­tion Phase Jump method for op­tics cor­rec­tion in the LHC and the HL-LHC and ex­plore ways to in­te­grate this tech­nique in reg­u­lar op­er­a­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT010  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT012 MAD-X for Future Accelerators coupling, closed-orbit, GUI, simulation 1858
 
  • T.H.B. Persson, H. Burkhardt, R. De Maria, L. Deniau, E.J. Høydalsvik, A. Latina, P.K. Skowroński, R. Tomás García, L. van Riesen-Haupt
    CERN, Meyrin, Switzerland
 
  The de­vel­op­ment of MAD-X was started more than 20 years ago and it still re­mains the main tool for sin­gle par­ti­cle dy­nam­ics for both op­tics de­sign, error stud­ies as well as for op­er­a­tional model-based soft­ware at CERN. In this ar­ti­cle, we out­line some of the re­cent de­vel­op­ment of MAD-X and plans for the fu­ture. In par­tic­u­lar, we focus on the de­vel­op­ment of the twiss mod­ule used to cal­cu­late op­tics func­tions in MAD-X which is based on first and sec­ond order ma­tri­ces. These have tra­di­tion­ally been cal­cu­lated as an ex­pan­sion around the ideal orbit. In this paper, we de­scribe ex­plic­itly how an ex­pan­sion around the closed orbit can be em­ployed in­stead, in order to get more pre­cise re­sults. We also de­scribe the lat­est de­vel­op­ment of the beam-beam long range wire com­pen­sator in MAD-X, an el­e­ment that has been im­ple­mented using the afore­men­tioned ap­proach.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT012  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT016 Beam-Based Reconstruction of the Shielded Quench-Heater Fields for the LHC Main Dipoles dipole, shielding, operation, injection 1874
 
  • L.C. Richtmann, L. Bortot, E. Ravaioli, C. Wiesner, D. Wollmann
    CERN, Meyrin, Switzerland
 
  Small orbit os­cil­la­tions of the cir­cu­lat­ing par­ti­cle beams have been ob­served im­me­di­ately fol­low­ing quenches in the LHC’s su­per­con­duct­ing main di­pole mag­nets. Mag­netic fields gen­er­ated dur­ing the dis­charge into the quench heaters were iden­ti­fied as the cause. Since the re­sult­ing, shielded field in­side the beam screen can­not be mea­sured in-situ, the time evo­lu­tion of the field has to be re­con­structed from the mea­sured beam ex­cur­sions. In this paper, the field-re­con­struc­tion method using ro­ta­tion in nor­mal­ized phase space and the op­ti­mized fit­ting al­go­rithm are de­scribed. The re­sult­ing rise times and mag­netic field lev­els are pre­sented for quench events that oc­curred dur­ing reg­u­lar op­er­a­tion as well as for ded­i­cated beam ex­per­i­ments. Fi­nally, dif­fer­ent ap­proaches to model the shield­ing be­hav­ior of the beam screen are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT016  
About • Received ※ 16 May 2022 — Accepted ※ 13 June 2022 — Issue date ※ 26 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT017 First Optics Design for a Transverse Monochromatic Scheme for the Direct S-Channel Higgs Production at FCC-ee Collider collider, positron, luminosity, site 1878
 
  • H.P. Jiang
    Harbin Institute of Technology (HIT) , Harbin, People’s Republic of China
  • A. Faus-Golfe, Z.D. Zhang
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • K. Oide
    KEK, Ibaraki, Japan
  • Z.D. Zhang
    IHEP, Beijing, People’s Republic of China
  • Z.D. Zhang
    UCAS, Beijing, People’s Republic of China
  • F. Zimmermann
    CERN, Meyrin, Switzerland
 
  The FCC-ee col­lider base­line fore­sees four dif­fer­ent en­ergy op­er­a­tion modes: Z, WW, H(ZH) and ttbar. An op­tional fifth mode, called s-chan­nel Higgs pro­duc­tion mode, could allow the mea­sure­ment of the elec­tron Yukawa cou­pling, in ded­i­cated runs at 125 GeV cen­tre-of-mass en­ergy, pro­vided that the cen­tre-of-mass en­ergy spread, can be re­duced by at least an order of mag­ni­tude (5-10 MeV). The use of a spe­cial col­li­sion tech­nique: a mono­chrom­a­ti­za­tion scheme is one way to ac­com­plish it. There are sev­eral meth­ods to im­ple­ment a mono­chrom­a­ti­za­tion scheme. One method, named trans­verse mono­chrom­a­ti­za­tion scheme, con­sists of in­tro­duc­ing a dis­per­sion dif­fer­ent from zero but op­po­site sign for the two col­lid­ing beams at the In­ter­ac­tion Point (IP); In this paper we will re­port about the first at­tempt to de­sign a new op­tics to im­ple­ment a trans­verse mono­chro­matic scheme for the FCC-ee Higgs pro­duc­tion to­tally com­pat­i­ble with the stan­dard mode of op­er­a­tion with­out dis­per­sion at the IP.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT017  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT019 RHIC Blue Snake Blues polarization, closed-orbit, operation, simulation 1881
 
  • F. Méot, E.C. Aschenauer, H. Huang, A. Marusic, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, V. Schoefer
    BNL, Upton, New York, USA
 
  Funding: Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Two he­li­cal full snakes are used in both Blue and Yel­low rings of RHIC col­lider, in order to pre­serve beam po­lar­iza­tion dur­ing ac­cel­er­a­tion to col­li­sion en­ergy and po­lar­iza­tion life­time at store. A snake in RHIC is com­prised of four 2.4m long mod­ules, pow­ered by pair. Dur­ing the startup of RHIC Run 22 in De­cem­ber 2021, two suc­ces­sive power dips have caused the 9 o’clock RHIC BlBrookhaven Sci­ence As­so­ci­ates, LLC under Con­tract No. DE-AC02-98CH10886 with the U.S. De­part­ment of Energy.​ue ring snake to loose two of its four mod­ules. In spite of this re­gret­table loss, it has been pos­si­ble to main­tain near 180deg snake pre­ces­sion, by proper pow­er­ing of the re­main­ing two mod­ules, as well as, by re-tun­ing the 3 o’clock sis­ter snake, ver­ti­cal spin pre­ces­sion axis around the ring and spin tune 1/2. De­ter­min­ing these new set­tings, in order to sal­vage po­lar­iza­tion with the hand­i­capped Blue snake pair, has re­quired se­ries of nu­mer­i­cal sim­u­la­tions, a brief overview is given here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT019  
About • Received ※ 03 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT035 Optics for Strong Hadron Cooling in EIC HSR-IR2 electron, hadron, kicker, cavity 1920
 
