Keyword: kicker
Paper Title Other Keywords Page
MOPOST026 Influences of the Energy Jitter to the Performance of the Coherent Electron Cooling electron, simulation, experiment, emittance 115
 
  • G. Wang, V. Litvinenko, J. Ma
    BNL, Upton, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The band­width of a co­her­ent elec­tron cool­ing (CeC) sys­tem is typ­i­cally two to three or­ders of mag­ni­tude higher than the tra­di­tional RF based sto­chas­tic cool­ing sys­tem, which make it pos­si­ble to cool the ion bunches with high en­ergy and high in­ten­sity. How­ever, for such broad band­width, jit­ters in the en­ergy of the cool­ing elec­tron bunches pre­sent a se­ri­ous chal­lenge to the per­for­mance of the cool­ing sys­tem. In this work, we pre­sent an­a­lyt­i­cal as well as sim­u­la­tion stud­ies about the in­flu­ences of the en­ergy jit­ter to a CeC sys­tem with pa­ra­me­ters rel­e­vant to the on-go­ing CeC ex­per­i­ment at RHIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST026  
About • Received ※ 09 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST037 Characterisation of Bunch-by-Bunch Tune Shift Effects in the CERN SPS simulation, impedance, injection, electron 148
 
  • I. Mases Solé, H. Bartosik, V. Kain, K. Paraschou, M. Schenk, C. Zannini
    CERN, Meyrin, Switzerland
 
  After the im­ple­men­ta­tion of major up­grades as part of the LHC In­jec­tor Up­grade Pro­ject (LIU), the Super Pro­ton Syn­chro­tron (SPS) de­liv­ers high in­ten­sity bunch trains with 25 ns bunch spac­ing to the Large Hadron Col­lider (LHC) at CERN. These beams are ex­posed to sev­eral col­lec­tive ef­fects in the SPS, such as beam cou­pling im­ped­ance, space charge and elec­tron cloud, lead­ing to rel­a­tively large bunch-by-bunch co­her­ent and in­co­her­ent tune shifts. Tune cor­rec­tion to the nom­i­nal val­ues at in­jec­tion is cru­cial to en­sure beam sta­bil­ity and good beam trans­mis­sion. Dur­ing the beam com­mis­sion­ing of the SPS, mea­sure­ments of the bunch-by-bunch co­her­ent tune shifts have been con­ducted under dif­fer­ent beam con­di­tions, to­gether with ap­pro­pri­ate cor­rec­tions of the av­er­age tunes at each in­jec­tion. In this paper, we de­scribe the method­ol­ogy that has been de­vel­oped to ac­quire bunch-by-bunch po­si­tion data and to per­form on­line com­pu­ta­tions of the co­her­ent tune spec­tra of each bunch using re­fined Fourier trans­form analy­sis. The ex­per­i­men­tal data are com­pared to mul­ti­par­ti­cle track­ing sim­u­la­tions using the SPS im­ped­ance model, in view of de­vel­op­ing an ac­cu­rate model for tune cor­rec­tion in the SPS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST037  
About • Received ※ 03 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST053 Transverse Resonance Islands Buckets at SPEAR3 lattice, resonance, experiment, feedback 203
 
  • J. Kim, J.A. Safranek, K. Tian
    SLAC, Menlo Park, California, USA
 
  We pre­sent pop­u­lat­ing bunches into the trans­verse res­o­nance is­lands buck­ets (TRIBs) on SPEAR3. As one of op­er­a­tion modes for the tim­ing-mode or pro­vid­ing sep­a­rated bunches in trans­verse di­rec­tion, we are ex­plor­ing TRIBs on SPEAR3. Ex­pe­ri­ence and analy­sis on ap­ply­ing kicks mul­ti­ple times using the bunch-by-bunch feed­back kicker to move bunches into the TRIBs is de­scribed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST053  
About • Received ※ 06 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT022 Beam Dynamics of the Transparent Injection for the MAX IV 1.5 GeV Ring injection, septum, storage-ring, multipole 284
 
