Keyword: collider
Paper Title Other Keywords Page
MOPOST009 EIC Crab Cavity Multipole Analysis and Their Effects on Dynamic Aperture cavity, multipole, dynamic-aperture, luminosity 66
 
  • Q. Wu, B.P. Xiao
    BNL, Upton, New York, USA
  • S.U. De Silva
    ODU, Norfolk, Virginia, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Crab cav­ity is es­sen­tial for re­triev­ing the loss in lu­mi­nos­ity due to the large cross­ing angle in the two col­lid­ing beam lines of the Elec­tron Ion Col­lider (EIC). Due to the asym­met­ric de­sign of the pro­ton beam crab cav­ity, the fun­da­men­tal mode con­sists of con­tri­bu­tions from higher order mul­ti­poles. These mul­ti­pole modes may change dur­ing fab­ri­ca­tion and in­stal­la­tion of the cav­i­ties, and there­fore af­fect the local dy­namic aper­ture. Thresh­olds for each order of the mul­ti­poles are ap­plied to en­sure dy­namic aper­ture re­quire­ments at these crab cav­i­ties. In this paper, we an­a­lyzed the strength of the mul­ti­poles due to fab­ri­ca­tion and in­stal­la­tion ac­cu­ra­cies, and set lim­i­ta­tions to each pro­ce­dure to main­tain the dy­namic aper­ture re­quire­ment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST009  
About • Received ※ 06 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST043 Testing the Global Diffusive Behaviour of Beam-Halo Dynamics at the CERN LHC Using Collimator Scans beam-losses, proton, emittance, hadron 172
 
  • C.E. Montanari, A. Bazzani
    Bologna University, Bologna, Italy
  • M. Giovannozzi, C.E. Montanari, S. Redaelli
    CERN, Meyrin, Switzerland
  • A.A. Gorzawski
    University of Malta, Information and Communication Technology, Msida, Malta
 
  In su­per­con­duct­ing cir­cu­lar par­ti­cle ac­cel­er­a­tors, con­trol­ling beam losses is of para­mount im­por­tance for en­sur­ing op­ti­mal ma­chine per­for­mance and an ef­fi­cient op­er­a­tion. To achieve the re­quired level of un­der­stand­ing of the mech­a­nisms un­der­ly­ing beam losses, mod­els based on global dif­fu­sion processes have re­cently been stud­ied and pro­posed to in­ves­ti­gate the beam-halo dy­nam­ics. In these mod­els, the build­ing block of the an­a­lyt­i­cal form of the dif­fu­sion co­ef­fi­cient is the sta­bil­ity-time es­ti­mate of the Nekhoro­shev the­o­rem. In this paper, the de­vel­oped mod­els are ap­plied to data ac­quired dur­ing col­li­ma­tion scans at the CERN LHC. In these mea­sure­ments, the col­li­ma­tors are moved in steps and the tail pop­u­la­tion is re-con­structed from the ob­served losses. This al­lows an es­ti­mate of the dif­fu­sion co­ef­fi­cient. The re­sults of the analy­ses per­formed are pre­sented and dis­cussed in de­tail.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST043  
About • Received ※ 07 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST045 A Novel Tool for Beam Dynamics Studies with Hollow Electron Lenses simulation, electron, collimation, hadron 176
 
  • P.D. Hermes, R. Bruce, R. De Maria, M. Giovannozzi, G. Iadarola, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  Hol­low Elec­tron Lenses (HELs) are cru­cial com­po­nents of the CERN LHC High Lu­mi­nos­ity Up­grade (HL-LHC), serv­ing the pur­pose of ac­tively con­trol­ling the pop­u­la­tion of the trans­verse beam halo to re­duce par­ti­cle losses on the col­li­ma­tion sys­tem. Sym­plec­tic par­ti­cle track­ing sim­u­la­tions are re­quired to op­ti­mize the ef­fi­ciency and study po­ten­tially un­de­sired beam dy­nam­ics ef­fects with the HELs. With the rel­e­vant time scales in the col­lider in the order of sev­eral min­utes, track­ing sim­u­la­tions re­quire con­sid­er­able com­put­ing re­sources. A new track­ing tool, Xsuite, de­vel­oped at CERN since 2021, of­fers the pos­si­bil­ity of per­form­ing such track­ing sim­u­la­tions using graph­ics pro­cess­ing units (GPUs), with promis­ing per­spec­tives for the sim­u­la­tion of hadron beam dy­nam­ics with HELs. In this con­tri­bu­tion, we pre­sent the im­ple­men­ta­tion of HEL physics ef­fects in the new track­ing frame­work. We com­pare the per­for­mance with pre­vi­ous tools and show sim­u­la­tion re­sults ob­tained using known and newly es­tab­lished sim­u­la­tion se­tups.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST045  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST049 Electron Cloud Build-Up for the Arc Sextupole Sections of the FCC-ee electron, simulation, vacuum, sextupole 191
 
  • J.E. Rocha Muñoz, G.H.I. Maury Cuna
    Universidad de Guanajuato, División de Ciencias e Ingenierías, León, Mexico
  • K.B. Cantún-Ávila
    UADY, Mérida, Yucatán, Mexico
  • F. Zimmermann
    CERN, Meyrin, Switzerland
 
  Funding: Consejo Nacional de Ciencia y Tecnología (CONACyT) - México
In par­ti­cle ac­cel­er­a­tors that op­er­ate with positrons, an elec­tron cloud may occur due to sev­eral mech­a­nisms. This work re­ports pre­lim­i­nary stud­ies on elec­tron cloud build-up for the arc sex­tu­pole sec­tions of the positron ring of the FCCe+e using the code PyE­CLOUD. We com­pute the elec­tron cloud evo­lu­tion while vary­ing strate­gic pa­ra­me­ters and con­sider three sim­u­la­tion sce­nar­ios. We re­port the val­ues of the cen­tral den­sity just be­fore the bunch pas­sage, which is re­lated to the sin­gle-bunch in­sta­bil­ity thresh­old and the elec­tron den­sity thresh­old for the three sce­nar­ios. In ad­di­tion, we com­pare the sim­u­lated elec­tron dis­tri­b­u­tion across the cen­tral cir­cu­lar cross-sec­tion for a cham­ber with and with­out winglets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST049  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT025 Development of an Electro-Optical Longitudinal Bunch Profile Monitor at KARA Towards a Beam Diagnostics Tool for FCC-ee laser, electron, operation, polarization 296
 
  • M. Reißig, M. Brosi, E. Bründermann, S. Funkner, B. Härer, A.-S. Müller, G. Niehues, M.M. Patil, R. Ruprecht, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: The Future Circular Collider Innovation Study (FCCIS) project has received funding from the European Union’s Horizon 2020 research and innovation programme under grant No 951754. M. R. and M. M. P. acknowledge the support by the Doctoral School "Karlsruhe School of Elementary and Astroparticle Physics: Science and Technology". C. W. achnowledges funding by BMBF contract number 05K19VKD.
The Karl­sruhe Re­search Ac­cel­er­a­tor (KARA) at KIT fea­tures an elec­tro-op­ti­cal (EO) near-field di­ag­nos­tics setup to con­duct turn-by-turn lon­gi­tu­di­nal bunch pro­file mea­sure­ments in the stor­age ring using elec­tro-op­ti­cal spec­tral de­cod­ing (EOSD). Within the Fu­ture Cir­cu­lar Col­lider In­no­va­tion Study (FCCIS) an EO mon­i­tor using the same tech­nique is being con­ceived to mea­sure the lon­gi­tu­di­nal pro­file and cen­ter-of-charge of the bunches in the fu­ture elec­tron-positron col­lider FCC-ee. This con­tri­bu­tion pro­vides an overview of the EO near-field di­ag­nos­tics at KARA and dis­cusses the de­vel­op­ment and its chal­lenges to­wards an ef­fec­tive beam di­ag­nos­tics con­cept for the FCC-ee.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT025  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK031 10 TeV Center of Mass Energy Muon Collider dipole, quadrupole, focusing, radiation 515
 
  • K. Skoufaris, C. Carli, D. Schulte
    CERN, Meyrin, Switzerland
 
  A Muon col­lider can pro­vide unique op­por­tu­ni­ties in high-en­ergy physics as an en­ergy fron­tier ma­chine. How­ever, a num­ber of chal­lenges have to be ad­dressed dur­ing the de­sign process pri­mar­ily due to the short life­time of muons. In this work, a lat­tice for a §I10{TeV} cen­ter-of-mass en­ergy col­lider is pre­sented. Some of the more im­por­tant chal­lenges faced are: the de­sign of an in­ter­ac­tion re­gion with β* val­ues of the order of a few mil­lime­ters and an ad­e­quate chro­matic com­pen­sa­tion with­out sac­ri­fic­ing the phys­i­cal and dy­namic aper­ture, the flex­i­bil­ity to con­trol the mo­men­tum com­paction fac­tor and the ra­di­a­tion gen­er­ated where neu­tri­nos from muons de­cays reach the sur­face. These is­sues are ad­dressed with the de­vel­op­ment of a new chro­matic cor­rec­tion scheme, the ex­ten­sive use of flex­i­ble mo­men­tum com­paction fac­tor cells and the ef­fi­cient con­trol of the op­ti­cal pa­ra­me­ters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK031  
About • Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK046 Design Concept for a Second Interaction Region for the Electron-Ion Collider electron, hadron, optics, detector 564
 
