Keyword: shielding
Paper Title Other Keywords Page
MOPOMS041 Concrete Shielding Activation for Proton Therapy Systems Using BDSIM and FISPACT-II proton, neutron, septum, simulation 728
 
  • E. Ramoisiaux, E. Gnacadja, C. Hernalsteens, N. Pauly, R. Tesse, M. Vanwelde
    ULB, Bruxelles, Belgium
  • C. Hernalsteens
    CERN, Meyrin, Switzerland
  • F. Stichelbaut
    IBA, Louvain-la-Neuve, Belgium
 
  Pro­ton ther­apy sys­tems are used world­wide for pa­tient treat­ment and fun­da­men­tal re­search. The gen­er­a­tion of sec­ondary par­ti­cles when the beam in­ter­acts with the beam­line el­e­ments is a well-known issue. In par­tic­u­lar, the en­ergy de­grader is the dom­i­nant source of sec­ondary ra­di­a­tion. This poses new chal­lenges for the con­crete shield­ing of com­pact sys­tems and beam­line el­e­ments ac­ti­va­tion com­pu­ta­tion. We use a novel method­ol­ogy to seam­lessly sim­u­late all the processes rel­e­vant to the ac­ti­va­tion eval­u­a­tion. A re­al­is­tic model of the sys­tem is de­vel­oped using Beam De­liv­ery Sim­u­la­tion (BDSIM), a Geant4-based par­ti­cle track­ing code that al­lows a sin­gle model to sim­u­late pri­mary and sec­ondary par­ti­cle track­ing and all par­ti­cle-mat­ter in­ter­ac­tions. The sec­ondary par­ti­cle fluxes ex­tracted from the sim­u­la­tions are pro­vided as input to FIS­PACT-II to com­pute the ac­ti­va­tion by solv­ing the rate equa­tions. This ap­proach is ap­plied to the Ion Beam Ap­pli­ca­tions (IBA) Pro­teus®ONE (P1) sys­tem and the shield­ing of the pro­ton ther­apy re­search cen­tre of Charleroi, Bel­gium. Pro­ton loss dis­tri­b­u­tions are used to model the pro­duc­tion of sec­ondary neu­trals in­side the ac­cel­er­a­tor struc­ture. Two mod­els for the dis­tri­b­u­tion of pro­ton losses are com­pared for the com­pu­ta­tion of the clear­ance index at spe­cific lo­ca­tions of the de­sign. Re­sults show that the vari­a­tion in the ac­cel­er­a­tor loss mod­els can be char­ac­terised as a sys­tem­atic error.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS041  
About • Received ※ 19 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS044 Implications and Mitigation of Radiation Effects on the CERN SPS Operation during 2021 radiation, electronics, electron, operation 740
 
  • Y.Q. Aguiar, A. Apollonio, K. Biłko, M. Brucoli, M. Cecchetto, S. Danzeca, R. García Alía, T. Ladzinski, G. Lerner, J.B. Potoine, A. Zimmaro
    CERN, Meyrin, Switzerland
 
  Dur­ing the Long Shut­down 2 (LS2, 2019-2020), the CERN ac­cel­er­a­tor com­plex has un­der­gone major up­grades, mainly in prepa­ra­tion for the High-Lu­mi­nos­ity (HL) LHC era, the ul­ti­mate ca­pac­ity for its physics pro­duc­tion. There­fore, sev­eral novel equip­ment and sys­tems were de­signed and de­ployed through­out the ac­cel­er­a­tor com­plex. To com­ply with the ra­di­a­tion level spec­i­fi­ca­tions and avoid ma­chine down­time due to ra­di­a­tion ef­fects, the elec­tron­ics sys­tems ex­posed to ra­di­a­tion need to fol­low Ra­di­a­tion Hard­ness As­sur­ance (RHA) method­olo­gies de­vel­oped and val­i­dated by the Ra­di­a­tion to Elec­tron­ics (R2E) pro­ject at CERN. How­ever, the es­tab­lish­ment of such pro­ce­dures is not yet fully im­ple­mented in the LHC in­jec­tor chain, and some R2E fail­ures were de­tected in the SPS dur­ing the 2021 op­er­a­tion. This work is de­voted to de­scrib­ing and analysing the R2E fail­ures and their im­pact on op­er­a­tion, in the con­text of the re­lated ra­di­a­tion lev­els and equip­ment sen­si­tiv­ity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS044  
About • Received ※ 07 June 2022 — Revised ※ 21 June 2022 — Accepted ※ 26 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK027 Field Emission Measurements at Lund Test Stand detector, cavity, cryomodule, SRF 1265
 