  • S. Peggs, W.F. Bergan, D. Bruno, Y. Gao, D. Holmes, R.F. Lambiase, C. Liu, H. Lovelace III, G.J. Mahler, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, E. Wang, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • S.V. Benson, T.J. Michalski
    JLab, Newport News, Virginia, USA
  • F. Micolon
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC001 2704, and by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
In­ser­tion Re­gion 2 (IR2) of the Rel­a­tivis­tic Heavy Ion Col­lider will be mod­i­fied to ac­com­mo­date a Strong Hadron Cool­ing fa­cil­ity in the Hadron Stor­age Ring (HSR) of the Elec­tron-Ion Col­lider (EIC). This paper de­scribes the cur­rent proof-of-prin­ci­ple de­sign of HSR-IR2 - lay­out, op­ti­cal per­for­mance, de­sign method­ol­ogy, and en­gi­neer­ing re­quire­ments. It also de­scribes the chal­lenges and op­por­tu­ni­ties in the fu­ture de­vel­op­ment of the HSR-IR2 de­sign, in order to fur­ther op­ti­mize Strong Hadron Cool­ing per­for­mance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT035  
About • Received ※ 02 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT043 Dynamic Aperture of the EIC Electron Storage Ring sextupole, lattice, quadrupole, electron 1950
 
  • Y.M. Nosochkov, Y. Cai
    SLAC, Menlo Park, California, USA
  • J.S. Berg, J. Kewisch, Y. Li, D. Marx, C. Montag, S. Tepikian, H. Witte
    BNL, Upton, New York, USA
  • G.H. Hoffstaetter, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515, by Brookhaven Science Associates, LLC under Contract DE-SC0012704, and by the Ernest Courant Traineeship in Accelerator Science and Technology Award No. DE-SC0020375.
The Elec­tron Ion Col­lider (EIC) is under de­sign at Brookhaven Na­tional Lab­o­ra­tory. The EIC aims at pro­vid­ing high lu­mi­nos­ity and high po­lar­iza­tion col­li­sions for a large range of beam en­er­gies. Dy­namic aper­ture (DA) of the EIC Elec­tron Stor­age Ring (ESR) must be suf­fi­ciently large in both trans­verse and mo­men­tum di­men­sions. The lat­ter is a chal­lenge due to low-beta op­tics in up to two in­ter­ac­tion re­gions (IR). We have de­vel­oped an ad­vanced tech­nique for ef­fi­cient non-lin­ear chro­matic­ity com­pen­sa­tion com­pat­i­ble with the dif­fer­ent ESR lat­tice con­fig­u­ra­tions at dif­fer­ent en­er­gies. The so­lu­tion for the most chal­leng­ing lat­tice with two IRs at 18 GeV is pre­sented. The lat­tice is then eval­u­ated with mag­net er­rors, where the error tol­er­ances are de­ter­mined for reach­ing the de­sired DA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT043  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 01 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT047 Beam Optics of the Injection/Extraction and Beam Transfer in the Electron Rings of the EIC Project injection, extraction, electron, kicker 1964
 
  • N. Tsoupas, D. Holmes, C. Liu, C. Montag, V. Ptitsyn, V.H. Ranjbar, J. Skaritka, J.E. Tuozzolo, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) pro­ject* has been ap­proved by the De­part­ment of En­ergy to be built at the site of Brookhaven Na­tional Lab­o­ra­tory (BNL). The goal of the pro­ject is the col­li­sion of en­er­getic (of many GeV/amu) ion species with elec­tron bunches of en­er­gies up to 18 GeV. The EIC in­cludes two elec­tron rings, the Rapid Cy­cling Syn­chro­tron (RCS) which ac­cel­er­ates the elec­tron beam up to 18 GeV, and the Elec­tron Stor­age Ring (ESR) which stores the elec­tron beam for col­li­sions with hadron beam, both to be in­stalled in the same tun­nel as the Hadron Stor­age Ring (HSR). This paper dis­cusses the lay­out and the beam op­tics of the in­jec­tion/ex­trac­tion beam lines the elec­tron rings and the beam op­tics of the trans­fer line from the RCS to the ESR ring.
* https://www.bnl.gov/eic/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT047  
About • Received ※ 05 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT060 Controlling Landau Damping via Feed-Down From High-Order Correctors in the LHC and HL-LHC target, simulation, MMI, controls 1995
 
  • J. Dilly, E.H. Maclean, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the HiLumi Project and been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Re-search.
Am­pli­tude de­tun­ing mea­sure­ments in the LHC have shown that a sig­nif­i­cant amount of de­tun­ing is gen­er­ated in Beam 1 via feed-down from de­ca­pole and do­de­ca­pole field er­rors in the triplets of the ex­per­i­ment in­ser­tion re­gions, while in Beam 2 this de­tun­ing is neg­li­gi­ble. In this study, we in­ves­ti­gate the cause of this be­hav­ior and we at­tempt to find cor­rec­tions that use the feed-down from the non­lin­ear cor­rec­tors in the in­ser­tion re­gion for am­pli­tude de­tun­ing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT060  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT061 A Flexible Nonlinear Resonance Driving Term Based Correction Algorithm with Feed-Down luminosity, resonance, dipole, insertion 1999
 