  • B.R. Gamage, V. Burkert, R. Ent, Y. Furletova, D.W. Higinbotham, T.J. Michalski, R. Rajput-Ghoshal, D. Romanov, T. Satogata, A. Seryi, C. Weiss, W. Wittmer, Y. Zhang
    JLab, Newport News, Virginia, USA
  • E.C. Aschenauer, J.S. Berg, K.A. Drees, A. Jentsch, A. Kiselev, C. Montag, R.B. Palmer, B. Parker, V. Ptitsyn, F.J. Willeke, H. Witte
    BNL, Upton, New York, USA
  • C. Hyde
    ODU, Norfolk, Virginia, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • P. Nadel-Turonski
    SBU, Stony Brook, New York, USA
 
  Funding: Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177, Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and UT-Battelle, LLC, under contract No. DE-AC05-00OR22725
In ad­di­tion to the day-one pri­mary In­ter­ac­tion Re­gion (IR), the de­sign of the Elec­tron Ion Col­lider (EIC) must sup­port op­er­a­tion of a 2nd IR po­ten­tially added later. The 2nd IR is en­vi­sioned in an ex­ist­ing ex­per­i­men­tal hall at RHIC IP8, com­pat­i­ble with the same beam en­ergy com­bi­na­tions as the 1st IR over the full cen­ter of mass en­ergy range of ~20 GeV to ~140 GeV. The 2nd IR is de­signed to be com­ple­men­tary to the 1st IR. In par­tic­u­lar, a sec­ondary focus is added in the for­ward ion di­rec­tion of the 2nd IR hadron beam­line to op­ti­mize its ca­pa­bil­ity in de­tect­ing par­ti­cles with mag­netic rigidi­ties close to those of the ion beam. We pro­vide the cur­rent de­sign sta­tus of the 2nd IR in terms of pa­ra­me­ters, mag­net lay­out and beam dy­nam­ics.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK046  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIZSP1 Status of the e+e Collider Projects in Asia and Europe: CEPC and FCC-ee cavity, booster, positron, operation 815
 
  • X.C. Lou
    IHEP, Beijing, People’s Republic of China
  • M. Boscolo
    LNF-INFN, Frascati, Italy
  • F. Zimmermann
    CERN, Meyrin, Switzerland
 
  Since the Higgs boson dis­cov­ery at CERN, pre­ci­sion mea­sure­ment of its prop­er­ties has be­come the first pri­or­ity in the field of High En­ergy Physics. Two lab­o­ra­to­ries, CERN from Eu­rope and IHEP from China, have pro­posed large scale cir­cu­lar elec­tron-positron col­lid­ers, namely FCC-ee and CEPC. Record lu­mi­nosi­ties are ex­pected in the cen­ter of mass en­ergy range from 90 to about 365 GeV. In this talk the sta­tuses of both pro­jects are re­viewed: Fol­low­ing the pub­li­ca­tion of the first CDR FCC-ee and CEPC en­ter­ing the phase of con­sol­i­da­tion and fea­si­bil­ity study. Spe­cial focus will be put on R&D plans, pro­to­typ­ing and key tech­nolo­gies.  
slides icon Slides TUIZSP1 [6.718 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUIZSP1  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUIZSP2 The Muon Collider target, cavity, emittance, solenoid 821
 
  • D. Schulte
    CERN, Meyrin, Switzerland
 
  Muon col­lid­ers are con­sid­ered nowa­days in the land­scape of fu­ture lep­ton col­lid­ers. Since the MAP pro­ject in USA, an im­por­tant ef­fort is being made in Eu­rope to iden­tify the necce­sary R&D to ad­vance to­wards a Con­cep­tual De­sign Re­port in the next years. The talk will re­view the sta­tus of the tech­nolo­gies and ac­cel­er­a­tor de­signs and will pre­sent the R&D plans.  
slides icon Slides TUIZSP2 [15.641 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUIZSP2  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOZSP1 Prospects for Optics Measuements in FCC-ee optics, damping, dipole, radiation 827
 
  • J. Keintzel, R. Tomás García, F. Zimmermann
    CERN, Meyrin, Switzerland
 
  Within the frame­work of the Fu­ture Cir­cu­lar Col­lider Fea­si­bil­ity Study, the de­sign of the elec­tron-positron col­lider FCC-ee is op­ti­mised, as a pos­si­ble fu­ture dou­ble col­lider ring, cur­rently fore­seen to start op­er­a­tion dur­ing the 2040s. With close to 100 km of cir­cum­fer­ence and strong syn­chro­tron ra­di­a­tion damp­ing at high­est beam en­ergy, ad­e­quate beam mea­sure­ments are needed to con­trol the op­tics at the de­sired level. Var­i­ous pos­si­ble tech­niques to mea­sure the op­tics in FCC-ee are ex­plored, in­clud­ing the op­tion of turn-by-turn mea­sure­ments in com­bi­na­tion with an AC-di­pole.  
slides icon Slides TUOZSP1 [2.738 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOZSP1  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST011 Simulation Studies of Intra-Train, Bunch-by-Bunch Feedback Systems at the International Linear Collider feedback, luminosity, ground-motion, linear-collider 861
 
  • R.L. Ramjiawan, D.R. Bett, P. Burrows, C. Perry
    JAI, Oxford, United Kingdom
  • D.R. Bett
    CERN, Meyrin, Switzerland
  • R.M. Bodenstein
    JLab, Newport News, Virginia, USA
  • G.B. Christian
    DLS, Oxfordshire, United Kingdom
 
  The In­ter­na­tional Lin­ear Col­lider (ILC) is a pro­posed elec­tron-positron col­lider tar­get­ing col­li­sion en­er­gies from 250 GeV to 1 TeV. With de­sign lu­mi­nosi­ties of order 1034 cm2s-1, a beam-based, in­tra-train feed­back sys­tem would be re­quired near the In­ter­ac­tion Point (IP) to pro­vide nanome­tre-level sta­bil­i­sa­tion of the beam over­lap in the col­li­sions. Here we pre­sent re­sults from beam-track­ing sim­u­la­tions of the 500 GeV ILC, in­clud­ing the im­pact of beam-tra­jec­tory im­per­fec­tions on the lu­mi­nos­ity, and the ca­pa­bil­ity of the IP feed­back sys­tem to com­pen­sate for them. Ef­fects in­ves­ti­gated in­clude the po­si­tion jit­ter in­tro­duced by the damp­ing ring ex­trac­tion kicker, short-range and long-range wake­fields, and ground mo­tion. The feed­back sys­tem was shown to be able to cor­rect for beam-beam off­sets of up to 200 nm and sta­bilise the col­li­sion over­lap to the nanome­tre level, within a few bunch cross­ings.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST011  
About • Received ※ 03 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST054 Experiment of Bayesian Optimization for Trajectory Alignment at Low Energy RHIC Electron Cooler electron, experiment, alignment, controls 987
 
  • Y. Gao, K.A. Brown, X. Gu, J. Morris, S. Seletskiy
    BNL, Upton, New York, USA
  • J.A. Crittenden, G.H. Hoffstaetter, W. Lin
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy; U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams.
As the world’s first elec­tron cooler that uses radio fre­quency (rf) ac­cel­er­ated elec­tron bunches, the low en­ergy RHIC elec­tron cool­ing (LEReC) sys­tem is a non­mag­ne­tized cooler of ion beams in RHIC at Brookhaven Na­tional Lab­o­ra­tory. Beam dy­nam­ics in LEReC are dif­fer­ent from the more con­ven­tional elec­tron cool­ers due to the bunch­ing of the elec­tron beam. To en­sure an ef­fi­cient cool­ing per­for­mance at LEReC, many pa­ra­me­ters need to be mon­i­tored and fine-tuned. The align­ment of the elec­tron and ion tra­jec­to­ries in the LEReC cool­ing sec­tions is one of the most crit­i­cal pa­ra­me­ters. This work ex­plores using a ma­chine learn­ing (ML) method - Bayesian Op­ti­miza­tion (BO) to op­ti­mize the tra­jec­to­ries’ align­ment. Ex­per­i­men­tal re­sults demon­strate that ML meth­ods such as BO can per­form con­trol tasks ef­fi­ciently in the RHIC con­trols sys­tem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST054  
About • Received ※ 04 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK048 Optimization of a 600 MHz Two-Cell Slotted Waveguide Elliptical Cavity for FCC-ee cavity, impedance, HOM, GUI 1323
 
  • S. Gorgi Zadeh, O. Brunner, F. Peauger, I. Syratchev
    CERN, Meyrin, Switzerland
 
  The ra­dio-fre­quency (RF) sys­tem of the fu­ture cir­cu­lar lep­ton col­lider (FCC-ee) must cope with dif­fer­ent ma­chine pa­ra­me­ters rang­ing from Am­pere-class op­er­a­tion re­quired for the Z-peak work­ing point to the high-gra­di­ent op­er­a­tion for the ttbar thresh­old. The Su­per­con­duct­ing Slot­ted Wave­guide El­lip­ti­cal cav­ity (SWELL) con­cept was re­cently pro­posed as an al­ter­na­tive to the chal­leng­ing RF base­line de­sign of the FCC-ee. In this paper, ran­dom op­ti­miza­tion meth­ods are used to min­i­mize the peak sur­face mag­netic field and the max­i­mum lon­gi­tu­di­nal im­ped­ance of the higher order modes (HOM) of a two-cell \unit[600]{MHz} SWELL cav­ity. In the next step, the wave­guide slots are op­ti­mized to first have a smooth tran­si­tion from the cav­ity to the slots to avoid large peak sur­face fields and sec­ond to achieve high trans­mis­sion at di­pole mode fre­quen­cies and low trans­mis­sion at fun­da­men­tal mode fre­quency while keep­ing the de­sign com­pact.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK048  
About • Received ※ 23 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 15 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK060 Simulations of Miscut Effects on the Efficiency of a Crystal Collimation System collimation, simulation, proton, hadron 1358
 