  • M. Apollonio, Å. Andersson, M. Brosi, D.K. Olsson, P.F. Tavares, A.S. Vorozhtsov
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Fol­low­ing the suc­cess­ful op­er­a­tion of the Mul­ti­pole In­jec­tion Kicker (MIK) in the MAX IV 3 GeV stor­age ring, we plan to in­tro­duce a sim­i­lar de­vice in the MAX IV 1.5 GeV ring. In order to as­sess the ef­fec­tive­ness of such de­vice and to de­fine its work­ing pa­ra­me­ters, we per­formed a se­ries of stud­ies aimed at un­der­stand­ing the beam dy­nam­ics re­lated to the in­jec­tion process. In this paper we de­scribe the op­ti­miza­tion of the MIK work­ing pa­ra­me­ters, we study the re­silience to tune shifts for a cho­sen in­jec­tion scheme and il­lus­trate some tests con­ducted to eval­u­ate the ring ac­cep­tance. We con­clude with re­marks about the ef­fects of mag­net er­rors on key per­for­mance pa­ra­me­ters such as the in­jec­tion ef­fi­ciency and per­tur­ba­tions to the size and di­ver­gence of the stored beam and a brief dis­cus­sion on fu­ture work.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT022  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 29 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT032 Improvement of Matching Circuit for J-PARC Main Ring Injection Kicker Magnet operation, injection, simulation, impedance 316
 
  • T. Sugimoto, K. Ishii, S. Iwata, H. Matsumoto, T. Shibata
    KEK, Ibaraki, Japan
 
  In this paper, pre­sent sta­tus of im­prove­ments of the im­ped­ance match­ing cir­cuit for the J-PARC main ring in­jec­tion kicker mag­net to achieve 1.3MW beam op­er­a­tion planed after 2022 is de­scribed. In order to re­duce the tem­per­a­ture-rise of re­sis­tors under the higher rep­e­ti­tion rate pulse ex­ci­ta­tion, num­ber of par­al­leled re­sis­tors was dou­bled and vol­ume of each re­sis­tor was en­larged 2.6 times. Ce­ramic-made beads with di­am­e­ter of 3 mm were filled in the cylin­der of the re­sis­tor to in­crease the heat con­duc­tiv­ity. An alu­minum-made wa­ter-cooled heat sink was at­tached to the re­sis­tors di­rectly and an air-cool­ing fan was mounted to the side of the box con­tain­ing the re­sis­tors. All re­sis­tors and their sup­port struc­ture have been re­placed in March 2022. Tem­per­a­ture-rise of re­sis­tors dur­ing con­tin­u­ous pulse ex­ci­ta­tion was mea­sured by com­mer­cial thermo cam­era and com­pared with nu­mer­i­cal cal­cu­la­tions. In ad­di­tion, pre­dic­tions about the beam in­duced heat­ing of the re­sis­tors are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT032  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK041 Magnetic Field Noise Search Using Turn-by-Turn Data at CESR power-supply, simulation, electron, synchrotron 553
 
  • V. Khachatryan, J. Barley, M.H. Berry, A.T. Chapelain, D.L. Rubin, J.P. Shanks, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: The authors thank NSF PHYS-1416318 and DMR-1829070.
A method for search­ing for mag­netic field noise has been de­vel­oped using the CESR beam turn-by-turn data. The tech­nique is tested using Monte-Carlo sam­ples and turn-by-turn real data with in­duced noise in one of the CESR mag­nets. We es­ti­mate the analy­sis sen­si­tiv­ity for the noise sources slower than 4 kHz (or 100 CESR-turns) with the cur­rent CESR BPM sys­tem on the level of 1 mi­cro­ra­dian or 0.2 Gs×m field in­te­gral. In this work we re­port the ob­served noise sources and the im­prove­ments achieved by ap­ply­ing this tech­nique. Long-term, sev­eral hours, beam sta­bil­ity analy­sis is also per­formed using the same method.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK041  
About • Received ※ 07 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS032 Compact-Two-Octave-Spanning Perpendicular Kicker of MeV Electrons Based on a Cubic Magnet Dipole Array electron, dipole, radiation, laser 706
 
  • T. Rohwer, R. Bazrafshan, F.X. Kärtner, N.H. Matlis
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • R. Bazrafshan
    University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    CFEL, Hamburg, Germany
  • P. Vagin
    DESY, Hamburg, Germany
 