  • J. Dilly, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the HiLumi Project and been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Re-search.
The op­tics in the in­ser­tion re­gions of the LHC and its up­grade pro­ject the High Lu­mi­nos­ity LHC are very sen­si­tive to local mag­netic er­rors, due to the ex­tremely high beta-func­tions. In col­li­sion op­tics, the non-zero closed orbit in the same re­gion leads to a "feed-down" of high-or­der er­rors to lower or­ders, caus­ing ad­di­tional ef­fects detri­men­tal to beam life­time. An ex­ten­sion to the well-es­tab­lished method for cor­rect­ing these er­rors by lo­cally sup­press­ing res­o­nance dri­ving terms has been un­der­taken, not only tak­ing this feed-down into ac­count, but also adding the pos­si­bil­ity of uti­liz­ing it such that the pow­er­ing of higher-or­der cor­rec­tors will com­pen­sate for lower order er­rors. Ex­ist­ing cor­rec­tion schemes have also op­er­ated on the as­sump­tion of (anti-)sym­met­ric beta-func­tions of the op­tics in the two rings. This as­sump­tion can fail for a mul­ti­tude of rea­sons, such as in­her­ently asym­met­ric op­tics and un­evenly dis­trib­uted er­rors. In this re­spect, an ex­ten­sion of this cor­rec­tion scheme has been de­vel­oped, re­mov­ing the need for sym­me­try by op­er­at­ing on the two sep­a­rate op­tics of the beams si­mul­ta­ne­ously.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT061  
About • Received ※ 07 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK006 Proton Beamline Simulations for the High Intensity Muon Beamline at PSI target, simulation, proton, cyclotron 2036
 
  • M. Haj Tahar, D.C. Kiselev, A. Knecht, D. Laube, D. Reggiani, J. Snuverink, V. Talanov
    PSI, Villigen PSI, Switzerland
 
  The High In­ten­sity Pro­ton Ac­cel­er­a­tor (HIPA) cy­clotron at the Paul Scher­rer In­sti­tut (PSI) de­liv­ers 590 MeV CW pro­ton beam with a max­i­mum power of 1.42 MW. After ex­trac­tion, the beam is trans­ferred in a 120 m long chan­nel to­wards two tar­get sta­tions (TgM and TgE) be­fore de­posit­ing its re­main­ing power at the spal­la­tion tar­get SINQ for neu­tron pro­duc­tion. As part of the High In­ten­sity Muon Beam­line (HIMB) fea­si­bil­ity study, which be­longs to the IM­PACT (Iso­tope and Muon Pro­duc­tion using Ad­vanced Cy­clotron and Tar­get tech­nolo­gies) ini­tia­tive, the first of these tar­gets will be re­placed with a thicker one and its geom­e­try opti- mized thereby specif­i­cally boost­ing the emis­sion of sur­face muons. In order to as­sess the im­pact of the changes on the pro­ton beam­line, BDSIM/GEANT4 sim­u­la­tions were per­formed with the re­al­is­tic tech­ni­cal de­sign of the tar­get in­sert, the col­li­ma­tion sys­tem was re­designed and the power de­po­si­tions were bench­marked with MCNP6. In this paper, we dis­cuss the major changes and chal­lenges for HIMB as well as the key con­sid­er­a­tions in re­design­ing the op­tics of the high power beam in the vicin­ity of the tar­get sta­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK006  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK014 Hadron Storage Ring 4 O’clock Injection Design and Optics for the Electron-Ion Collider injection, electron, septum, dipole 2068
 
  • H. Lovelace III, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, C. Liu, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, D. Weiss
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, Virginia, USA
 
  The Hadron Stor­age Ring (HSR) of the Elec­tron-Ion Col­lider (EIC) will ac­cel­er­ate pro­tons and heavy ions up to a pro­ton en­ergy of 275 GeV and an Au+79 110 GeV/u to col­lide with elec­trons of en­er­gies up to 18 GeV. To ac­com­plish the ac­cel­er­a­tion process, the hadrons are pre-ac­cel­er­ated in the Al­ter­nat­ing Gra­di­ent Syn­chro­tron (AGS), ex­tracted, and trans­ferred to HSR for in­jec­tion. The planned area for in­jec­tion is the cur­rent Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) 4 o’clock straight sec­tion. To in­ject hadrons, a se­ries of mod­i­fi­ca­tions must be made to the ex­ist­ing RHIC 4 o’clock straight sec­tion to ac­com­mo­date for the 20 new ~18 ns in­jec­tion kick­ers and a new in­jec­tion sep­tum, while pro­vid­ing suf­fi­cient space and proper beam con­di­tions for po­larime­try equip­ment. These mod­i­fi­ca­tions will be dis­cussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK014  
About • Received ※ 02 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK034 LHC Beam Collimation During Extended β*-Levelling in Run 3 collimation, luminosity, operation, experiment 2138
 
  • F.F. Van der Veken, R. Bruce, M. Hostettler, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  Dur­ing the third op­er­a­tional Run of the Large Hadron Col­lider at CERN, start­ing in 2022, the bunch pop­u­la­tion will be in­creased to un­prece­dented lev­els re­quir­ing to de­ploy β*-lev­el­ling of the lu­mi­nos­ity over a wide range of val­ues to cope with the lim­i­ta­tions im­posed by event pile-up at the ex­per­i­ments and heat load on the triplets in­duced by col­li­sion de­bris. Dur­ing this lev­el­ling, both beam op­tics and orbit change in var­i­ous areas of the ring, in par­tic­u­lar around the high-lu­mi­nos­ity ex­per­i­ments, where sev­eral col­li­ma­tors are in­stalled. This re­quires adapt­ing the col­li­ma­tion sys­tem set­tings ad­e­quately, in par­tic­u­lar for the ter­tiary col­li­ma­tors (TCTs) that pro­tect the in­ner-triplet mag­nets. To this end, two strate­gies are con­sid­ered: keep­ing col­li­ma­tors at fixed phys­i­cal open­ings while shift­ing their cen­tres fol­low­ing the beam orbit, or vary­ing also the col­li­ma­tor open­ings. The lat­ter strat­egy is planned when the larger op­tics range will be de­ployed. In this paper, we in­ves­ti­gate sev­eral loss sce­nar­ios at the TCTs in dif­fer­ent steps of the lev­el­ling, and pre­sent the pro­posed col­li­ma­tor set­tings dur­ing Run 3.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK034  
About • Received ※ 07 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS031 Light Path Construction for an Optical Stochastic Cooling Stability Test at the Cornell Electron Storage Ring radiation, experiment, synchrotron, feedback 2315
 
