Keyword: insertion
Paper Title Other Keywords Page
MOPOPT003 Studying Instabilities in the Canadian Light Source Storage Ring Using the Transverse Feedback System storage-ring, feedback, insertion-device, damping 230
 
  • S.J. Martens
    University of Saskatchewan, Saskatoon, Canada
  • D. Bertwistle, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • P. Hartmann
    DELTA, Dortmund, Germany
 
  The Trans­verse Feed­back sys­tem at the Cana­dian Light Source can iden­tify, cat­e­go­rize, and mit­i­gate against pe­ri­odic in­sta­bil­i­ties that arise in the stor­age ring beam. By quickly open­ing and clos­ing the feed­back loop, pre­vi­ously mit­i­gated in­sta­bil­i­ties will be al­lowed to grow briefly be­fore being damped by the sys­tem. The re­sult­ing growth in the beam os­cil­la­tion am­pli­tude curve can be an­a­lyzed to de­ter­mine growth/damp rates and modes of the cou­pled bunch os­cil­la­tions. Fur­ther mea­sure­ments can be col­lected via ac­tive ex­cite­ment of modes rather than pas­sive growth. These Grow/damp and Ex­cite/Damp curves have been col­lected and an­a­lyzed for var­i­ous stor­age ring beam prop­er­ties, in­clud­ing beam en­ergy, ma­chine chro­matic­ity, and in-vac­uum in­ser­tion de­vice gap widths.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT003  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK018 Parallelization of Radia Magnetostatics Code interface, insertion-device, SRF, synchrotron 481
 
  • A. Banerjee
    SBU, Stony Brook, New York, USA
  • J. Chavanne, G. Le Bec
    ESRF, Grenoble, France
  • O.V. Chubar
    BNL, Upton, New York, USA
  • J.P. Edelen, C.C. Hall, B. Nash
    RadiaSoft LLC, Boulder, Colorado, USA
 
  Funding: Work supported by the US DOE BES SBIR grant No. DE-SC0018556.
Radia 3D mag­ne­to­sta­t­ics code has been used for the de­sign of in­ser­tion de­vices for light sources over more than two decades. The code uses the mag­ne­ti­za­tion in­te­gral ap­proach that is ef­fi­cient for solv­ing per­ma­nent mag­net and hy­brid mag­net struc­tures. The ini­tial ver­sion of the Radia code was se­quen­tial, its core writ­ten in C++ and in­ter­face in the Math­e­mat­ica lan­guage. This paper de­scribes a new Python-in­ter­faced par­al­lel ver­sion of Radia and its ap­pli­ca­tions. The par­al­leliza­tion of the code was im­ple­mented on C++ level, fol­low­ing a hy­brid ap­proach. Semi-an­a­lyt­i­cal cal­cu­la­tions of in­ter­ac­tion ma­trix el­e­ments and re­sul­tant mag­netic fields were par­al­lelized using the Mes­sage Pass­ing In­ter­face, whereas the par­al­leliza­tion of the "re­lax­ation" pro­ce­dure (solv­ing for mag­ne­ti­za­tions in vol­umes cre­ated by sub­di­vi­sion) was ex­e­cuted using a shared mem­ory method based on C++ mul­ti­thread­ing. The par­al­lel per­for­mance re­sults are en­cour­ag­ing, par­tic­u­larly for mag­netic field cal­cu­la­tion post re­lax­ation where a ~600 speedup with re­spect to se­quen­tial ex­e­cu­tion was ob­tained. The new par­al­lel Radia ver­sion fa­cil­i­tates de­signs of in­ser­tion de­vices and lat­tice mag­nets for novel par­ti­cle ac­cel­er­a­tors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK018  
About • Received ※ 20 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK024 Quasi-Frozen Spin Concept of Magneto-Optical Structure of NICA Adapted to Study the Electric Dipole Moment of the Deuteron and to Search for the Axion storage-ring, dipole, lattice, proton 492
 
  • Y. Senichev, A.E. Aksentyev, S.D. Kolokolchikov, A.A. Melnikov
    RAS/INR, Moscow, Russia
  • A.E. Aksentyev
    MEPhI, Moscow, Russia
  • V. Ladygin, E. Syresin
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • N. Nikolaev
    Landau ITP, Chernogolovka, Russia
 
  Funding: We acknowledge a support by the joint Deutsche ForschungsGemeinschaft (DFG) and Russian Science Foundation (RSF) grant 22-42-04419
The "frozen spin" method is based on the fact that at a cer­tain pa­ra­me­ters of the ring, the par­ti­cle spin ro­tates with the fre­quency of the mo­men­tum, cre­at­ing con­di­tions for the con­tin­u­ous growth of the elec­tric di­pole mo­ment sig­nal. Since a straight­for­ward im­ple­men­ta­tion of the frozen spin regime at NICA is not pos­si­ble, we sug­gest an al­ter­na­tive quasi-frozen spin ap­proach con­cept. In this new regime, the spin os­cil­lates about par­ti­cle orbit with the spin phase ad­vance pi*gamma*G/2, lo­cally re­cov­er­ing the lon­gi­tu­di­nal ori­en­ta­tion at the lo­ca­tion of the elec­tric-mag­netic Wien fil­ters in the straight sec­tions. In the case of deuterons, thanks to the small mag­netic anom­aly G, the spin con­tin­u­ously os­cil­lates rel­a­tive to the di­rec­tion of the mo­men­tum with a small am­pli­tude of a few de­grees and the ex­pected EDM ef­fect is re­duced only by a few per­cent. In this paper, we study the spin-or­bital mo­tion with the aim of using the NICA col­lider to mea­sure the EDM. We also com­ment on the po­ten­tial of NICA as an axion an­tenna in both the quasi-frozen spin regime and be­yond.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK024  
About • Received ※ 16 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK037 Impact of Insertion Devices on Diamond-II Lattice optics, insertion-device, emittance, lattice 539
 