  • C.G. Maiano, N. Elias, E. Laface, P. Pierini, L. Sagliano, M.Y. Wang
    ESS, Lund, Sweden
  • E. Cenni
    CEA-IRFU, Gif-sur-Yvette, France
 
  We pre­sent here a de­scrip­tion of field emis­sion (FE) mea­sure­ments set-up de­vel­oped for el­lip­ti­cal cry­omod­ules test ac­tiv­i­ties at Lund Test Stand 2. A test cam­paign of field emis­sion mea­sure­ments has been de­vel­oped and op­ti­mized dur­ing cry­omod­ules tests. The scin­til­la­tor de­tec­tors (and their re­spec­tive shields), cho­sen for these mea­sure­ments, have been char­ac­ter­ized and op­ti­mized. The field emis­sion ap­pli­ca­tion has been de­vel­oped and in­te­grated in the cry­omod­ules tests op­er­a­tor in­ter­face. The Ini­tial test re­sults are pre­sented and com­mented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK027  
About • Received ※ 07 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST001 Radiation Load Studies for Superconducting Dipole Magnets in a 10 TeV Muon Collider collider, radiation, dipole, electron 1671
 
  • D. Calzolari, C. Carli, B. Humann, A. Lechner, G. Lerner, F. Salvat Pujol, D. Schulte, K. Skoufaris
    CERN, Meyrin, Switzerland
  • B. Humann
    TU Vienna, Wien, Austria
 
  Among the var­i­ous fu­ture lep­ton col­lid­ers under study, muon col­lid­ers offer the prospect of reach­ing the high­est col­li­sion en­er­gies. De­spite the promis­ing po­ten­tial of a multi-TeV muon col­lider, the short life­time of muons poses a se­vere tech­no­log­i­cal chal­lenge for the col­lider de­sign. In par­tic­u­lar, the co­pi­ous pro­duc­tion of decay elec­trons and positrons along the col­lider ring re­quires the in­te­gra­tion of con­tin­u­ous ra­di­a­tion ab­sorbers in­side su­per­con­duct­ing mag­nets. The ab­sorbers are needed to avoid quenches, re­duce the heat dis­si­pa­tion in the cold mass and pre­vent mag­net fail­ures due to long-term ra­di­a­tion dam­age. In this paper, we pre­sent FLUKA shower sim­u­la­tions as­sess­ing the shield­ing re­quire­ments for high-field mag­nets of a 10 TeV muon col­lider. We quan­tify in par­tic­u­lar the role of syn­chro­tron pho­ton emis­sion by decay elec­trons and positrons, which helps in dis­pers­ing the en­ergy car­ried by the decay prod­ucts. For com­par­i­son, se­lected re­sults for a 3 TeV muon col­lider are also pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST001  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST002 Synchrotron Radiation Impact on the FCC-ee Arcs radiation, electron, neutron, electronics 1675
 
  • B. Humann
    TU Vienna, Wien, Austria
  • F. Cerutti, B. Humann, R. Kersevan
    CERN, Meyrin, Switzerland
 
  Syn­chro­tron ra­di­a­tion (SR) emit­ted by elec­tron and positrons beams rep­re­sents a major loss source in high en­ergy cir­cu­lar col­lid­ers, such as the lep­ton ver­sion of the Fu­ture Cir­cu­lar Col­lider (FCC-ee) at CERN. In par­tic­u­lar, for the op­er­a­tion mode at 182.5 GeV (above the top pair thresh­old), its spec­trum makes it pen­e­trate well be­yond the vac­uum cham­ber walls. In order to op­ti­mize its con­tain­ment, ded­i­cated ab­sorbers are en­vis­aged. In this con­tri­bu­tion we re­port the en­ergy de­po­si­tion stud­ies per­formed with FLUKA to as­sess heat load, time-in­te­grated dose, power den­sity and par­ti­cle flu­ence dis­tri­b­u­tion in the ma­chine com­po­nents and the sur­round­ing en­vi­ron­ment. Dif­fer­ent choices for the ab­sorber ma­te­r­ial were con­sid­ered and shield­ing op­tions for elec­tron­ics were in­ves­ti­gated. Fur­ther­more, pos­si­ble po­si­tions for the booster ring were re­viewed from the ra­di­a­tion ex­po­sure point of view.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST002  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT016 Beam-Based Reconstruction of the Shielded Quench-Heater Fields for the LHC Main Dipoles dipole, operation, optics, injection 1874
 