  • M. D’Andrea, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  Funding: Research supported by the HL-LHC project.
The con­cept of crys­tal col­li­ma­tion re­lies on the use of bent crys­tals which can co­her­ently de­flect high-en­ergy halo par­ti­cles at an­gles or­ders of mag­ni­tude larger than what is ob­tained from scat­ter­ing with con­ven­tional ma­te­ri­als. Crys­tal col­li­ma­tion is stud­ied to fur­ther im­prove the col­li­ma­tion ef­fi­ciency at the High Lu­mi­nos­ity Large Hadron Col­lider (HL-LHC). In order to re­pro­duce the main ex­per­i­men­tal re­sults of crys­tal col­li­ma­tion tests and to pre­dict the per­for­mance of such a sys­tem, a sim­u­la­tion rou­tine ca­pa­ble of mod­el­ing in­ter­ac­tions of beam par­ti­cles with crys­tal col­li­ma­tors was de­vel­oped and re­cently in­te­grated into the lat­est re­lease of the sin­gle-par­ti­cle track­ing code Six­Track. A new treat­ment of the mis­cut angle, i.e. the angle be­tween crys­talline planes and crys­tal edges, was im­ple­mented to study the ef­fects of this man­u­fac­tur­ing im­per­fec­tion on the ef­fi­ciency of a crys­tal col­li­ma­tion sys­tem. In this paper, the up­dated mis­cut angle model is de­scribed and sim­u­la­tion re­sults on the clean­ing ef­fi­ciency are pre­sented, using con­fig­u­ra­tions tested dur­ing Run 2 of the LHC as a case study.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK060  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK061 Prospects to Apply Machine Learning to Optimize the Operation of the Crystal Collimation System at the LHC collimation, operation, hadron, network 1362
 
  • M. D’Andrea, G. Azzopardi, M. Di Castro, E. Matheson, D. Mirarchi, S. Redaelli, G. Valentino
    CERN, Meyrin, Switzerland
  • G. Ricci
    Sapienza University of Rome, Rome, Italy
 
  Funding: Research supported by the HL-LHC project.
Crys­tal col­li­ma­tion re­lies on the use of bent crys­tals to co­her­ently de­flect halo par­ti­cles onto ded­i­cated col­li­ma­tor ab­sorbers. This scheme is planned to be used at the LHC to im­prove the be­ta­tron clean­ing ef­fi­ciency with high-in­ten­sity ion beams. Only par­ti­cles with im­ping­ing an­gles below 2.5 urad rel­a­tive to the crys­talline planes can be ef­fi­ciently chan­neled at the LHC nom­i­nal top en­ergy of 7 Z TeV. For this rea­son, crys­tals must be kept in op­ti­mal align­ment with re­spect to the cir­cu­lat­ing beam en­ve­lope to max­i­mize the ef­fi­ciency of the chan­nel­ing process. Given the small an­gu­lar ac­cep­tance, achiev­ing op­ti­mal chan­nel­ing con­di­tions is par­tic­u­larly chal­leng­ing. Fur­ther­more, the dif­fer­ent phases of the LHC op­er­a­tional cycle in­volve im­por­tant dy­namic changes of the local orbit and op­tics, re­quir­ing an op­ti­mized con­trol of po­si­tion and angle of the crys­tals rel­a­tive to the beam. To this end, the pos­si­bil­ity to apply ma­chine learn­ing to the align­ment of the crys­tals, in a ded­i­cated setup and in stan­dard op­er­a­tion, is con­sid­ered. In this paper, pos­si­ble so­lu­tions for au­to­matic adap­ta­tion to the chang­ing beam pa­ra­me­ters are high­lighted and plans for the LHC ion runs start­ing in 2022 are dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK061  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 21 June 2022 — Issue date ※ 24 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK062 Settings for Improved Betatron Collimation in the First Run of the High Luminosity LHC collimation, dipole, luminosity, hadron 1366
 
  • B. Lindström, A. Abramov, R. Bruce, R. De Maria, P.D. Hermes, J. Molson, S. Redaelli, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  Funding: This work was supported by the High Luminosity LHC project
The cur­rent be­ta­tron col­li­ma­tion sys­tem in the LHC is not op­ti­mized to ab­sorb off-mo­men­tum par­ti­cles scat­tered out from the pri­mary col­li­ma­tors. The high­est losses are con­cen­trated in the down­stream dis­per­sion sup­pres­sor (DS). Given the in­creased beam in­ten­sity in the High Lu­mi­nos­ity LHC (HL-LHC), there is con­cern that these losses could risk quench­ing the su­per­con­duct­ing DS mag­nets. Con­se­quently, a ded­i­cated up­grade of the DS has been stud­ied. How­ever, at this stage, the de­ploy­ment for the startup of the HL-LHC is un­cer­tain due to de­lays in the avail­abil­ity of high-field mag­nets needed to in­te­grate new col­li­ma­tors into the DS. In this paper, we de­scribe the ex­pected col­li­ma­tion setup for the first run of the HL-LHC and ex­plore var­i­ous tech­niques to im­prove the col­li­ma­tion clean­ing. These in­clude ex­ploit­ing the asym­met­ric re­sponse of the two jaws of each pri­mary col­li­ma­tor and ad­just­ing the lo­cally gen­er­ated dis­per­sion in the col­li­ma­tion in­ser­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK062  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOXGD1 Studies and Mitigation of Collective Effects in FCC-ee impedance, coupling, collective-effects, synchrotron 1583
 
  • M. Migliorati, E. Carideo
    Sapienza University of Rome, Rome, Italy
  • C. Antuono, E. Carideo
    CERN, Meyrin, Switzerland
  • M. Behtouei, B. Spataro, M. Zobov
    LNF-INFN, Frascati, Italy
  • Y. Zhang
    IHEP, Beijing, People’s Republic of China
 
  Funding: The Future Circular Collider Innovation Study (FCCIS) receives funding from the European Union’s Horizon 2020 research and innovation programme under grant No 951754.
In order to achieve a high lu­mi­nos­ity in the fu­ture elec­tron-positron cir­cu­lar col­lider (FCC-ee), very in­tense multi-bunch col­lid­ing beams should have nanome­ter scale trans­verse beam sizes at the col­li­sion points. For this pur­pose the emit­tances of the col­lid­ing beams are cho­sen to be very small, com­pa­ra­ble to those of the mod­ern syn­chro­tron light sources, while the stored beam cur­rents should be close to the best val­ues achieved in the last gen­er­a­tion of par­ti­cle fac­to­ries. In order to pre­serve beam qual­ity and to avoid col­lider per­for­mance degra­da­tion, a care­ful study of the col­lec­tive ef­fects and tech­niques for their mit­i­ga­tion is re­quired. The cur­rent sta­tus of these stud­ies is dis­cussed in the paper.
 
slides icon Slides WEOXGD1 [2.898 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOXGD1  
About • Received ※ 16 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST001 Radiation Load Studies for Superconducting Dipole Magnets in a 10 TeV Muon Collider radiation, shielding, dipole, electron 1671
 
  • D. Calzolari, C. Carli, B. Humann, A. Lechner, G. Lerner, F. Salvat Pujol, D. Schulte, K. Skoufaris
    CERN, Meyrin, Switzerland
  • B. Humann
    TU Vienna, Wien, Austria
 
  Among the var­i­ous fu­ture lep­ton col­lid­ers under study, muon col­lid­ers offer the prospect of reach­ing the high­est col­li­sion en­er­gies. De­spite the promis­ing po­ten­tial of a multi-TeV muon col­lider, the short life­time of muons poses a se­vere tech­no­log­i­cal chal­lenge for the col­lider de­sign. In par­tic­u­lar, the co­pi­ous pro­duc­tion of decay elec­trons and positrons along the col­lider ring re­quires the in­te­gra­tion of con­tin­u­ous ra­di­a­tion ab­sorbers in­side su­per­con­duct­ing mag­nets. The ab­sorbers are needed to avoid quenches, re­duce the heat dis­si­pa­tion in the cold mass and pre­vent mag­net fail­ures due to long-term ra­di­a­tion dam­age. In this paper, we pre­sent FLUKA shower sim­u­la­tions as­sess­ing the shield­ing re­quire­ments for high-field mag­nets of a 10 TeV muon col­lider. We quan­tify in par­tic­u­lar the role of syn­chro­tron pho­ton emis­sion by decay elec­trons and positrons, which helps in dis­pers­ing the en­ergy car­ried by the decay prod­ucts. For com­par­i­son, se­lected re­sults for a 3 TeV muon col­lider are also pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST001  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST007 Centre-of-Mass Energy in FCC-ee radiation, polarization, cavity, simulation 1683
 
  • J. Keintzel, R. Tomás García, F. Zimmermann
    CERN, Meyrin, Switzerland
  • A.P. Blondel
    DPNC, Genève, Switzerland
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
 
  The Fu­ture Cir­cu­lar elec­tron-positron Col­lider (FCC-ee) is de­signed for high pre­ci­sion par­ti­cle physics ex­per­i­ments. This de­mands a pre­cise knowl­edge of the beam en­er­gies, ob­tained by res­o­nant de­po­lar­iza­tion, and from which the cen­ter-of-mass en­ergy and pos­si­ble boosts at all in­ter­ac­tion points are then de­ter­mined. At the high­est beam en­ergy mode of 182.5 GeV, the en­ergy loss due to syn­chro­tron ra­di­a­tion is about 10 GeV per rev­o­lu­tion. Hence, not only the lo­ca­tion of the RF cav­i­ties, but also a pre­cise con­trol of the op­tics and un­der­stand­ing of beam dy­nam­ics, are cru­cial. In the stud­ies pre­sented here, dif­fer­ent pos­si­ble lo­ca­tions of the RF-cav­i­ties are con­sid­ered, when cal­cu­lat­ing the beam en­er­gies over the ma­chine cir­cum­fer­ence, in­clud­ing en­ergy losses from cross­ing an­gles, a non-ho­mo­ge­neous di­pole dis­tri­b­u­tion, and an es­ti­mate of the beam­strahlung ef­fect at the col­li­sion point.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST007  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST010 Controlling e+/e Circular Collider Bunch Intensity by Laser Compton Scattering laser, electron, scattering, photon 1695
 