  • S.J. Levenson, M.B. Andorf, I.V. Bazarov, D.C. Burke, J.M. Maxson, D.L. Rubin, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams and NYSTAR award C150153.
An ex­per­i­ment at the Cor­nell Elec­tron Stor­age Ring (CESR) to test the op­ti­cal path-length sta­bil­ity of a by­pass suit­able for Op­ti­cal Sto­chas­tic Cool­ing (OSC) is being pur­sued. The ap­prox­i­mately 80 m light path for this ex­per­i­ment has been as­sem­bled, and syn­chro­tron light has been suc­cess­fully prop­a­gated from both sources. A feed­back sys­tem based on an Elec­tro-Op­tic Mod­u­la­tor (EOM) to cor­rect the path-er­ror ac­cu­mu­lated in both the light and par­ti­cle path has been table-top tested. We pre­sent on the de­sign and con­struc­tion of the light op­tics for the OSC sta­bil­ity ex­per­i­ment at CESR.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS031  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS035 Harpy: A Fast, Simple and Accurate Harmonic Analysis with Error Propagation betatron, synchrotron, operation, coupling 2326
 
  • L. Malina
    DESY, Hamburg, Germany
 
  Tra­di­tion­ally, in the ac­cel­er­a­tor physics field, ac­cu­rate har­monic analy­sis has been per­formed by it­er­a­tively in­ter­po­lat­ing the re­sult of Fast Fourier Trans­form (FFT) in the fre­quency do­main. Such an ap­proach be­comes com­pu­ta­tion­ally de­mand­ing when rel­a­tively small ef­fects are being stud­ied, which is es­pe­cially ev­i­dent in the typ­i­cal ex­am­ple of har­monic analy­sis of turn-by-turn beam po­si­tion mon­i­tor data, i.e. many cor­re­lated but noisy sig­nals. A new har­monic analy­sis al­go­rithm, called Harpy, is about an order of mag­ni­tude faster than other meth­ods, while often being also more ac­cu­rate. Harpy com­bines stan­dard tech­niques such as zero-padded FFT and noise-clean­ing based on sin­gu­lar value de­com­po­si­tion. This com­bi­na­tion also al­lows es­ti­mat­ing er­rors of phases and am­pli­tudes of beam-re­lated har­mon­ics cal­cu­lated from cleaned data.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS035  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS043 UFO, a GPU Code Tailored Toward MBA Lattice Optimization GPU, lattice, electron, simulation 2346
 
  • M. Carlà, M. Canals
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The com­plex­ity of multi-bend achro­matic op­tics is such that com­pu­ta­tional tools per­for­mance has be­come a dom­i­nant fac­tor in the de­sign process a last gen­er­a­tion syn­chro­tron light source. To re­lieve the prob­lem a new code (UFO) tai­lored to­ward per­for­mance was de­vel­oped to as­sist the de­sign of the ALBA-II op­tics. Two main strate­gies con­tribute to the per­for­mance of UFO: the ex­e­cu­tion flow fol­lows a data par­al­lel par­a­digm, well suited for GPU ex­e­cu­tion; the use of a just-in-time com­piler al­lows to sim­plify the com­pu­ta­tion when­ever the lat­tice al­lows for it. At the core of UFO lies a par­al­lel track­ing rou­tine struc­tured for par­al­lel sim­u­la­tion of op­tics which dif­fers in some pa­ra­me­ters, such as mag­net strength or align­ment, but re­tains the same el­e­ment order, re­flect­ing the sce­nario found in op­ti­miza­tion processes, or when deal­ing with mag­netic or align­ment er­rors. Such an ap­proach al­lows to take ad­van­tage of GPUs which yield the best per­for­mance when run­ning thou­sands of par­al­lel threads. More­over UFO is not lim­ited to track­ing. A few mod­ules that rely on the same track­ing rou­tine allow for the fast com­pu­ta­tion of dy­namic and mo­men­tum aper­ture, closed orbit and lin­ear op­tics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS043  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 19 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS047 Automated Design and Optimization of the Final Cooling for a Muon Collider emittance, simulation, collider, solenoid 2358
 
  • E. Fol, D. Schulte, B. Stechauner
    CERN, Meyrin, Switzerland
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Schieck
    HEPHY, Wien, Austria
 
  The de­sired beam emit­tance for a Muon col­lider is sev­eral or­ders of mag­ni­tude less than the one of the muon beams pro­duced at the front-end tar­get. Ion­iza­tion cool­ing has been demon­strated as a suit­able tech­nique for the re­duc­tion of the muon beam emit­tance. Final cool­ing, as one of the most crit­i­cal stages of the muon col­lider com­plex, ne­ces­si­tates care­ful de­sign and op­ti­miza­tion in order to con­trol the beam dy­nam­ics and en­sure ef­fi­cient emit­tance re­duc­tion. We pre­sent an op­ti­miza­tion frame­work based on ICool sim­u­la­tion code and ap­pli­ca­tion of dif­fer­ent op­ti­miza­tion al­go­rithms, to au­tom­a­tize the choice of op­ti­mal ini­tial muon beam pa­ra­me­ters and si­mul­ta­ne­ous tun­ing of nu­mer­ous final cool­ing com­po­nents.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS047  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS052 Impacts of an ATS Lattice on EIC Dynamic Aperture sextupole, lattice, electron, collider 2373
 
  • J.E. Unger, J.A. Crittenden, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Marx
    BNL, Upton, New York, USA
 
  The Elec­tron-Ion Col­lider (EIC) pro­ject at Brookhaven Na­tional Lab­o­ra­tory has ex­plored strate­gies for in­creas­ing the en­ergy aper­ture of the Elec­tron Stor­age Ring (ESR) to meet the goal of 1\% for the 90 de­gree lat­tice at 18 GeV. Cur­rent strate­gies use a four sex­tu­pole fam­ily per arc cor­rec­tion scheme to in­crease the en­ergy aper­ture and to keep the trans­verse aper­ture suf­fi­ciently large as well. A scheme called Achro­matic Tele­scopic Squeez­ing (ATS), first in­tro­duced for the Large Hadron Col­lider, in­tro­duces a beta-beat into se­lect arcs, al­low­ing dy­namic aper­ture op­ti­miza­tions with dif­fer­ent sex­tu­pole strengths. The ATS scheme’s mix of some higher beta-func­tion and some lower sex­tu­pole strengths in the arcs has the po­ten­tial to in­crease the en­ergy aper­ture. Basic chro­matic cor­rec­tions and nu­meric op­ti­miza­tions were used to com­pare the ATS op­tics to a non-ATS scheme. In all cases, the ATS scheme per­formed sim­i­larly or bet­ter than the more com­mon schemes. How­ever, this in­crease in en­ergy aper­ture from the ATS op­tics also has neg­a­tive ef­fects, such as an in­crease in emit­tance which poses com­pli­ca­tions for the cur­rent ESR de­sign.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS052  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT006 Beam Dynamics Observations at Negative Momentum Compaction Factors at KARA sextupole, damping, synchrotron, operation 2570
 