  • B. Singh, R.T. Fielder, H. Ghasem, J. Kallestrup, I.P.S. Martin, T. Olsson
    DLS, Oxfordshire, United Kingdom
 
  Funding: DLS ltd
The DI­A­MOND-II lat­tice is based on the ESRF-EBS cell, with the cen­tre di­pole re­placed by a (chro­matic) mid-straight, and a -I trans­former, higher order achro­mat (HOA) & dis­per­sion bumps to con­trol the non­lin­ear dy­nam­ics. The ma­jor­ity of in­ser­tion de­vices cur­rently on op­er­a­tion in Di­a­mond will be ei­ther re­tained or up­graded as part of the Di­a­mond-II pro­gram, and the new mid straights allow the total num­ber of ID beam­lines to be in­creased from 28 to 36.​Therefore, it is im­por­tant to in­ves­ti­gate how IDs will af­fect the emit­tance, en­ergy spread and lin­ear and non­lin­ear beam dy­nam­ics. The kickmap ap­proach has been used to model all IDs, in­clud­ing AP­PLE-II and AP­PLE-II Knot with ac­tive shim wires. In this paper, the out­come of these in­ves­ti­ga­tions will be pre­sented and dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK037  
About • Received ※ 04 June 2022 — Accepted ※ 30 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS014 PETRA IV Storage Ring Design lattice, emittance, damping, insertion-device 1431
 
  • I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, Y.-C. Chae, D. Einfeld, T. Hellert, M. Hüning, M.A. Jebramcik, J. Keil, C. Li, R. Wanzenberg
    DESY, Hamburg, Germany
 
  PETRA IV will be a dif­frac­tion-lim­ited 6 GeV syn­chro­tron light source with an emit­tance of 20 pm rad at DESY Ham­burg. The TDR phase is near­ing com­ple­tion, and the lat­tice de­sign is being fi­nalised. The lat­tice will be based on the six-bend achro­mat cell with ex­ten­sive use of damp­ing wig­glers. The key chal­lenges of the lat­tice de­sign are find­ing the bal­ance be­tween emit­tance min­imi­sa­tion and non-lin­ear beam dy­nam­ics per­for­mance, and adapt­ing the lat­tice to a col­lider-type tun­nel geom­e­try of the PETRA fa­cil­ity, with the long straight sec­tions and low de­gree of su­per­pe­ri­od­ic­ity. We pre­sent the lat­tice de­sign and the beam physics as­pects, fo­cus­ing on the beam dy­nam­ics per­for­mance and op­ti­mi­sa­tion, and the pro­jected beam pa­ra­me­ters tak­ing col­lec­tive ef­fects and lat­tice im­per­fec­tions into ac­count.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS014  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS023 The Elettra 2.0 Project cavity, insertion-device, emittance, operation 1459
 
  • E. Karantzoulis, A. Fabris, S. Krecic
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  The pro­ject sta­tus of the fu­ture Ital­ian 2.4 GeV fourth gen­er­a­tion light source Elet­tra 2.0 that will re­place the third-gen­er­a­tion light source Elet­tra is pre­sented. Elet­tra 2.0 will be the ul­tra-low emit­tance light source that will pro­vide ul­tra-high bril­liance and co­her­ence and at the same time aims to pro­vide very short pulses for time re­solved ex­per­i­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS023  
About • Received ※ 23 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS038 RFQ NEWGAIN: RF and Thermomechanical Design rfq, cavity, linac, proton 1510
 
  • P. Hamel, N. Sellami
    CEA-IRFU, Gif-sur-Yvette, France
  • M.J. Desmons, O. Piquet, B. Prevet
    CEA-DRF-IRFU, France
 