  • F. Zimmermann
    CERN, Meyrin, Switzerland
  • T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
 
  Funding: This project receives funding from the European Union’s H2020 Framework Programme under grant agreement no. 951754 (FCCIS).
In the fu­ture cir­cu­lar elec­tron-positron col­lider "FCC-ee", the in­ten­sity of col­lid­ing bunches must be tightly con­trolled, with a max­i­mum charge im­bal­ance be­tween col­li­sion part­ner bunches of less than 3-5%. Laser Comp­ton back scat­ter­ing could be used to ad­just and fine-tune the bunch in­ten­sity. We dis­cuss a pos­si­ble im­ple­men­ta­tion and suit­able laser pa­ra­me­ters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST010  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST011 Studies on Top-Up Injection into the FCC-ee Collider Ring injection, kicker, optics, lattice 1699
 
  • P.J. Hunchak, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • W. Bartmann, Y. Dutheil, M. Hofer, R.L. Ramjiawan, F. Zimmermann
    CERN, Meyrin, Switzerland
  • M.J. Boland
    University of Saskatchewan, Saskatoon, Canada
 
  In order to max­i­mize the lu­mi­nos­ity pro­duc­tion time in the FCC-ee, top-up in­jec­tion will be em­ployed. The positron and elec­tron beams will be ac­cel­er­ated to the col­li­sion en­ergy in the booster ring be­fore being in­jected with ei­ther a small trans­verse or lon­gi­tu­di­nal sep­a­ra­tion to the stored beam. Using this scheme es­sen­tially keeps the beam cur­rent con­stant and, apart from a brief pe­riod dur­ing the in­jec­tion process, col­li­sion data can be con­tin­u­ously ac­quired. Two top-up in­jec­tion schemes, each with on- and off-mo­men­tum sub-schemes, vi­able for FCC-ee have been iden­ti­fied in the past and are stud­ied in fur­ther de­tail to find a suit­able de­sign for each of the four op­er­a­tion modes of the FCC-ee. In this paper, in­jec­tion straight op­tics, ini­tial in­jec­tion track­ing stud­ies and the ef­fect on the stored beam are pre­sented. Ad­di­tion­ally, a basic proxy error lat­tice is in­tro­duced as a first step to study­ing in­jec­tion into an im­per­fect ma­chine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST011  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST017 Design of a Collimation Section for the FCC-ee collimation, optics, operation, quadrupole 1722
 
  • M. Hofer, A. Abramov, R. Bruce, K. Oide, F. Zimmermann
    CERN, Meyrin, Switzerland
  • M. Moudgalya, T. Pieloni
    EPFL, Lausanne, Switzerland
  • K. Oide
    KEK, Ibaraki, Japan
 
  The de­sign pa­ra­me­ters of the FCC-ee fore­see op­er­a­tion with a total stored beam en­ergy of about 20 MJ, ex­ceed­ing those of pre­vi­ous lep­ton col­lid­ers by al­most two or­ders of mag­ni­tude. Given the in­her­ent dam­age po­ten­tial, a halo col­li­ma­tion sys­tem is stud­ied to pro­tect the ma­chine hard­ware, in par­tic­u­lar su­per­con­duct­ing equip­ment such as the final focus quadrupoles, from sud­den beam loss. The dif­fer­ent con­straints that led to ded­i­cat­ing one straight sec­tion to col­li­ma­tion will be out­lined. In ad­di­tion, a pre­lim­i­nary lay­out and op­tics for a col­li­ma­tion in­ser­tion are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST017  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST050 Further Measurements of Beam-Beam Interactions in a Gear-Changing System in DESIREE experiment, synchrotron, pick-up, space-charge 1810
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
  • A. Källberg, A. Simonsson
    Stockholm University, Stockholm, Sweden
 
  Funding: Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a license to publish or reproduce this manuscript.
In this work we de­tail ex­per­i­ments per­formed on a gear-chang­ing sys­tem using the Dou­ble Elec­tro­Sta­tic Ion Ring Ex­pEr­i­ment (DE­SIREE). A gear-chang­ing sys­tem is one where there are dif­fer­ent har­monic num­bers in each ring. This ex­per­i­ment used car­bon and ni­tro­gen beams in a 4 on 3 gear-chang­ing arrange­ment, with the last bunch of each left off. The bunch length can be mea­sured and syn­chro­tron mo­tion de­tected. We per­formed this mea­sure­ment on three dif­fer­ent val­ues of car­bon cur­rent, and pre­sent the dif­fer­ences in the bunch length fre­quency spec­trum here, which cor­re­spond to twice the syn­chro­tron fre­quen­cies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST050  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT001 NICA Ion Collider and Plans of Its First Operations booster, injection, electron, luminosity 1819
 
  • E. Syresin, O.I. Brovko, A.V. Butenko, A.R. Galimov, E.V. Gorbachev, V. Kekelidze, H.G. Khodzhibagiyan, S.A. Kostromin, V.A. Lebedev, I.N. Meshkov, A.V. Philippov, A.O. Sidorin, G.V. Trubnikov, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
 
  The Nu­clotron-based Ion Col­lider fA­cil­ity (NICA) is under as­sem­bling in JINR. The NICA goals are pro­vid­ing of col­lid­ing beams for stud­ies of hot and dense strongly in­ter­act­ing bary­onic mat­ter and spin physics. The heavy ion in­jec­tion com­plex of Col­lider NICA con­sist­ing from fol­low­ing ac­cel­er­a­tors: new act­ing heavy ion linac HILAC with RFQ and IH DTL sec­tions at en­ergy 3.2 MeV/u, new act­ing su­per­con­duct­ing Booster syn­chro­tron at en­ergy up 600 MeV/u, act­ing su­per­con­duct­ing syn­chro­tron Nu­clotron at gold ion en­ergy 3.9 GeV/n, will starts op­er­a­tion with first ion beams in be­gin­ning of 2022. The as­sem­bling of two Col­lider stor­age rings with two in­ter­ac­tion points was done in De­cem­ber 2021. The sta­tus of ac­cel­er­a­tion com­plex NICA and plans of its first op­er­a­tion is under dis­cus­sion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT001  
About • Received ※ 30 May 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT002 Conception of High Intensive Polarized Proton Beam Formation in NICA Collider proton, injection, luminosity, acceleration 1822
 
  • E. Syresin, A.V. Butenko, S.A. Kostromin, O.S. Kozlov, I.N. Meshkov, A.O. Sidorin, G.V. Trubnikov, A. Tuzikov
    JINR, Dubna, Moscow Region, Russia
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • S.D. Kolokolchikov, Y. Senichev
    RAS/INR, Moscow, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
  • N.V. Mityanina
    BINP SB RAS, Novosibirsk, Russia
  • P.R. Zenkevich
    ITEP, Moscow, Russia
 
  NICA (Nu­clotron-based Ion Col­lider fA­cil­ity) is a new ac­cel­er­a­tor com­plex being as­sem­bled at JINR to search for the mixed phase of bary­onic mat­ter and to in­ves­ti­gate the na­ture of nu­cleon/par­ti­cle spin. The po­lar­ized pro­ton beams will be op­er­ated at the en­ergy range of 5-12.6 GeV, the beam in­ten­sity in each ring of 2.2x1013 and the lu­mi­nos­ity of 1x1032 cm-2 s-1. The con­cep­tion of for­ma­tion of high in­ten­sive pro­ton beams is dis­cussed for two dif­fer­ent schemes. In first scheme the pro­tons are in­jected from Nu­clotron to Col­lider at an en­ergy of 2-2.5 GeV to pro­vide the cool­ing and the stor­age at this en­ergy and then they are ac­cel­er­ated up to en­ergy of ex­per­i­ments. In the sec­ond scheme the cool­ing of pro­tons is re­al­ized in one from ac­cel­er­a­tors of the in­jec­tion chain and the pro­tons are in­jected from Nu­clotron to Col­lider at en­ergy of ex­per­i­ments, where they are stored up re­quired in­ten­sity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT002  
About • Received ※ 03 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 10 June 2022 — Issue date ※ 12 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT003 Challenges of Low Energy Hadron Colliders electron, luminosity, emittance, operation 1825
 
  • G.V. Trubnikov, V.A. Lebedev
    JINR, Dubna, Moscow Region, Russia
  • A.V. Butenko, S.A. Kostromin, I.N. Meshkov, A.V. Philippov, A.O. Sidorin, E. Syresin, A. Tuzikov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  NICA col­lider com­plex is under con­struc­tion at JINR. The ini­tial con­fig­u­ra­tion of the col­lider will per­form col­li­sions of fully stripped heavy ions, 209 Bi and oth­ers, for a study of phase tran­si­tion in the quark-gluon plasma in the en­ergy range 1/4.5 GeV/u per beam. Com­mis­sion­ing of the col­lider in­jec­tion chain has been re­cently started. The com­plex in­cludes 2 linacs, 2 Booster syn­chro­trons (Booster and Nu­clotron to sup­port the beam in­jec­tion to the col­lider), and 2 col­lider rings of 503 m cir­cum­fer­ence. The de­sign lu­mi­nos­ity is ~1027 1/(cm*s) at 4.5 GeV/u. The heavy ions are gen­er­ated in the ESIS-type ion source with in­ten­sity ~10 9 /pulse. Then they are ac­cel­er­ated into the linac and Booster and di­rected to strip­ping tar­get. Next, fully stripped ions are ac­cel­er­ated in the Nu­clotron and in­jected into Col­lider. The elec­tron and sto­chas­tic cool­ing are used in each of the col­lider rings to sup­port beam ac­cu­mu­la­tion and to pre­vent the emit­tance growth due to in­tra­beam scat­ter­ing. Three RF sys­tems are used for lon­gi­tu­di­nal phase space ma­nip­u­la­tions. An achieve­ment of de­sign lu­mi­nos­ity re­quires over­com­ing many tech­no­log­i­cal and beam physics prob­lems which are dis­cussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT003  
About • Received ※ 30 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT004 Acceleration and Crossing of Transition Energy Investigation Using an RF Structure of the Barrier Bucket Type in the NICA Accelerator Complex dynamic-aperture, focusing, acceleration, proton 1829
 