  • P. Schreiber, M. Brosi, B. Härer, A. Mochihashi, A.-S. Müller, A.I. Papash, R. Ruprecht, M. Schuh
    KIT, Karlsruhe, Germany
 
  Funding: We are supported by the DFG-funded "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology" and European Union’s Horizon 2020 research and innovation programme (No 730871)
For the de­vel­op­ment of fu­ture syn­chro­tron light sources new op­er­a­tion modes often have to be con­sid­ered. One such mode is the op­er­a­tion with a neg­a­tive mo­men­tum com­paction fac­tor to pro­vide the pos­si­bil­ity of in­creased dy­namic aper­ture. For suc­cess­ful ap­pli­ca­tion in fu­ture light sources, the in­flu­ence of this mode has to be in­ves­ti­gated. At the KIT stor­age ring KARA (Karl­sruhe Re­search Ac­cel­er­a­tor), op­er­a­tion with neg­a­tive mo­men­tum com­paction has been im­ple­mented and the dy­nam­ics can now be in­ves­ti­gated. Using a va­ri­ety of high-per­for­mance beam di­ag­nos­tics de­vices it is pos­si­ble to ob­serve the beam dy­nam­ics under neg­a­tive mo­men­tum com­paction con­di­tions. This con­tri­bu­tion pre­sents dif­fer­ent as­pects of the re­sults of these in­ves­ti­ga­tions in the lon­gi­tu­di­nal and trans­ver­sal plane.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT006  
About • Received ※ 08 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 08 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT013 Emittance Reduction with the Variable Dipole for the ELETTRA 2.0 Ring dipole, emittance, lattice, damping 2586
 
  • A. Poyet, Y. Papaphilippou
    CERN, Meyrin, Switzerland
  • M.A. Domínguez, F. Toral
    CIEMAT, Madrid, Spain
  • R. Geometrante, E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R. Geometrante
    KYMA, Trieste, Italy
 
  ELET­TRA is a 2/2.4 GeV third-gen­er­a­tion elec­tron stor­age ring, lo­cated near Tri­este, Italy. In view of a sub­stan­tial in­crease of the ma­chine per­for­mance in terms of bril­liance, the so-called ELET­TRA 2.0 up­grade is cur­rently on-go­ing. This up­grade is based on a 6-bends achro­mat, four dipoles of which hav­ing a lon­gi­tu­di­nally vari­able field. So far, those dipoles are fore­seen to pro­vide a field with a two step pro­file. The VAri­able Di­pole for the ELET­TRA Ring (VADER) task, dri­ven by the I.​FAST Eu­ro­pean pro­ject, aims at de­vel­op­ing a new di­pole de­sign based on a trape­zoidal shape of the bend­ing ra­dius, which would allow for a fur­ther re­duc­tion of the hor­i­zon­tal emit­tance. A pro­to­type of this mag­net should be de­signed by the CIEMAT lab­o­ra­tory and built by KYMA com­pany. This paper dis­cusses the new di­pole field spec­i­fi­ca­tion and de­scribes the cor­re­spond­ing op­tics op­ti­miza­tion that was per­formed in order to re­duce at best the emit­tance of the ELET­TRA ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT013  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT016 Commissioning Simulations for the DIAMOND-II Upgrade MMI, injection, storage-ring, quadrupole 2598
 
  • H.C. Chao, R.T. Fielder, J. Kallestrup, I.P.S. Martin, B. Singh
    DLS, Oxfordshire, United Kingdom
 
  The Di­a­mond-II stor­age ring, com­pared to Di­a­mond, im­proves the nat­ural beam emit­tance from 2.7 nm to 160 pm and the beam en­ergy from 3 to 3.5 GeV. The num­ber of straight sec­tions is also dou­bled from 24 to 48 thanks to the mod­i­fied hy­brid six-bend-achro­mat lat­tice. To re­duce the im­pact on the ex­ist­ing sci­ence pro­gram, the dark time pe­riod must be min­imised. To as­sist in this aim, stor­age ring com­mis­sion­ing sim­u­la­tions have been car­ried out to pre­dict and re­solve pos­si­ble is­sues. These stud­ies in­clude beam com­mis­sion­ing start­ing from on-axis first-turn beam thread­ing up to beam based align­ment and full lin­ear op­tics cor­rec­tion with stored beam. The lin­ear op­tics cor­rec­tions with in­ser­tion de­vices are also in­cluded. The ma­chine char­ac­ter­i­sa­tions at dif­fer­ent stages are com­pared. Con­sid­er­a­tions on re­al­is­tic cham­ber lim­i­ta­tions, error de­f­i­n­i­tions and some com­mis­sion­ing strate­gies are also dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT016  
About • Received ※ 19 May 2022 — Accepted ※ 15 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT068 Linear Canonical Transform Library for Fast Coherent X-Ray Wavefront Propagation radiation, synchrotron, operation, synchrotron-radiation 2759
 
  • B. Nash, D.T. Abell, P. Moeller, I.V. Pogorelov
    RadiaSoft LLC, Boulder, Colorado, USA
  • N.B. Goldring
    STATE33 Inc., Portland, Oregon, USA
 