  • L.C. Richtmann, L. Bortot, E. Ravaioli, C. Wiesner, D. Wollmann
    CERN, Meyrin, Switzerland
 
  Small orbit os­cil­la­tions of the cir­cu­lat­ing par­ti­cle beams have been ob­served im­me­di­ately fol­low­ing quenches in the LHC’s su­per­con­duct­ing main di­pole mag­nets. Mag­netic fields gen­er­ated dur­ing the dis­charge into the quench heaters were iden­ti­fied as the cause. Since the re­sult­ing, shielded field in­side the beam screen can­not be mea­sured in-situ, the time evo­lu­tion of the field has to be re­con­structed from the mea­sured beam ex­cur­sions. In this paper, the field-re­con­struc­tion method using ro­ta­tion in nor­mal­ized phase space and the op­ti­mized fit­ting al­go­rithm are de­scribed. The re­sult­ing rise times and mag­netic field lev­els are pre­sented for quench events that oc­curred dur­ing reg­u­lar op­er­a­tion as well as for ded­i­cated beam ex­per­i­ments. Fi­nally, dif­fer­ent ap­proaches to model the shield­ing be­hav­ior of the beam screen are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT016  
About • Received ※ 16 May 2022 — Accepted ※ 13 June 2022 — Issue date ※ 26 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST026 Design of the Magnetic Shield for VSR DEMO cavity, simulation, SRF, GUI 2501
 
  • H.-W. Glock, P. Anumula, F. Glöckner, J. Knobloch, F. Pflocksch, A. Vélez
    HZB, Berlin, Germany
  • J. Knobloch
    University of Siegen, Siegen, Germany
  • A. Vélez
    Technical University Dortmund, Dortmund, Germany
 
  Funding: Work supported by grants of the Helmholtz Association
The VSR DEMO mod­ule, re­cently under de­vel­op­ment at HZB, will house two 4-cell 1.5 GHz su­per­con­duct­ing RF cav­i­ties with a par­tic­u­larly pow­er­ful HOM damp­ing scheme based on five wave­guide HOM ab­sorbers per cav­ity. A mag­netic shield made of high-per­me­able ma­te­r­ial is needed around the cav­i­ties in order to pre­vent the am­bi­ent mag­netic field ex­ceed­ing very few µT thereby caus­ing con­sid­er­able un­wanted RF losses. The shield needs to ac­com­mo­date the wave­guides, the fun­da­men­tal power cou­pler, two beam pipes, two He feed / re­turn lines, the tuner and the sup­port struc­tures, whilst being man­u­fac­turable and mount­able. The paper dis­cusses those dif­fi­cul­ties and pre­sents the ma­tured mag­netic shield de­sign. Nu­mer­i­cal sim­u­la­tions are used to eval­u­ate the ef­fi­cacy of the shield.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST026  
About • Received ※ 14 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST037 Analysis with MECAmaster on the Chain of Design Tolerances for the Target Systems at the European Spallation Source - ESS alignment, target, neutron, interface 2524
 
  • A. Bignami, N. Gazis, S. Ghatnekar Nilsson
    ESS, Lund, Sweden
  • B. Nicquevert
    CERN, Meyrin, Switzerland
 