  • S.D. Kolokolchikov, A.A. Melnikov, Y. Senichev
    RAS/INR, Moscow, Russia
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  The dy­namic of lon­gi­tu­di­nal mo­tion in Bar­rier Bucket RF struc­ture is con­sid­ered. To pre­serve the sta­bil­ity of the pro­ton beam dur­ing the ac­cel­er­a­tion to the ex­per­i­ment en­ergy it is nec­es­sary to cross the tran­si­tion en­ergy and a rapid jump of tran­si­tion en­ergy is pos­si­ble. The in­flu­ence of the sec­ond-or­der slip fac­tor is tak­ing into ac­count, as well as the space charge ef­fect. The dy­namic aper­ture is in­ves­ti­gated for var­i­ous gra­di­ents of fo­cus­ing quadrupoles and cor­re­spond­ing work­ing points which is nec­es­sary for tran­si­tion cross­ing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT004  
About • Received ※ 16 May 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT013 Effect of a Spurious CLIQ Firing on the Circulating Beam in HL-LHC beam-losses, luminosity, simulation, collimation 1862
 
  • C. Hernalsteens, B. Lindström, E. Ravaioli, O.K. Tuormaa, M. Villén Basco, C. Wiesner, D. Wollmann
    CERN, Meyrin, Switzerland
 
  The High Lu­mi­nos­ity LHC (HL-LHC) will reach a nom­i­nal, lev­elled lu­mi­nos­ity of §I{5e34}{\per\cm\square\per\sec­ond} and a stored en­ergy of nearly §I{700}{MJ} in each of the two pro­ton beams. The new large-aper­ture final fo­cus­ing Nb3Sn quadru­pole mag­nets in IR1 and IR5, which are es­sen­tial to achieve the lu­mi­nos­ity tar­get, will be pro­tected using the novel Cou­pling Loss In­duced Quench (CLIQ) sys­tem. A spu­ri­ous dis­charge of a CLIQ unit will im­pact the cir­cu­lat­ing beam through higher order mul­ti­po­lar field com­po­nents that de­velop rapidly over a few turns. This paper re­ports on ded­i­cated beam track­ing stud­ies per­formed to eval­u­ate the crit­i­cal­ity of this fail­ure on the HL-LHC beam. Sim­u­la­tions for dif­fer­ent ma­chine and op­tics con­fig­u­ra­tions show that the beam losses reach a crit­i­cal level after only five ma­chine turns fol­low­ing the spu­ri­ous CLIQ trig­ger, which is much faster than as­sumed in pre­vi­ous sim­u­la­tions that did not con­sider the higher order mul­ti­po­lar fields. Ma­chine pro­tec­tion re­quire­ments using a ded­i­cated in­ter­lock to mit­i­gate this fail­ure are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT013  
About • Received ※ 08 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 01 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT014 The Effect of a Partially Depleted Halo on the Criticality and Detectability of Fast Failures in the HL-LHC beam-losses, simulation, luminosity, dipole 1866
 
  • C. Hernalsteens, C. Lannoy, O.K. Tuormaa, M. Villén Basco, C. Wiesner, D. Wollmann
    CERN, Meyrin, Switzerland
 
  In the High Lu­mi­nos­ity LHC (HL-LHC) era, the bunch in­ten­sity will be in­creased to νm{2.2e11} pro­tons, which is al­most twice the nom­i­nal LHC in­ten­sity. The stored en­ergy in each of the two beams will in­crease to §I{674}{MJ}. The HL-LHC will fea­ture beams whose trans­verse halos are par­tially de­pleted by means of a hol­low elec­tron lens. The re­duced stored en­ergy in the beam tails will sig­nif­i­cantly change the de­vel­op­ment of losses caused by fail­ures. This paper re­ports on beam track­ing sim­u­la­tions eval­u­at­ing the ef­fect of a par­tially de­pleted halo on the crit­i­cal­ity and de­tec­tion of fail­ures orig­i­nat­ing from the su­per­con­duct­ing mag­net pro­tec­tion sys­tems. In ad­di­tion, the ef­fect of the trans­verse damper op­er­at­ing as a co­her­ent ex­ci­ta­tion sys­tem lead­ing to orbit ex­cur­sions on a beam with a par­tially de­pleted halo is dis­cussed. The re­sults in terms of time-de­pen­dent beam losses are pre­sented. The mar­gins be­tween the fail­ure onset, its de­tec­tion, and the time to reach crit­i­cal loss lev­els, are dis­cussed. The re­sults are ex­trap­o­lated to fail­ure cases of dif­fer­ent ori­gins that in­duce sim­i­lar beam loss dy­nam­ics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT014  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT017 First Optics Design for a Transverse Monochromatic Scheme for the Direct S-Channel Higgs Production at FCC-ee Collider optics, positron, luminosity, site 1878
 
  • H.P. Jiang
    Harbin Institute of Technology (HIT) , Harbin, People’s Republic of China
  • A. Faus-Golfe, Z.D. Zhang
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • K. Oide
    KEK, Ibaraki, Japan
  • Z.D. Zhang
    IHEP, Beijing, People’s Republic of China
  • Z.D. Zhang
    UCAS, Beijing, People’s Republic of China
  • F. Zimmermann
    CERN, Meyrin, Switzerland
 
  The FCC-ee col­lider base­line fore­sees four dif­fer­ent en­ergy op­er­a­tion modes: Z, WW, H(ZH) and ttbar. An op­tional fifth mode, called s-chan­nel Higgs pro­duc­tion mode, could allow the mea­sure­ment of the elec­tron Yukawa cou­pling, in ded­i­cated runs at 125 GeV cen­tre-of-mass en­ergy, pro­vided that the cen­tre-of-mass en­ergy spread, can be re­duced by at least an order of mag­ni­tude (5-10 MeV). The use of a spe­cial col­li­sion tech­nique: a mono­chrom­a­ti­za­tion scheme is one way to ac­com­plish it. There are sev­eral meth­ods to im­ple­ment a mono­chrom­a­ti­za­tion scheme. One method, named trans­verse mono­chrom­a­ti­za­tion scheme, con­sists of in­tro­duc­ing a dis­per­sion dif­fer­ent from zero but op­po­site sign for the two col­lid­ing beams at the In­ter­ac­tion Point (IP); In this paper we will re­port about the first at­tempt to de­sign a new op­tics to im­ple­ment a trans­verse mono­chro­matic scheme for the FCC-ee Higgs pro­duc­tion to­tally com­pat­i­ble with the stan­dard mode of op­er­a­tion with­out dis­per­sion at the IP.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT017  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT025 Flat Beam Generation with the Phase Space Rotation Technique at KEK-STF emittance, gun, experiment, cathode 1897
 
  • M. Kuriki, Z.J. Liptak
    HU/AdSM, Higashi-Hiroshima, Japan
  • S. Aramoto
    Hiroshima University, Higashi-Hiroshima, Japan
  • H. Hayano, X.J. Jin, Y. Seimiya, N. Yamamoto, Y. Yamamoto
    KEK, Ibaraki, Japan
  • S. Kashiwagi
    Tohoku University, Research Center for Electron Photon Science, Sendai, Japan
  • K. Sakaue
    The University of Tokyo, Graduate School of Engineering, Bunkyo, Japan
  • M. Washio
    RISE, Tokyo, Japan
 
  Flat beam gen­er­a­tion from an­gu­lar mo­men­tum dom­i­nated beam with a phase-space ro­ta­tion tech­nique is an unique method to ma­nip­u­late the phase-space dis­tri­b­u­tion of beam. As an ap­pli­ca­tion, the asym­met­ric emit­tance beam gen­er­a­tion for lin­ear col­lid­ers is con­sid­ered to com­pen­sate the Beam­strahlung ef­fect at In­ter­ac­tion point. By using this tech­nique, the asym­met­ric beam can be gen­er­ated di­rectly with the in­jec­tor, in­stead of ra­di­a­tion damp­ing with a huge damp­ing ring. We pre­sent the re­sult of a proof-of-prin­ci­ple ex­per­i­ment at KEK-STF.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT025  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT036 Dependence of Beam Size Growth on Macro-Particle’s Initial Actions in Strong-Strong Beam-Beam Simulation for the Electron-Ion Collider simulation, electron, proton, emittance 1924
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, J. Kewisch, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • B.R. Gamage, H. Huang, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Elec­tron-Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lide po­lar­ized high en­ergy elec­tron beams with hadron beams with de­sign lu­mi­nosi­ties up to 1×1034cm-2s-1 in the cen­ter mass en­ergy range of 20-140 GeV. We sim­u­lated the planned elec­tron-pro­ton col­li­sion of flat beams with Par­ti­cle-In-Cell (PIC) based Pois­son solver in strong-strong beam-beam sim­u­la­tion. We ob­served a much larger pro­ton emit­tance growth rate than that from weak-strong sim­u­la­tion. To un­der­stand the nu­mer­i­cal noises fur­ther, we cal­cu­late the beam size growth rate of macro-par­ti­cles as func­tion of their ini­tial lon­gi­tu­di­nal and trans­verse ac­tions. This method is ap­plied to both strong-strong and weak-strong sim­u­la­tions. The pur­pose of this study is to iden­tify which group of macro-par­ti­cles con­tributes most of the ar­ti­fi­cial emit­tance growth in strong-strong beam-beam sim­u­la­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT036  
About • Received ※ 22 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT038 Summary of Numerical Noise Studies for Electron-Ion Collider Strong-Strong Beam-Beam Simulation electron, proton, simulation, emittance 1931
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, J. Kewisch, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • B.R. Gamage, H. Huang, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The Elec­tron-Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lide po­lar­ized high en­ergy elec­tron beams with hadron beams, reach­ing lu­mi­nosi­ties up to 1×1034cm-2s-1 in cen­ter mass en­ergy range of 20-140 GeV. We stud­ied the planned elec­tron-pro­ton col­li­sions using a Par­ti­cle-In-Cell (PIC) based Pois­son solver in strong-strong beam-beam sim­u­la­tion. We ob­served a much larger pro­ton emit­tance growth rate than in weak-strong sim­u­la­tion. To un­der­stand the nu­mer­i­cal noise and its im­pact on strong-strong sim­u­la­tion re­sults, we car­ried out ex­ten­sive stud­ies to iden­tify all pos­si­ble causes for ar­ti­fi­cial emit­tance growth and quan­tify their con­tri­bu­tions. In this ar­ti­cle, we sum­ma­rize our study ac­tiv­i­ties and find­ings. This work will help us bet­ter un­der­stand the sim­u­lated emit­tance growth and the lim­its of the PIC based strong-strong beam-beam sim­u­la­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT038  
About • Received ※ 19 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT040 Numerical Noise Error of Particle-In-Cell Poisson Solver for a Flat Gaussian Bunch simulation, proton, electron, emittance 1939
 