  Funding: This work is supported by the US Department of Energy, Office of Basic Energy Sciences under Award No. DE-SC0020593.
X-ray beam­lines are es­sen­tial com­po­nents of all syn­chro­tron light sources, trans­port­ing ra­di­a­tion from the stored elec­tron beam pass­ing from the source to the sam­ple. The lin­ear op­tics of the beam­line can be cap­tured via an ABCD ma­trix com­puted using a ray trac­ing code. Once the trans­port ma­trix is avail­able, one may then in­clude dif­frac­tion ef­fects and ar­bi­trary wave­front struc­ture by using that same in­for­ma­tion in a Lin­ear Canon­i­cal Trans­form (LCT) ap­plied to the ini­tial wave­front. We de­scribe our im­ple­men­ta­tion of a Python-based LCT li­brary for 2D syn­chro­tron ra­di­a­tion wave­fronts. We have thus far im­ple­mented the sep­a­ra­ble case and are in the process of im­ple­ment­ing al­go­rithms for the non-sep­a­ra­ble case. Rec­tan­gu­lar aper­tures are also in­cluded. We have tested our work against cor­re­spond­ing wave­front com­pu­ta­tions using The Syn­chro­tron Ra­di­a­tion Work­shop (SRW) code. LCT vs. SRW tim­ing and bench­mark com­par­isons are given for un­du­la­tor and bend­ing mag­net beam­lines. This al­go­rithm is being in­cluded in the Sirepo im­ple­men­ta­tion of the Shadow ray trac­ing code. Fi­nally, we de­scribe our plans for ap­pli­ca­tion to par­tially co­her­ent ra­di­a­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT068  
About • Received ※ 15 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK063 Open Source Software to Simulate Ti:Sapphire Amplifiers laser, simulation, photon, experiment 2925
 
  • D.L. Bruhwiler, D.T. Abell, B. Nash
    RadiaSoft LLC, Boulder, Colorado, USA
  • Q. Chen, C.G.R. Geddes, C. Tóth, J. van Tilborg
    LBNL, Berkeley, USA
  • N.B. Goldring
    STATE33 Inc., Portland, Oregon, USA
 
  Funding: This work is supported by the US Department of Energy, Office of High Energy Physics under Award Numbers DE-SC0020931 and DE-AC02-05CH11231.
The de­sign of next-gen­er­a­tion PW-scale fs laser sys­tems, in­clud­ing scal­ing to kHz rates and de­vel­op­ment of new laser gain media for ef­fi­ciency, will re­quire par­al­lel mul­ti­physics sim­u­la­tions with re­al­is­tic er­rors and non­lin­ear op­ti­miza­tion. There is cur­rently a lack of broadly avail­able mod­el­ing soft­ware that self-con­sis­tently cap­tures the re­quired physics of gain, ther­mal load­ing and lens­ing, spec­tral shap­ing, and other ef­fects re­quired to quan­ti­ta­tively de­sign such lasers.* We pre­sent ini­tial work to­wards an in­te­grated mul­ti­physics ca­pa­bil­ity for mod­el­ing pulse am­pli­fi­ca­tion in Ti:Sa lasers. All com­po­nents of the soft­ware suite are open source. The Syn­chro­tron Ra­di­a­tion Work­shop (SRW)** is being used for phys­i­cal op­tics, to­gether with Python util­i­ties. The sim­u­la­tions are being val­i­dated against ex­per­i­ments.
* R. Falcone et al., Brightest Light Initiative Workshop Report (2019).
** https://github.com/ochubar/srw
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK063  
About • Received ※ 14 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS001 TURBO: A Novel Beam Delivery System Enabling Rapid Depth Scanning for Charged Particle Therapy proton, dipole, controls, multipole 2929
 
  • J.S.L. Yap, S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
  • R.B. Appleby, H.X.Q. Norman, A.F. Steinberg
    UMAN, Manchester, United Kingdom
 
  Charged par­ti­cle ther­apy (CPT) is a well-es­tab­lished modal­ity of can­cer treat­ment and is in­creas­ing in world­wide pres­ence due to im­proved ac­cel­er­a­tor tech­nol­ogy and mod­ern tech­niques. The beam de­liv­ery sys­tem (BDS) de­ter­mines the over­all tim­ing and beam shap­ing ca­pa­bil­i­ties, but is re­stricted by the en­ergy vari­a­tion speed: en­ergy layer switch­ing time (ELST). Ex­ist­ing treat­ment beam­lines have a ±1% mo­men­tum ac­cep­tance range, need­ing time to change the mag­netic fields as the beam is de­liv­ered in lay­ers at var­i­ous depths across the tu­mour vol­ume. Min­imis­ing the ELST can en­able the de­liv­ery of faster, more ef­fec­tive and ad­vanced treat­ments but re­quires an im­proved BDS. A pos­si­bil­ity for this could be achieved with a de­sign using Fixed Field Al­ter­nat­ing Gra­di­ent (FFA) op­tics, en­abling a large en­ergy ac­cep­tance to rapidly trans­port beams of vary­ing en­er­gies. A scaled-down, novel sys­tem - Tech­nol­ogy for Ultra Rapid Beam Op­er­a­tion (TURBO) - is being de­vel­oped at the Uni­ver­sity of Mel­bourne, to ex­plore the po­ten­tial of rapid depth scan­ning. Ini­tial sim­u­la­tion stud­ies, beam and field mea­sure­ments, pro­ject plans and clin­i­cal con­sid­er­a­tions are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS001  
About • Received ※ 20 May 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS002 Gantry Beamline and Rotator Commissioning at the Medaustron Ion Therapy Center MMI, proton, quadrupole, radiation 2933
 
  • M.T.F. Pivi, L. Adler, G. Guidoboni, G. Kowarik, C. Kurfürst, C. Maderböck, D.A. Prokopovich, I. Strašík
    EBG MedAustron, Wr. Neustadt, Austria
  • G. Kowarik
    GKMT Consulting, Consulting and Project Management, Vienna, Austria
  • M. Pavlovič
    STU, Bratislava, Slovak Republic
  • M.G. Pullia
    CNAO Foundation, Pavia, Italy
  • V. Rizzoglio
    PSI, Villigen PSI, Switzerland
 
  The MedAus­tron Par­ti­cle Ther­apy Ac­cel­er­a­tor lo­cated in Aus­tria, de­liv­ers pro­ton beams in the en­ergy range 60-250 MeV/n and car­bon ions 120-400 MeV/n for med­ical treat­ment in two ir­ra­di­a­tion rooms, clin­i­cally used for tumor ther­apy. Pro­ton beams up to 800 MeV/n are also pro­vided to a room ded­i­cated to sci­en­tific re­search. Over the last two years, in par­al­lel to clin­i­cal op­er­a­tions, we have com­pleted the in­stal­la­tion and com­mis­sion­ing of the gantry beam line in a ded­i­cated room, ready for the first pa­tient treat­ment in early 2022. In this man­u­script, we pro­vide an overview of the MedAus­tron gantry beam com­mis­sion­ing in­clud­ing the world-wide first ’ro­ta­tor’ sys­tem, a ro­tat­ing beam­line lo­cated up­stream of the gantry and used to match the slowly ex­tracted non-sym­met­ric beams into the co­or­di­nate sys­tem of the gantry. Using the ro­ta­tor, all beam pa­ra­me­ters at the lo­ca­tion of the pa­tient be­come in­de­pen­dent of the gantry ro­ta­tion angle. Fur­ther­more, both the gantry and the high en­ergy trans­fer line op­tics had to be re­designed and adapted to the ro­ta­tor-mode of op­er­a­tion. A re­view of the beam com­mis­sion­ing in­clud­ing tech­ni­cal so­lu­tions, main re­sults and ref­er­ence mea­sure­ments is pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS002  
About • Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS011 Beam Optics Studies for a Novel Gantry for Hadrontherapy dipole, quadrupole, operation, hadrontherapy 2962
 