  The Eu­ro­pean Spal­la­tion Source - ESS, has achieved its major con­struc­tion in Lund, Swe­den and is cur­rently con­tin­u­ing in par­al­lel to com­mis­sion­ing its first sys­tems. ESS is char­ac­ter­ized by in­stalling and com­mis­sion­ing the most pow­er­ful pro­ton LIN­ear AC­cel­er­a­tor (LINAC) de­signed for neu­tron pro­duc­tion and a 5MW Tar­get sys­tem for the pro­duc­tion of pulsed neu­trons from spal­la­tion. The highly chal­leng­ing and com­plex de­sign of the Tar­get and Neu­tron Scat­ter­ing Sys­tem (NSS) re­quires an in-depth analy­sis of the im­pact of the strin­gent man­u­fac­tur­ing re­quire­ments and tight de­sign tol­er­ances. A cam­paign of sev­eral MECA­mas­ter sim­u­la­tions was per­formed by ESS Tar­get Di­vi­sion (TD) and En­gi­neer­ing and In­te­gra­tion Sup­port (EIS) Di­vi­sion, fo­cus­ing on those com­po­nents that suc­ces­sively come close to their in­stal­la­tion and are known for their crit­i­cal­ity in terms of achiev­ing the final in­stal­la­tion tol­er­ances. The aim of this cur­rent study is to in­ves­ti­gate and sta­tis­ti­cally list the pos­si­bil­i­ties of even­tual crit­i­cal­ity on the as­sem­bly and in­stal­la­tion processes, al­low­ing for po­ten­tial de­sign op­ti­miza­tion, tool­ing im­ple­men­ta­tion and ad­just­ment of the in­stal­la­tion pro­ce­dures.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST037  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT052 The Status of the In-Vacuum-APPLE II Undulator IVUE32 at HZB / BESSY II undulator, vacuum, photon, polarization 2716
 
  • J. Bahrdt, J. Bakos, S. Gaebel, S. Gottschlich, S. Grimmer, S. Knaack, C. Kuhn, F. Laube, A. Meseck, C. Rethfeldt, E.C.M. Rial, A. Rogosch-Opolka, M. Scheer, P.I. Volz
    HZB, Berlin, Germany
 
  At BESSY II, two new beam­lines for RIXS and for X-Ray-mi­croscopy de­mand a short pe­riod vari­ably po­lar­iz­ing un­du­la­tor. For this pur­pose, the first in-vac­uum APPLE un­du­la­tor world­wide is under con­struc­tion. The pa­ra­me­ters are as fol­lows: pe­riod length=32mm, mag­netic length=2500mm, min­i­mum gap=7mm. The de­sign in­cor­po­rates a force com­pen­sa­tion scheme as pro­posed by two of the au­thors at the SRI2018. All pre­ci­sion parts of the drive chain are lo­cated in air. New trans­verse slides for the trans­ver­sal slit ad­just­ment have been de­vel­oped and tested. Op­ti­cal mi­crom­e­ters mea­sure the gap and shift po­si­tions, sim­i­lar to the sys­tem of the CP­MU17 at BESSY II. They pro­vide the sig­nals for motor feed­back loops. A new UHV-com­pat­i­ble sol­der­ing tech­nique, as de­vel­oped with in­dus­try, re­laxes fab­ri­ca­tion tol­er­ances of mag­nets and mag­net hold­ers and sim­pli­fies the mag­net as­sem­bly. A 10-pe­riod pro­to­type has been setup for life­time tests of the new mag­netic keeper de­sign. The paper de­scribes first re­sults of the pro­to­type and other key-com­po­nents and sum­ma­rizes the sta­tus of the full-scale un­du­la­tor.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT052  
About • Received ※ 19 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK027 Temperature Dependent Effects on Quality Factor in C-band RF Cavities cavity, cryogenics, vacuum, electron 2826
 
  • J.R. Parsons, A. Fukasawa, G.E. Lawler, N. Majernik, J.B. Rosenzweig
    UCLA, Los Angeles, California, USA
 
  Funding: This work was supported by DOE Contract DE-SC0020409
Cryo­genic op­er­a­tion and as­so­ci­ated skin ef­fects are en­cour­ag­ing fields of study for in­creas­ing RF gra­di­ents of beams within cav­i­ties and de­creas­ing the re­quired size for lin­ear ac­cel­er­a­tors such as free elec­tron lasers. No­tably, a cav­ity’s RF qual­ity fac­tor Q, the ratio of the out­go­ing RF sig­nal power to the input power, is the­o­ret­i­cally mul­ti­plied by over 4 when sub­jected to cryo­genic tem­per­a­tures. Pre­cise mea­sure­ments of this Q fac­tor re­quire defin­ing a cryo­stat unit, which con­sists of a high vac­uum cham­ber, a cold­head, and MLI shield­ing. We op­ti­mized the cryo­stat by run­ning sev­eral cool down tests at high vac­uum, in­cor­po­rat­ing dif­fer­ent geome­tries of MLI shield­ing to achieve the low­est pos­si­ble tem­per­a­tures. We then per­formed a low power C-band test after in­stalling a cylin­dri­cal cop­per RF cav­ity to mea­sure the Q fac­tor. Fi­nally, we im­proved sta­bil­ity and am­pli­fi­ca­tion within the cham­ber by in­stalling edge welded bel­lows to the cold­head to re­duce vi­bra­tions. These mea­sure­ments pro­vide a basis for the de­vel­op­ment of cryo­genic in­fra­struc­ture to sus­tain a cryo­genic tem­per­a­ture en­vi­ron­ment for fu­ture RF ap­pli­ca­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK027  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK048 Radiation Load Studies for the FCC-ee Positron Source with a Superconducting Matching Device target, positron, collider, electron 2879
 