  • Y. Luo, J.S. Berg, M. Blaskiewicz, W. Fischer, X. Gu, H. Lovelace III, C. Montag, R.B. Palmer, S. Peggs, V. Ptitsyn, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • H. Huang, E.A. Nissen, T. Satogata
    JLab, Newport News, Virginia, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Elec­tron-Ion Col­lider (EIC) presently under con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory will col­lider po­lar­ized high en­ergy elec­tron beams with hadron beams with lu­mi­nos­ity up to 1×1034cm-2s-1 in the cen­ter mass en­ergy range of 20-140 GeV. We sim­u­lated the planned elec­tron-pro­ton col­li­sion of flat beams with Par­ti­cle-In-Cell (PIC) based Pois­son solver in strong-strong beam-beam sim­u­la­tion. We ob­served a much larger pro­ton emit­tance growth rate than that from weak-strong sim­u­la­tion. To bet­ter un­der­stand the emit­tance growth rate from the strong-strong sim­u­la­tion, we com­pare the beam-beam kicks be­tween the PIC method and the an­a­lyt­i­cal cal­cu­la­tion and cal­cu­late the RMS vari­a­tion in beam-beam kicks among 1000 sets of ran­dom Gauss­ian par­ti­cle dis­tri­b­u­tions. The im­pacts of macro-par­ti­cle num­ber, grid num­ber, and bunch flat­ness are also stud­ied.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT040  
About • Received ※ 23 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT044 Electron-Ion Collider Design Status electron, hadron, storage-ring, simulation 1954
 
  • C. Montag, E.C. Aschenauer, G. Bassi, J. Beebe-Wang, J.S. Berg, M. Blaskiewicz, J.M. Brennan, S.J. Brooks, K.A. Brown, Z.A. Conway, K.A. Drees, A.V. Fedotov, W. Fischer, C. Folz, X. Gu, R.C. Gupta, Y. Hao, C. Hetzel, D. Holmes, H. Huang, J.P. Jamilkowski, J. Kewisch, Y. Li, C. Liu, H. Lovelace III, Y. Luo, G.J. Mahler, D. Marx, F. Méot, M.G. Minty, S.K. Nayak, R.B. Palmer, B. Parker, S. Peggs, V. Ptitsyn, V.H. Ranjbar, G. Robert-Demolaize, M.P. Sangroula, S. Seletskiy, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, E. Wang, D. Weiss, F.J. Willeke, H. Witte, Q. Wu, D. Xu, W. Xu, A. Zaltsman
    BNL, Upton, New York, USA
  • S.V. Benson, B.R. Gamage, J.M. Grames, T.J. Michalski, E.A. Nissen, J.P. Preble, R.A. Rimmer, T. Satogata, A. Seryi, M. Wiseman, W. Wittmer
    JLab, Newport News, Virginia, USA
  • A. Blednykh, D.M. Gassner, B. Podobedov, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov, G. Stupakov, M.K. Sullivan
    SLAC, Menlo Park, California, USA
  • E. Gianfelice-Wendt
    Fermilab, Batavia, Illinois, USA
  • G.H. Hoffstaetter, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • F. Lin, V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported under Contract No. DE-SC0012704, Contract No. DE-AC05-06OR23177, Contract No. DE-AC05-00OR22725, and Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) is being de­signed for con­struc­tion at Brookhaven Na­tional Lab­o­ra­tory. Ac­tiv­i­ties have been fo­cused on beam-beam sim­u­la­tions, po­lar­iza­tion stud­ies, and beam dy­nam­ics, as well as on ma­tur­ing the lay­out and lat­tice de­sign of the con­stituent ac­cel­er­a­tors and the in­ter­ac­tion re­gion. The lat­est de­sign ad­vances will be pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT044  
About • Received ※ 03 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT049 Beam-Beam Interaction for Tilted Storage Rings cavity, simulation, electron, storage-ring 1968
 
  • D. Xu, D. Holmes, C. Montag, F.J. Willeke
    BNL, Upton, New York, USA
  • Y. Hao
    FRIB, East Lansing, Michigan, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • J. Qiang
    LBNL, Berkeley, California, USA
 
  In the Elec­tron-Ion Col­lider (EIC) de­sign, to avoid ver­ti­cal orbit bumps in the Elec­tron Stor­age Ring (ESR) at some cross­ing points with Hadron Stor­age Ring (HSR) to pre­serve the elec­tron po­lar­iza­tion, we plan to tilt the ESR plane by 200 ’rad with an axis con­nect­ing IP6 and IP8. In this ar­ti­cle, we study the beam-beam in­ter­ac­tion when two rings are not in the same plane. The Lorentz boost for­mula is de­rived and the re­quired ver­ti­cal crab­bing strength is cal­cu­lated to com­pen­sate the dy­namic ef­fect The strong-strong sim­u­la­tions are per­formed to val­i­date the the­ory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT049  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT050 Detector Solenoid Compensation in the EIC Electron Storage Ring cavity, solenoid, detector, simulation 1972
 
  • D. Xu
    BNL, Upton, New York, USA
  • Y. Luo
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  The Elec­tron Ion Col­lider (EIC) uses crab cav­i­ties to re­store the geo­met­ri­cal lu­mi­nos­ity loss. Due to the space lim­i­ta­tion, the de­tec­tor so­le­noid can­not be com­pen­sated lo­cally. This paper pre­sents the lat­tice de­sign to com­pen­sate the de­tec­tor so­le­noid with­out in­ter­fer­ing the crab cav­i­ties. The skew quadrupoles are em­ployed to avoid ad­di­tional crab cav­i­ties. The cor­rec­tion scheme is checked by beam-beam sim­u­la­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT050  
About • Received ※ 19 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT053 Characterisation of Cooling in the Muon Ionization Cooling Experiment emittance, solenoid, experiment, proton 1976
 
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • M.A. Cummings
    Muons, Inc, Illinois, USA
 
  A high-en­ergy muon col­lider could be the most pow­er­ful and cost-ef­fec­tive col­lider ap­proach in the multi-TeV regime, and a neu­trino source based on decay of an in­tense muon beam would be ideal for mea­sure­ment of neu­trino os­cil­la­tion pa­ra­me­ters. Muon beams may be cre­ated through the decay of pions pro­duced in the in­ter­ac­tion of a pro­ton beam with a tar­get. The muons are sub­se­quently ac­cel­er­ated and in­jected into a stor­age ring where they decay pro­duc­ing a beam of neu­tri­nos, or col­lide with counter-ro­tat­ing an­timuons. Cool­ing of the muon beam would en­able more muons to be ac­cel­er­ated re­sult­ing in a more in­tense neu­trino source and higher col­lider lu­mi­nos­ity. Ion­iza­tion cool­ing is the novel tech­nique by which it is pro­posed to cool the beam. The Muon Ion­iza­tion Cool­ing Ex­per­i­ment col­lab­o­ra­tion has con­structed a sec­tion of an ion­iza­tion cool­ing cell and used it to pro­vide the first demon­stra­tion of ion­iza­tion cool­ing. Here the ob­ser­va­tion of ion­iza­tion cool­ing is de­scribed. The re­sults of the fur­ther analy­sis of the data is pre­sented, in­clud­ing stud­ies in dif­fer­ent mag­net con­fig­u­ra­tions and with more de­tailed un­der­stand­ing of the de­tec­tor sys­tem­atic un­cer­tainty.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT053  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT063 The FCCee Pre-Injector Complex positron, linac, electron, injection 2007
 