  • E. Felcini, G. Frisella, A. Mereghetti, M.G. Pullia, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • M.T.F. Pivi
    EBG MedAustron, Wr. Neustadt, Austria
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The de­sign of smaller and less costly gantries for car­bon ion par­ti­cle ther­apy rep­re­sents a major chal­lenge to the dif­fu­sion of this treat­ment. Here we pre­sent the work done on the lin­ear beam op­tics of pos­si­ble gantry lay­outs, dif­fer­ing for geom­e­try, mo­men­tum ac­cep­tance, and mag­net tech­nol­ogy, which share the use of com­bined func­tion su­per­con­duct­ing mag­nets with a bend­ing field of 4T. We per­formed par­al­lel-to-point and point-to-point op­tics match­ing at dif­fer­ent mag­ni­fi­ca­tion fac­tors to pro­vide two dif­fer­ent beam sizes at the isocen­ter. More­over, we con­sid­ered the orbit dis­tor­tion gen­er­ated by mag­net er­rors and we in­tro­duced beam po­si­tion mon­i­tors and cor­rec­tors. The study, to­gether with con­sid­er­a­tions on the cri­te­ria for com­par­i­son, is the basis for the de­sign of a novel and com­pact gantry for hadron­ther­apy.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS011  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS012 Explorative Studies of an Innovative Superconducting Gantry dipole, superconducting-magnet, quadrupole, hadrontherapy 2966
 
  • M.G. Pullia, M. Donetti, E. Felcini, G. Frisella, A. Mereghetti, A. Mirandola, A. Pella, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • L. Dassa, M. Karppinen, D. Perini, D. Tommasini, M. Vretenar
    CERN, Meyrin, Switzerland
  • E. De Matteis, L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • C. Kurfürst, M.T.F. Pivi, M. Stock
    EBG MedAustron, Wr. Neustadt, Austria
  • S. Mariotto, M. Prioli
    INFN-Milano, Milano, Italy
  • L. Piacentini, A. Ratkus, T. Torims, J. Vilcans
    Riga Technical University, Riga, Latvia
  • L. Sabbatini, A. Vannozzi
    LNF-INFN, Frascati, Italy
  • S. Uberti
    Università di Brescia, Brescia, Italy
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The Heavy Ion Ther­apy Re­search In­te­gra­tion plus (HITRIplus) is a Eu­ro­pean pro­ject that aims to in­te­grate and pro­pel re­search and tech­nolo­gies re­lated to can­cer treat­ment with heavy ions beams. Among the am­bi­tious goals of the pro­ject, a spe­cific work pack­age in­cludes the de­sign of a gantry for car­bon ions, based on su­per­con­duct­ing mag­nets. The first mile­stone to achieve is the choice of the fun­da­men­tal gantry pa­ra­me­ters, namely the beam op­tics lay­out, the su­per­con­duct­ing mag­net tech­nol­ogy, and the main user re­quire­ments. Start­ing from a ref­er­ence 3T de­sign, the col­lab­o­ra­tion widely ex­plored dozens of pos­si­ble gantry con­fig­u­ra­tions at 4T, aim­ing to find the best com­pro­mise in terms of foot­print, cap­i­tal cost, and re­quired R&D. We pre­sent here a sum­mary of these con­fig­u­ra­tions, un­der­ly­ing the ini­tial cor­re­la­tion be­tween the beam op­tics, the me­chan­ics, and the main su­per­con­duct­ing dipoles de­sign: the bend­ing field (up to 4 T), com­bined func­tion fea­tures (in­te­grated quadru­pole), mag­net aper­ture (up to 90 mm), and an­gu­lar length (30°-45°). The re­sult­ing main pa­ra­me­ters are then listed, com­pared, and used to drive the choice of the best gantry lay­out to be de­vel­oped in HITRIplus.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS012  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS018 Study of Coil Configuration and Local Optics Effects for the GaToroid Ion Gantry Design focusing, hadrontherapy, hadron, radiation 2984
 
  • E. Oponowicz, L. Bottura, Y. Dutheil, A. Gerbershagen, A. Haziot
    CERN, Meyrin, Switzerland
 
  Funding: Project co-funded by the CERN Budget for Knowledge Transfer to Medical Applications.
GaToroid, a novel con­fig­u­ra­tion for hadron ther­apy gantry, is based on su­per­con­duct­ing coils that gen- erate a toroidal mag­netic field to de­liver the beam onto the pa­tient. De­sign­ing the com­plex GaToroid coils re­quires care­ful con­sid­er­a­tion of the local beam op­ti­cal ef­fects. We pre­sent a Python-based tool for charged par­ti­cle trans­port in com­plex elec­tro­mag­netic fields. The code im­ple­ments fast track­ing in ar­bi­trary three-di­men­sional field maps, and it is not lim­ited to spe­cific or reg­u­lar ref­er­ence tra­jec­to­ries, as is gen­er­ally the case in ac­cel­er­a­tor physics. The tool was used to char­ac­terise the beam be­hav­iour in­side the GaToroid sys­tem. It au­to­mat­i­cally de­ter­mines the ref­er­ence tra­jec­to­ries in the sym­me­try plane and analy­ses three-di­men­sional beam dy­nam­ics around these tra­jec­to­ries. Beam op­ti­cal pa­ra­me­ters in the field re­gion were com­pared for var­i­ous mag­netic con­fig­u­ra­tions of GaToroid. This paper in­tro­duces the new tracker and shows the bench­mark­ing re­sults. Fur­ther­more, first- order beam op­tics stud­ies for dif­fer­ent arrange­ments demon­strate the main code fea­tures and serve for the de­sign op­ti­mi­sa­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS018  
About • Received ※ 19 May 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS020 Beam Optics Study for a Potential VHEE Beam Delivery System scattering, electron, quadrupole, dipole 2992
 