  • B. Humann
    TU Vienna, Wien, Austria
  • B. Auchmann, J. Kosse
    PSI, Villigen PSI, Switzerland
  • I. Chaikovska, S. Ogur
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • B. Humann, A. Latina, A. Lechner, Y. Zhao
    CERN, Meyrin, Switzerland
 
  For an elec­tron-positron col­lider like FCC-ee, the pro­duc­tion of positrons plays a cru­cial role. One of the de­sign op­tions con­sid­ered for the FCC-ee positron source em­ploys a su­per­con­duct­ing so­le­noid made of HTS coils as an adi­a­batic match­ing de­vice. The so­le­noid, which is placed around the pro­duc­tion tar­get, is needed to cap­ture positrons be­fore they can be ac­cel­er­ated in a lin­ear ac­cel­er­a­tor. A su­per­con­duct­ing so­le­noid yields a higher peak field than a con­ven­tional-nor­mal con­duct­ing mag­netic flux con­cen­tra­tor, there­fore in­creas­ing the achiev­able positron yield. In order to achieve an ac­cept­able positron pro­duc­tion, the con­sid­ered tar­get is made of tung­sten-rhe­nium, which gives also a sig­nif­i­cant flux of un-wanted sec­ondary par­ti­cles, that in turn could gen­er­ate a too large ra­di­a­tion load on the su­per­con­duct­ing coils. In this study, we as­sess the fea­si­bil­ity of such a positron source by study­ing the heat load and long-term ra­di­a­tion dam­age in the su­per­con­duct­ing match­ing de­vice and sur­round­ing struc­tures. Re­sults are pre­sented for dif­fer­ent geo­met­ric con­fig­u­ra­tions of the su­per­con­duct­ing match­ing de­vice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK048  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK052 Muon Collider Graphite Target Studies and Demonstrator Layout Possibilities at CERN target, collider, proton, radiation 2895
 
  • F.J. Saura Esteban, M. Calviani, D. Calzolari, R. Franqueira Ximenes, A.M. Krainer, A. Lechner, R. Losito, D. Schulte
    CERN, Meyrin, Switzerland
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Muon col­lid­ers offer enor­mous po­ten­tial for re­search of the par­ti­cle physics fron­tier. Lep­tons can be ac­cel­er­ated with­out suf­fer­ing large syn­chro­tron ra­di­a­tion losses. The In­ter­na­tional Muon Col­lider Col­lab­o­ra­tion is con­sid­er­ing 3 and 10 TeV (CM) ma­chines for a con­cep­tual stage. In the core of the Muon Col­lider fa­cil­ity lays a MW class pro­duc­tion tar­get, which will ab­sorb a high power (1 and 3 MW) pro­ton beam to pro­duce muons via pion decay. The tar­get must with­stand high dy­namic ther­mal loads in­duced by 2 ns pulses at 5-50 Hz. Also, op­er­a­tional re­li­a­bil­ity must be guar­an­teed to re­duce tar­get ex­changes to a min­i­mum. Sev­eral tech­nolo­gies for these sys­tems are being stud­ied in dif­fer­ent lab­o­ra­to­ries. We pre­sent in this paper the re­sults of a pre­lim­i­nary fea­si­bil­ity study of a graphite-based tar­get, and the dif­fer­ent lay­outs under study for a demon­stra­tor tar­get com­plex at CERN. Syn­er­gies with ad­vanced nu­clear sys­tems are being ex­plored for the de­vel­op­ment of a liq­uid metal tar­get.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK052  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS040 Present Status of Linear Accelerator System for Natural Rubber Vulcanization at Chiang Mai University radiation, electron, experiment, linac 3057
 
  • C. Thongbai, P. Jaikaew, E. Kongmon, S. Rimjaem, J. Saisut, P. Wongkummoon
    Chiang Mai University, Chiang Mai, Thailand
  • N. Khangrang
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
  • M.W. Rhodes, S. Rimjaem, J. Saisut, C. Thongbai
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
 