  • P. Craievich, B. Auchmann, S. Bettoni, H.-H. Braun, M. Duda, D. Hauenstein, E. Hohmann, R. Ischebeck, P.N. Juranič, J. Kosse, G.L. Orlandi, M. Pedrozzi, J.-Y. Raguin, S. Reiche, S.T. Sanfilippo, M. Schaer, N. Vallis, R. Zennaro
    PSI, Villigen PSI, Switzerland
  • F. Alharthi, I. Chaikovska, S. Ogur
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • W. Bartmann, M. Benedikt, M.I. Besana, M. Calviani, S. Döbert, Y. Dutheil, O. Etisken, J.L. Grenard, A. Grudiev, B. Humann, A. Latina, A. Lechner, K. Oide, A. Perillo-Marcone, H.W. Pommerenke, R.L. Ramjiawan, Y. Zhao, F. Zimmermann
    CERN, Meyrin, Switzerland
  • A. De Santis
    INFN/LNF, Frascati, Italy
  • Y. Enomoto, K. Furukawa, K. Oide
    KEK, Ibaraki, Japan
  • O. Etisken
    Kirikkale University, Kirikkale, Turkey
  • C. Milardi
    LNF-INFN, Frascati, Italy
  • T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
  • N. Vallis
    EPFL, Lausanne, Switzerland
 
  The in­ter­na­tional FCC study group pub­lished in 2019 a Con­cep­tual De­sign Re­port for an elec­tron-positron col­lider with a cen­tre-of-mass en­ergy from 90 to 365 GeV with a beam cur­rents of up to 1.4 A per beam. The high beam cur­rent of this col­lider cre­ate chal­leng­ing re­quire­ments on the in­jec­tion chain and all as­pects of the linac need to be care­fully re­con­sid­ered and re­vis­ited, in­clud­ing the in­jec­tion time struc­ture. The en­tire beam dy­nam­ics stud­ies for the full linac, damp­ing ring and trans­fer lines are major ac­tiv­i­ties of the in­jec­tor com­plex de­sign. A key point is that any in­crease of positron pro­duc­tion and cap­ture ef­fi­ciency re­duces the cost and com­plex­ity of the dri­ver linac, the heat and ra­di­a­tion load of the con­verter sys­tem, and in­creases the op­er­a­tional mar­gin. In this paper we will give an overview of the sta­tus of the in­jec­tor com­plex de­sign and in­tro­duce the new lay­out that has been pro­posed by the study group work­ing in the con­text of the CHART col­lab­o­ra­tion. In this frame­work, fur­ther­more, we also pre­sent the pre­lim­i­nary stud­ies of the FCC-ee positron source high­light­ing the main re­quire­ments and con­straints.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT063  
About • Received ※ 11 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK025 Concepts and Considerations for FCC-ee Top-Up Injection Strategies injection, septum, kicker, multipole 2106
 
  • R.L. Ramjiawan, W. Bartmann, Y. Dutheil, M. Hofer
    CERN, Meyrin, Switzerland
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • P.J. Hunchak
    University of Saskatchewan, Saskatoon, Canada
  • P.J. Hunchak
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Fu­ture Cir­cu­lar elec­tron-positron Col­lider (FCC-ee) is pro­posed to op­er­ate in four modes, with beam en­er­gies from 45.6 GeV (Z-pole) to 182.5 GeV (tt-bar pro­duc­tion) and lu­mi­nosi­ties up to 4.6×1036 cm2s-1. At the high­est en­er­gies the beam life­time would be less than one hour, mean­ing that top-up in­jec­tion will be cru­cial to max­imise the in­te­grated lu­mi­nos­ity. Two top-up in­jec­tion strate­gies are con­sid­ered here: con­ven­tional in­jec­tion, em­ploy­ing a closed orbit bump and sep­tum, and mul­ti­pole-kicker in­jec­tion, with a pulsed mul­ti­pole mag­net and sep­tum. On-axis and off-axis in­jec­tions are con­sid­ered for both. We pre­sent a com­par­i­son of these in­jec­tion strate­gies tak­ing into ac­count as­pects such as spa­tial con­straints, ma­chine pro­tec­tion, dis­tur­bance to the stored beam and in­jec­tion ef­fi­ciency. We overview po­ten­tial kicker and sep­tum tech­nolo­gies for each.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK025  
About • Received ※ 03 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK062 Intrabunch Motion with Both Impedance and Beam-Beam Using the Circulant Matrix Approach coupling, impedance, proton, emittance 2209
 
  • E. Métral, X. Buffat
    CERN, Meyrin, Switzerland
 
  In high-in­ten­sity high-bright­ness cir­cu­lar col­lid­ers such as the CERN LHC, co­her­ent beam-beam ef­fects and im­ped­ance can­not be treated in­de­pen­dently. Co­her­ent beam-beam di­pole modes can cou­ple with higher order head-tail modes and lead to the trans­verse mode cou­pling in­sta­bil­ity of col­lid­ing beams. This mech­a­nism has been analysed in de­tail in the past through the eigen­val­ues, which de­scribe the evo­lu­tion of the beam os­cil­la­tion mode-fre­quency shifts. In this con­tri­bu­tion, the trans­verse mode cou­pling in­sta­bil­ity of col­lid­ing beams is stud­ied using the eigen­vec­tors, which de­scribe the evo­lu­tion of the in­tra­bunch mo­tion. As this in­sta­bil­ity ex­hibits sev­eral mode cou­plings and mode de­cou­plings, the evo­lu­tion of the in­tra­bunch mo­tion re­veals quite some in­ter­est­ing fea­tures (such as a prop­a­ga­tion of the trav­el­ing-wave not only from the head to the tail but also from the tail to the head and sim­i­lar in­tra­bunch sig­nals for some mode cou­pling and mode de­cou­pling), which are com­pared to past pre­dic­tions in the pres­ence of im­ped­ance only.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK062  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 03 July 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS045 Modeling and Mitigation of Long-Range Wakefields for Advanced Linear Colliders linac, wakefield, HOM, dipole 2350
 
  • F. Bosco, M. Carillo, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • O. Camacho, A. Fukasawa, N. Majernik, J.B. Rosenzweig
    UCLA, Los Angeles, USA
  • E. Chiadroni, B. Spataro, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • L. Faillace, A. Giribono
    INFN/LNF, Frascati, Italy
 
  Funding: This work is supported by DARPA under Contract N.HR001120C0072, by DOE Contract DE-SC0009914 and DE-SC0020409, by the National Science Foundation Grant N.PHY-1549132 and by INFN.
The lu­mi­nos­ity re­quire­ments of TeV-class lin­ear col­lid­ers de­mand use of in­tense charged beams at high rep­e­ti­tion rates. Such fea­tures imply multi-bunch op­er­a­tion with long cur­rent trains ac­cel­er­ated over the km length scale. Con­se­quently, par­ti­cle beams are ex­posed to the mu­tual par­a­sitic in­ter­ac­tion due to the long-range wake­fields ex­cited by the lead­ing bunches in the ac­cel­er­at­ing struc­tures. Such per­tur­ba­tions to the mo­tion in­duce trans­verse os­cil­la­tions of the bunches, po­ten­tially lead­ing to in­sta­bil­i­ties such as trans­verse beam break-up. Here we pre­sent a ded­i­cated track­ing code that stud­ies the ef­fects of long-range trans­verse wake­field in­ter­ac­tion among dif­fer­ent bunches in lin­ear ac­cel­er­a­tors. Being de­scribed by means of an ef­fi­cient ma­trix for­mal­ism, such ef­fects can be in­cluded while pre­serv­ing short com­pu­ta­tional times. As a ref­er­ence case, we use our code to in­ves­ti­gate the per­for­mance of a state-of-the-art lin­ear col­lider cur­rently under de­sign and, in ad­di­tion, we dis­cuss pos­si­ble mit­i­ga­tion tech­niques based on fre­quency de­tun­ing and damp­ing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS045  
About • Received ※ 20 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS046 Machine Learning-Based Modeling of Muon Beam Ionization Cooling emittance, simulation, target, lattice 2354
 
  • E. Fol, D. Schulte
    CERN, Meyrin, Switzerland
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Sur­ro­gate mod­el­ing can lead to sig­nif­i­cant im­prove­ments of beam dy­nam­ics sim­u­la­tions in terms of com­pu­ta­tional time and re­sources. Ap­pli­ca­tion of su­per­vised ma­chine learn­ing, using col­lected sim­u­la­tion data al­lows to build sur­ro­gate mod­els which can es­ti­mate beam pa­ra­me­ters evo­lu­tion based on the pro­vided cool­ing chan­nel de­sign. The cre­ated mod­els help to un­der­stand the cor­re­la­tions be­tween dif­fer­ent lat­tice com­po­nents and the im­por­tance of spe­cific beam prop­er­ties for the cool­ing per­for­mance. We pre­sent the ap­pli­ca­tion of sur­ro­gate mod­el­ing to en­hance final muon cool­ing de­sign stud­ies, demon­strat­ing the po­ten­tial of such ap­proach to be in­te­grated into the de­sign and op­ti­miza­tion of other com­po­nents of fu­ture col­lid­ers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS046  
About • Received ※ 07 June 2022 — Revised ※ 28 June 2022 — Accepted ※ 04 July 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS047 Automated Design and Optimization of the Final Cooling for a Muon Collider emittance, simulation, solenoid, optics 2358
 
  • E. Fol, D. Schulte, B. Stechauner
    CERN, Meyrin, Switzerland
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
  • J. Schieck
    HEPHY, Wien, Austria
 
  The de­sired beam emit­tance for a Muon col­lider is sev­eral or­ders of mag­ni­tude less than the one of the muon beams pro­duced at the front-end tar­get. Ion­iza­tion cool­ing has been demon­strated as a suit­able tech­nique for the re­duc­tion of the muon beam emit­tance. Final cool­ing, as one of the most crit­i­cal stages of the muon col­lider com­plex, ne­ces­si­tates care­ful de­sign and op­ti­miza­tion in order to con­trol the beam dy­nam­ics and en­sure ef­fi­cient emit­tance re­duc­tion. We pre­sent an op­ti­miza­tion frame­work based on ICool sim­u­la­tion code and ap­pli­ca­tion of dif­fer­ent op­ti­miza­tion al­go­rithms, to au­tom­a­tize the choice of op­ti­mal ini­tial muon beam pa­ra­me­ters and si­mul­ta­ne­ous tun­ing of nu­mer­ous final cool­ing com­po­nents.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS047  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS052 Impacts of an ATS Lattice on EIC Dynamic Aperture sextupole, lattice, electron, optics 2373
 