  • C.S. Robertson, P. Burrows
    JAI, Oxford, United Kingdom
  • M. Dosanjh, A. Gerbershagen, A. Latina
    CERN, Meyrin, Switzerland
 
  VHEE (Very High En­ergy Elec­tron) ther­apy can be su­pe­rior to con­ven­tional ra­dio­ther­apy for the treat­ment of deep seated tu­mours, whilst not nec­es­sar­ily re­quir­ing the space and cost of pro­ton or heavy ion fa­cil­i­ties. De­vel­op­ments in high gra­di­ent RF tech­nol­ogy have al­lowed elec­trons to be ac­cel­er­ated to VHEE en­er­gies in a com­pact space, mean­ing that treat­ment could be pos­si­ble with a shorter linac. A cru­cial com­po­nent of VHEE treat­ment is the trans­fer of the beam from ac­cel­er­a­tor to pa­tient. This is re­quired to mag­nify the beam to cover the trans­verse ex­tent of the tu­mour, whilst en­sur­ing a uni­form beam dis­tri­b­u­tion. Two prin­ci­ple method­olo­gies for the de­sign of a com­pact trans­fer line are pre­sented. The first of these is based upon a quadru­pole lat­tice and op­ti­cal mag­ni­fi­ca­tion of beam size. A min­imi­sa­tion al­go­rithm is used to en­force cer­tain cri­te­ria on the beam dis­tri­b­u­tion at the pa­tient, defin­ing the lat­tice through an au­to­mated rou­tine. Sep­a­rately, a dual scat­ter­ing-foil based sys­tem is also pre­sented, which uses sim­i­lar al­go­rithms for the op­ti­mi­sa­tion of the foil geom­e­try in order to achieve the de­sired beam shape at the pa­tient lo­ca­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS020  
About • Received ※ 19 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS024 A Novel Intensity Compensation Method to Achieve Energy Independent Beam Intensity at the Patient Location for Cyclotron Based Proton Therapy Facilities cyclotron, proton, emittance, beam-losses 3004
 
  • V. Maradia, A.L. Lomax, D. Meer, S. Psoroulas, D.C. Weber
    PSI, Villigen PSI, Switzerland
  • V. Maradia
    ETH, Zurich, Switzerland
 
  Funding: This work is supported by a PSI inter-departmental funding initiative (Cross)
In cy­clotron-based pro­ton ther­apy fa­cil­i­ties, an en­ergy se­lec­tion sys­tem is typ­i­cally used to lower beam en­ergy from the fixed value pro­vided by the ac­cel­er­a­tor (250/230MeV) to the one needed for the treat­ment (230-70MeV). Such a sys­tem has draw­back of in­tro­duc­ing an en­ergy-de­pen­dent beam cur­rent at the pa­tient lo­ca­tion, re­sult­ing in en­ergy-de­pen­dent beam in­ten­sity ra­tios of about 103 be­tween high and low en­er­gies. This com­pli­cates treat­ment de­liv­ery and chal­lenges pa­tient safety sys­tems. As such, we pro­pose the use of a dual-en­ergy de­grader method that can re­duce beam in­ten­sity for high-en­ergy beams. The first de­grader is made of high Z ma­te­r­ial and the sec­ond is made of low Z ma­te­r­ial and are placed next to each other. For high en­er­gies (230-180MeV), we use only first de­grader to in­crease beam emit­tance after de­grader and thus lose in­ten­sity in emit­tance se­lec­tion col­li­ma­tors. For in­ter­me­di­ate en­ergy beams (180-100MeV) we use the com­bi­na­tion of both de­graders, whereas for low en­ergy beams (100-70MeV), only the sec­ond de­grader lim­its the in­crease in emit­tance. With this ap­proach, en­ergy-in­de­pen­dent beam in­ten­si­ties can be achieved, whilst lo­cal­iz­ing beam losses around the de­grader.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS024  
About • Received ※ 16 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS025 A Novel Method of Emittance Matching to Increase Beam Transmission for Cyclotron Based Proton Therapy Facilities: Simulation Study scattering, emittance, proton, cyclotron 3007
 
  • V. Maradia, A.L. Lomax, D. Meer, S. Psoroulas, J.M. Schippers, D.C. Weber
    PSI, Villigen PSI, Switzerland
  • V. Maradia
    ETH, Zurich, Switzerland
 
  Funding: This work is supported by a PSI inter-departmental funding initiative (Cross)
In pro­ton ther­apy, high dose rates can re­duce treat­ment de­liv­ery times, al­low­ing for ef­fi­cient mit­i­ga­tion of tumor mo­tion and in­creased pa­tient through­put. With cy­clotrons, how­ever, high dose rates are dif­fi­cult to achieve for low-en­er­gies as, typ­i­cally, the emit­tance after the de­grader is matched in both trans­ver­sal planes using cir­cu­lar col­li­ma­tors, which does not pro­vide an op­ti­mal match­ing to the ac­cep­tance of the fol­low­ing beam­line. Trans­mis­sion can how­ever be sub­stan­tially im­proved by trans­port­ing max­i­mum ac­cept­able emit­tances in both or­thog­o­nal planes, but at the cost of gantry an­gle-de­pen­dent beam shapes at isocen­ter. Here we demon­strate that equal emit­tances in both planes can be re­cov­ered at the gantry en­trance using a thin scat­ter­ing foil, thus en­sur­ing gantry an­gle-in­de­pen­dent beam shapes at the isocen­ter. We demon­strate ex­per­i­men­tally that low-en­ergy beam trans­mis­sion can be in­creased by a fac­tor of 3 using this ap­proach com­pared to the cur­rently used beam op­tics, whilst gantry an­gle-in­de­pen­dent beam shapes are pre­served. We ex­pect that this uni­ver­sal ap­proach could also bring a sim­i­lar trans­mis­sion im­prove­ment in other cy­clotron-based pro­ton ther­apy fa­cil­i­ties.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS025  
About • Received ※ 16 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)