  Funding: This work has been supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant AXSIS (609920).
New com­pact par­ti­cle ac­cel­er­a­tion struc­tures, in­clud­ing but not lim­ited to plasma, THz and di­rect laser dri­ven ac­cel­er­a­tors, have in com­mon that they cover a wide en­ergy range of po­ten­tial final en­er­gies and often show a large en­ergy spread. More­over, they may ini­tially have a rather large emit­tance. To an­a­lyze the en­ergy range of a sin­gle shot and/or to de­flect the beam to safely dump the elec­trons away from an end-sta­tion re­quires an elec­tron kicker cov­er­ing a large en­ergy range. Here, we pre­sent a mag­netic di­pole struc­ture based on a 2D Hal­bach array. For the cur­rent ex­per­i­men­tal test ac­cel­er­a­tor in AXSIS, an elec­tron beam in the en­ergy range from 4 to 20 MeV is de­flected by 90 de­gree and en­er­get­i­cally dis­persed. In di­rect con­trast to a sim­ple mag­netic di­pole, an array of cubic mag­net blocks with tai­lored mag­ne­ti­za­tion di­rec­tions al­lows a fo­cus­ing of the beam for both lon­gi­tu­di­nal and trans­verse di­rec­tions at 90 de­gree bend. A generic al­go­rithm op­ti­mizes the mag­netic field array to the pre­de­fined de­flec­tion angle and di­ver­gence. The mod­u­lar array struc­ture, in com­bi­na­tion with the al­go­rithm en­ables a sim­ple ex­change of mag­nets to adapt for dif­fer­ent beam pa­ra­me­ters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS032  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS048 Fast Trigger System for Beam Abort System in SuperKEKB hardware, detector, power-supply, MMI 754
 
  • H. Ikeda, T. Mimashi, S. Nakamura, T. Oki, S. Sasaki
    KEK, Ibaraki, Japan
 
  In order to pro­tect the hard­ware com­po­nents of the de-tec­tor and ac­cel­er­a­tor from sud­den beam loss of high beam cur­rents, the fast beam abort sys­tem is de­vel­oped in the Su­perKEKB. The pre­vi­ous abort sys­tem was not fast enough for sud­den beam loss that caused QCS quench, and it gave a dam­age to the col­li­ma­tor and the Belle-II de­tec­tor. A fast abort sys­tem is re­quired to pre-vent­ing such dam­age. The abort sys­tem con­sists of sev-eral sen­sors that gen­er­ate in­ter­lock sig­nal (the loss moni-tor, dose in the Bell-II de­tec­tor, and the mag­net fail­ure etc.), op­ti­cal cable sys­tem to trans­fer the in­ter­lock sig­nal to cen­tral con­trol room (CCR), the abort trig­ger sig­nal gen­er­a­tion sys­tem and the abort kicker. To re­duce total time, we re­duce trans­mis­sion time from local con­trol room to CCR by chang­ing sig­nal cable route. Since the in­ter­lock sig­nal pro­duced by mag­net power sup­ply was slow, we mod­i­fied the mag­net power sup­ply. For more quick gen­er­a­tion of abort trig­ger sig­nal, we in­creased num­ber of the abort gap. By these im­prove­ments, an av­er­age abort time is re­duced from 31µsec to 25µsec. This im­prove­ment looks small, but it brought pre­vent­ing the se­ri­ous ra­di­a­tion dam­age to many hard­ware compo-nents. De­tail of the sys­tem and re­sult is pre­sented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS048  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST044 Fortune Telling or Physics Prediction? Deep Learning for On-Line Kicker Temperature Forecasting operation, simulation, injection, network 957
 
  • F.M. Velotti, M.J. Barnes, B. Goddard, I. Revuelta
    CERN, Meyrin, Switzerland
 