  • J.E. Unger, J.A. Crittenden, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Marx
    BNL, Upton, New York, USA
 
  The Elec­tron-Ion Col­lider (EIC) pro­ject at Brookhaven Na­tional Lab­o­ra­tory has ex­plored strate­gies for in­creas­ing the en­ergy aper­ture of the Elec­tron Stor­age Ring (ESR) to meet the goal of 1\% for the 90 de­gree lat­tice at 18 GeV. Cur­rent strate­gies use a four sex­tu­pole fam­ily per arc cor­rec­tion scheme to in­crease the en­ergy aper­ture and to keep the trans­verse aper­ture suf­fi­ciently large as well. A scheme called Achro­matic Tele­scopic Squeez­ing (ATS), first in­tro­duced for the Large Hadron Col­lider, in­tro­duces a beta-beat into se­lect arcs, al­low­ing dy­namic aper­ture op­ti­miza­tions with dif­fer­ent sex­tu­pole strengths. The ATS scheme’s mix of some higher beta-func­tion and some lower sex­tu­pole strengths in the arcs has the po­ten­tial to in­crease the en­ergy aper­ture. Basic chro­matic cor­rec­tions and nu­meric op­ti­miza­tions were used to com­pare the ATS op­tics to a non-ATS scheme. In all cases, the ATS scheme per­formed sim­i­larly or bet­ter than the more com­mon schemes. How­ever, this in­crease in en­ergy aper­ture from the ATS op­tics also has neg­a­tive ef­fects, such as an in­crease in emit­tance which poses com­pli­ca­tions for the cur­rent ESR de­sign.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS052  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK019 Collider NICA Power Supply Magnet System power-supply, controls, superconducting-magnet, focusing 2806
 
  • V. Karpinsky, R.M. Ahmadrizyalov, S.A. Arefev, A.V. Butenko, A.V. Karavaev, S.V. Kirov, A.V. Kopchenov, A.A. Kozlykovskaya, T.A. Kulaeva, A.L. Osipenkov, A.V. Sergeev, A.A. Shurygin, E. Syresin, V.G. Tovstuha, N.V. Travin
    JINR, Dubna, Moscow Region, Russia
  • M.I. Kuznetsov
    JINR/VBLHEP, Dubna, Moscow region, Russia
 
  A power sup­ply sys­tem for Col­lider struc­tural mag­nets is con­sid­ered, which con­sists of pre­ci­sion cur­rent sources, en­ergy evac­u­a­tion de­vices for su­per­con­duct­ing el­e­ments, ad­di­tional sources, and con­trol and mon­i­tor­ing equip­ment. The sta­tus of the equip­ment and the plan of its place­ment in Col­lider bld. 17 are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK019  
About • Received ※ 02 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK048 Radiation Load Studies for the FCC-ee Positron Source with a Superconducting Matching Device target, positron, shielding, electron 2879
 
  • B. Humann
    TU Vienna, Wien, Austria
  • B. Auchmann, J. Kosse
    PSI, Villigen PSI, Switzerland
  • I. Chaikovska, S. Ogur
    Université Paris-Saclay, CNRS/IN2P3, IJCLab, Orsay, France
  • B. Humann, A. Latina, A. Lechner, Y. Zhao
    CERN, Meyrin, Switzerland
 
  For an elec­tron-positron col­lider like FCC-ee, the pro­duc­tion of positrons plays a cru­cial role. One of the de­sign op­tions con­sid­ered for the FCC-ee positron source em­ploys a su­per­con­duct­ing so­le­noid made of HTS coils as an adi­a­batic match­ing de­vice. The so­le­noid, which is placed around the pro­duc­tion tar­get, is needed to cap­ture positrons be­fore they can be ac­cel­er­ated in a lin­ear ac­cel­er­a­tor. A su­per­con­duct­ing so­le­noid yields a higher peak field than a con­ven­tional-nor­mal con­duct­ing mag­netic flux con­cen­tra­tor, there­fore in­creas­ing the achiev­able positron yield. In order to achieve an ac­cept­able positron pro­duc­tion, the con­sid­ered tar­get is made of tung­sten-rhe­nium, which gives also a sig­nif­i­cant flux of un-wanted sec­ondary par­ti­cles, that in turn could gen­er­ate a too large ra­di­a­tion load on the su­per­con­duct­ing coils. In this study, we as­sess the fea­si­bil­ity of such a positron source by study­ing the heat load and long-term ra­di­a­tion dam­age in the su­per­con­duct­ing match­ing de­vice and sur­round­ing struc­tures. Re­sults are pre­sented for dif­fer­ent geo­met­ric con­fig­u­ra­tions of the su­per­con­duct­ing match­ing de­vice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK048  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK052 Muon Collider Graphite Target Studies and Demonstrator Layout Possibilities at CERN target, proton, shielding, radiation 2895
 
  • F.J. Saura Esteban, M. Calviani, D. Calzolari, R. Franqueira Ximenes, A.M. Krainer, A. Lechner, R. Losito, D. Schulte
    CERN, Meyrin, Switzerland
  • C.T. Rogers
    STFC/RAL/ISIS, Chilton, Didcot, Oxon, United Kingdom
 
  Muon col­lid­ers offer enor­mous po­ten­tial for re­search of the par­ti­cle physics fron­tier. Lep­tons can be ac­cel­er­ated with­out suf­fer­ing large syn­chro­tron ra­di­a­tion losses. The In­ter­na­tional Muon Col­lider Col­lab­o­ra­tion is con­sid­er­ing 3 and 10 TeV (CM) ma­chines for a con­cep­tual stage. In the core of the Muon Col­lider fa­cil­ity lays a MW class pro­duc­tion tar­get, which will ab­sorb a high power (1 and 3 MW) pro­ton beam to pro­duce muons via pion decay. The tar­get must with­stand high dy­namic ther­mal loads in­duced by 2 ns pulses at 5-50 Hz. Also, op­er­a­tional re­li­a­bil­ity must be guar­an­teed to re­duce tar­get ex­changes to a min­i­mum. Sev­eral tech­nolo­gies for these sys­tems are being stud­ied in dif­fer­ent lab­o­ra­to­ries. We pre­sent in this paper the re­sults of a pre­lim­i­nary fea­si­bil­ity study of a graphite-based tar­get, and the dif­fer­ent lay­outs under study for a demon­stra­tor tar­get com­plex at CERN. Syn­er­gies with ad­vanced nu­clear sys­tems are being ex­plored for the de­vel­op­ment of a liq­uid metal tar­get.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK052  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS057 Using Co-Moving Collisions in a Gear-Changing System to Measure Fusion Cross-Sections luminosity, neutron, experiment, ECR 3105
 
  • E.A. Nissen
    JLab, Newport News, Virginia, USA
 
  Funding: Notice: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177. The U.S. Government retains a license to publish or reproduce this manuscript.
In this work we look at a pos­si­ble use for a sys­tem that col­lides beams mov­ing in the same di­rec­tion using a gear-chang­ing syn­chro­niza­tion method as a means of mea­sur­ing low en­ergy phe­nom­ena, such as fu­sion cross sec­tions. De­pend­ing on the en­er­gies used this process will allow for in­ter­ac­tions for any de­sired charge state of the tar­get nu­clei. Ear­lier con­cepts for low en­ergy in­ter­ac­tions to study fo­cused on beams cross­ing at an angle to give the low en­ergy in­ter­ac­tions, as well as gen­eral in­ves­ti­ga­tions of co­mov­ing col­li­sions. This pro­posal would use gear-chang­ing, a method in­volv­ing two dif­fer­ent har­monic num­bers of bunches in each col­lider ring, to have the same types of col­li­sions, with a lu­mi­nos­ity equal that of a head-on ma­chine. In this work we de­tail the de­sign con­sid­er­a­tions for such a ma­chine, lever­ag­ing ex­per­i­men­tal ex­pe­ri­ence with a co-mov­ing, gear-chang­ing sys­tem.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS057  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRPLYGD1 Towards Efficient Particle Accelerators - A Review cavity, cryogenics, radiation, luminosity 3141
 
  • M. Seidel
    PSI, Villigen PSI, Switzerland
 
  Sus­tain­abil­ity has be­come an im­por­tant as­pect of all human ac­tiv­i­ties, and also for ac­cel­er­a­tor dri­ven re­search in­fra­struc­tures. For new fa­cil­i­ties it is manda­tory to op­ti­mize power con­sump­tion and over­all sus­tain­abil­ity. This pre­sen­ta­tion will give an overview of the power ef­fi­ciency of ac­cel­er­a­tor con­cepts and rel­e­vant tech­nolo­gies. Con­cep­tual as­pects will be dis­cussed for pro­ton dri­ver ac­cel­er­a­tors, light sources and par­ti­cle col­lid­ers. Sev­eral ac­cel­er­a­tor tech­nolo­gies are par­tic­u­larly rel­e­vant for power ef­fi­ciency. These are uti­lized across the var­i­ous fa­cil­ity con­cepts and in­clude su­per­con­duct­ing RF and cryo­genic sys­tems, RF sources, en­ergy ef­fi­cient mag­nets, con­ven­tional cool­ing and heat re­cov­ery. Power ef­fi­ciency has been a topic in the Eu­ro­pean pro­grams EU­CARD-2, ARIES and the on­go­ing I.​FAST pro­ject and the doc­u­men­ta­tion of these pro­grams is a re­lated source of in­for­ma­tion.  
slides icon Slides FRPLYGD1 [4.531 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FRPLYGD1  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)