  Funding: Agence Nationale de la Recherche (ANR)
A new in­jec­tor called NEW­GAIN will be added to the SPI­RAL2 Lin­ear Ac­cel­er­a­tor (LINAC), in par­al­lel with the ex­ist­ing one. It will be mainly com­posed of an ion source and a Radio Fre­quency Quadru­pole (RFQ) con­nected to the su­per­con­duc­tive LINAC of SPI­RAL2. The new RFQ will ac­cel­er­ate at 88.05 MHz par­ti­cles with charge-over-mass ratio (Q/A) be­tween 1/3 and 1/7, from 10 keV/u up to 590 keV/u. It con­sists of a 4-vane res­o­nant cav­ity with a total length of 7 m. It is a CW ma­chine that has to show sta­ble op­er­a­tion, pro­vide the re­quest avail­abil­ity, have the min­i­mum losses in order to pro­vide the high­est cur­rent to the su­per­con­duc­tive LINAC and show the best qual­ity/cost ratio. This paper will pre­sent the pre­lim­i­nary RF de­sign and the ther­mo­me­chan­i­cal study for this RFQ.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS038  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT061 A Flexible Nonlinear Resonance Driving Term Based Correction Algorithm with Feed-Down optics, luminosity, resonance, dipole 1999
 
  • J. Dilly, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the HiLumi Project and been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Re-search.
The op­tics in the in­ser­tion re­gions of the LHC and its up­grade pro­ject the High Lu­mi­nos­ity LHC are very sen­si­tive to local mag­netic er­rors, due to the ex­tremely high beta-func­tions. In col­li­sion op­tics, the non-zero closed orbit in the same re­gion leads to a "feed-down" of high-or­der er­rors to lower or­ders, caus­ing ad­di­tional ef­fects detri­men­tal to beam life­time. An ex­ten­sion to the well-es­tab­lished method for cor­rect­ing these er­rors by lo­cally sup­press­ing res­o­nance dri­ving terms has been un­der­taken, not only tak­ing this feed-down into ac­count, but also adding the pos­si­bil­ity of uti­liz­ing it such that the pow­er­ing of higher-or­der cor­rec­tors will com­pen­sate for lower order er­rors. Ex­ist­ing cor­rec­tion schemes have also op­er­ated on the as­sump­tion of (anti-)sym­met­ric beta-func­tions of the op­tics in the two rings. This as­sump­tion can fail for a mul­ti­tude of rea­sons, such as in­her­ently asym­met­ric op­tics and un­evenly dis­trib­uted er­rors. In this re­spect, an ex­ten­sion of this cor­rec­tion scheme has been de­vel­oped, re­mov­ing the need for sym­me­try by op­er­at­ing on the two sep­a­rate op­tics of the beams si­mul­ta­ne­ously.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT061  
About • Received ※ 07 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT035 A Second Generation Light Source Aiming at High Power on the Giant Dipole Resonance dipole, cavity, photon, resonance 2661
 
  • X. Buffat, L.L. Cuanillon, E.N. Kneubuehler
    CERN, Meyrin, Switzerland
 
  We pro­pose an ac­cel­er­a­tor con­cept which could en­able nu­clear waste trans­mu­ta­tion and en­ergy am­pli­fi­ca­tion using a sec­ond gen­er­a­tion light source rather than a high power pro­ton beam. The main pa­ra­me­ters of the ring and in­ser­tion de­vices are es­ti­mated, tar­get­ing a pho­ton beam power of 1 GW with a spec­trum that max­i­mizes the po­ten­tial for nu­clear re­ac­tions via the Giant Di­pole Res­o­nance. The syn­er­gies with tech­nolo­gies de­vel­oped for high en­ergy physics, in par­tic­u­lar within the Fu­ture Cir­cu­lar Col­lider study (FCC), are high­lighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT035  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK035 Thermo-Mechanical Modeling and Thermal Performance Analysis of Beam Vacuum Line Interconnections and Cold Warm Transitions in HL-LHC Long Straight Section Magnets cryogenics, luminosity, radiation, vacuum 2839
 
  • J. Harray, C. Garion, V. Petit
    CERN, Meyrin, Switzerland
 
  The HL-LHC up­grade, aim­ing at in­creas­ing the LHC lev­elled lu­mi­nos­ity by fac­tor of five, re­lies on new su­per­con­duct­ing mag­nets re­quir­ing a new beam vac­uum sys­tem. Along with the chal­lenges re­lated to mag­net de­sign, the beam optic con­fig­u­ra­tion ex­poses this new equip­ment to strin­gent con­di­tions for vac­uum and cryo­genic per­for­mance. Both cold-warm tran­si­tions and mag­net in­ter­con­nec­tions ap­pear to be del­i­cate com­po­nents that are cru­cial for the ther­mal heat trans­fer be­tween di­verse sub­sys­tems. The pro­posed study aims at as­sess­ing the heat loads to the cryo­genic sys­tem and the tem­per­a­ture fields in the vac­uum sys­tem. A non­lin­ear sta­tic ther­mal analy­sis is first per­formed. A thermo-me­chan­i­cal ap­proach is de­vel­oped to cap­ture ad­di­tional ther­mal re­sis­tance aris­ing from con­tact be­tween com­po­nents and their be­hav­iour dur­ing cool-down. The sys­tem is then stud­ied under dy­namic op­er­a­tions when beams are cir­cu­lat­ing and col­lid­ing. A thor­ough analy­sis of beam-in­duced heat loads under ul­ti­mate con­di­tions high­lights the dif­fer­ent rel­e­vant con­tri­bu­tions. Fi­nally, the tran­sient re­sponse of the sys­tems is com­puted to as­sess ther­mal time con­stants.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK035  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 27 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)