  At the Plasma and Beam Physics (PBP) Re­search Fa-cil­ity, Chi­ang Mai Uni­ver­sity (CMU), an elec­tron beam ac­cel­er­a­tor sys­tem for nat­ural rub­ber ir­ra­di­a­tion has been under de­vel­op­ment and is cur­rently under the com­mis­sion­ing. The re­search pro­ject is car­ried out with the aim to mod­ify an old med­ical linac, re­tired from the clin­i­cal op­er­a­tion, for rub­ber latex vul­can­iza­tion and ma­te­ri­als ir­ra­di­a­tion using elec­tron beams. The ac­cel­er­a­tor sys­tem con­sists of a DC-thermionic cath­ode elec­tron gun, a stand­ing-wave RF lin­ear ac­cel­er­a­tor, an RF sys­tem, a con­trol sys­tem, beam di­ag­nos­tic sys­tems, and an ir­ra­dia-tion sys­tem. The com­po­nents were com­pletely as­sem­bled, and the RF sys­tem was tested. The RF pro­cess­ing has been per­formed and some of the elec­tron beam prop­er­ties have been mea­sured. This con­tri­bu­tion pre­sents some ex­per­i­men­tal re­sults while de­vel­op­ing and test­ing the var­i­ous sub-sys­tems of this ac­cel­er­a­tor. The pre­sent sta­tus of de­vel­op­ment and some vul­can­iza­tion re­sults will also be re­ported in this con­tri­bu­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS040  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS047 Design of Radiation Shielding for the PBP-CMU Electron Linac Laboratory radiation, electron, photon, neutron 3073
 
  • P. Jaikaew, N. Khangrang
    Chiang Mai University, PBP Research Facility, Chiang Mai, Thailand
  • M. Jitvisate
    Suranaree University of Technology, Nakhon Ratchasima, Thailand
  • S. Rimjaem
    Chiang Mai University, Chiang Mai, Thailand
  • S. Rimjaem
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
 
  The local ra­di­a­tion shield­ing is de­signed for the elec­tron lin­ear ac­cel­er­a­tor beam dump at the PBP-CMU Elec­tron Linac Lab­o­ra­tory (PCELL) with the aim to con­trol the an­nual am­bi­ent dose equiv­a­lent dur­ing the op­er­a­tion. The study of ra­di­a­tion gen­er­a­tion and de­sign of ra­di­a­tion shield­ing is con­ducted based on the Monte Carlo sim­u­la­tion toolkit GEANT4. The study re­sults in­clude an an­nual am­bi­ent dose equiv­a­lent map and de­sign of local shield­ing for the first bam dump down­stream the linac sec­tion. With this de­sign, the leak­ing ra­di­a­tion out­side the ac­cel­er­a­tor hall is com­pletely blocked and the av­er­age an­nual am­bi­ent dose equiv­a­lent on the rooftop of the hall is within the IAEA safety limit for the su­per­vised area. The shield­ing model will then be used as a guide­line for the con­struc­tion in the near fu­ture.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS047  
About • Received ※ 07 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS052 Magnetic Field Shield for SC-Cavity with Thin Nb Sheet cavity, niobium, experiment, cryogenics 3090
 
  • Y. Iwashita, Y. Kuriyama
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • Y. Fuwa
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Tongu
    Kyoto ICR, Uji, Kyoto, Japan
 
  Funding: This work was partly supported by JSPS KAKENHI Grant Number 19K21877.
Shield­ing the su­per­con­duct­ing ac­cel­er­at­ing cav­ity made of nio­bium from the weak en­vi­ron­men­tal mag­netic field is an im­por­tant sub­ject. Nio­bium is a type-II su­per­con­duc­tor, which traps the en­vi­ron­men­tal mag­netic flux in the ma­te­r­ial dur­ing the su­per­con­duct­ing tran­si­tion, re­sult­ing in in­crease of resid­ual re­sis­tance and heat­ing dur­ing op­er­a­tion dur­ing op­er­a­tion. Shield­ing from a weak mag­netic field is es­sen­tial for high per­for­mance op­er­a­tions. A mag­netic shield­ing method that uses the dia­mag­net­ism of su­per­con­duct­ing ma­te­ri­als in­stead of mag­netic flux ab­sorp­tion by high mag­netic per­me­abil­ity ma­te­ri­als is dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS052  
About • Received ※ 14 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)