  The in­jec­tion kicker sys­tem MKP of the Super Pro­ton Syn­chro­tron SPS at CERN is com­posed of 4 kicker tanks. The MKP-L tank pro­vides ad­di­tional kick needed to in­ject 26 GeV Large Hadron Col­lider LHC 25 ns type beams. This de­vice has been a lim­it­ing fac­tor for op­er­a­tion with high in­ten­sity, due to the mag­net’s broad­band beam cou­pling im­ped­ance and con­se­quent beam in­duced heat­ing. To op­ti­mise the usage of the SPS and avoid idle (kicker cool­ing) time, stud­ies were con­ducted to de­velop a re­cur­rent deep learn­ing model that could pre­dict the mea­sured tem­per­a­ture evo­lu­tion of the MKP-L, using the beam con­di­tions and tem­per­a­ture his­tory as input. In a sec­ond stage, the fer­rite tem­per­a­ture is also es­ti­mated putting to­gether the ex­ter­nal tem­per­a­ture pre­dic­tions from ac­cu­rate thermo-me­chan­i­cal sim­u­la­tions of the kicker mag­net. In this paper, the method­ol­ogy is de­scribed and de­tails of the neural net­work ar­chi­tec­ture used, to­gether with the im­ple­men­ta­tion of an ad-hoc loss func­tion, are given. The re­sults ap­plied to the SPS 2021 op­er­a­tional data are pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST044  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOST045 Overview of the Machine Learning and Numerical Optimiser Applications on Beam Transfer Systems for LHC and Its Injectors proton, extraction, experiment, alignment 961
 
  • F.M. Velotti, M.J. Barnes, E. Carlier, Y. Dutheil, M.A. Fraser, B. Goddard, N. Magnin, R.L. Ramjiawan, E. Renner, P. Van Trappen
    CERN, Meyrin, Switzerland
  • E. Waagaard
    Uppsala University, Uppsala, Sweden
 
  Ma­chine learn­ing and nu­mer­i­cal op­ti­mi­sa­tion al­go­rithms are get­ting more and more pop­u­lar in the ac­cel­er­a­tor physics com­mu­nity and, thanks to the com­put­ing power avail­able, their ap­pli­ca­tion in daily op­er­a­tion more likely. In the CERN ac­cel­er­a­tor com­plex, and specif­i­cally on the beam trans­fer sys­tems, many promis­ing ex­ploita­tion of these nu­mer­i­cal tools have been put in place in the last years. Some of the state-of-the-art ma­chine learn­ing mod­els have been ex­plored and used to solve prob­lems that were never fully ad­dressed in the past. In this paper, the most re­cent re­sults of ap­pli­ca­tion of ma­chine learn­ing and nu­mer­i­cal op­ti­mi­sa­tion for in­jec­tion, ex­trac­tion and trans­fer of beam from ma­chine and to ex­per­i­men­tal areas are pre­sented. An overview of the pos­si­ble next steps and short­com­ings is fi­nally dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOST045  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT037 LCLS Multi-Bunch Improvement Plan: First Results FEL, linac, experiment, undulator 1092
 
  • A. Halavanau, A.L. Benwell, T.G. Beukers, L.B. Borzenets, F.-J. Decker, J. Hugyik, A. Ibrahimov, E.N. Jongewaard, A.K. Krasnykh, A.L. Le, K. Luchini, A.A. Lutman, A. Marinelli, M. Petree, A. Romero, A.V. Sy
    SLAC, Menlo Park, California, USA
 
  LCLS cop­per linac pri­mar­ily op­er­ates in a sin­gle bunch mode with a rep­e­ti­tion rate of 120 Hz. Presently, sev­eral in-house pro­jects and LCLS user ex­per­i­ments re­quire dou­ble- and multi-pulse trains of X-rays, with in­ter-pulse delay span­ning be­tween 0.35 and 220 ns. We dis­cuss beam con­trol im­prove­ments to the cop­per linac using ul­tra-fast stripline kicker, as well as ad­di­tional pho­ton di­ag­nos­tics. We es­pe­cially focus on a case of dou­ble-pulse mode, with 218 ns sep­a­ra­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT037  
About • Received ※ 12 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT064 Online Optimization of NSLS-II Dynamic Aperture and Injection Transient injection, timing, sextupole, lattice 1159
 
  • X. Yang, B. Bacha, S. Buda, C. Danneil, A.A. Derbenev, D.J. Durfee, K. Ha, Y. Hidaka, Y. Hu, Y. Li, D. Padrazo Jr, F. Plassard, T.V. Shaftan, V.V. Smaluk, Y. Tian, G.M. Wang, L.H. Yu
    BNL, Upton, New York, USA
 
  The goal of the NSLS-II on­line op­ti­miza­tion pro­ject is to im­prove the beam qual­ity for the user ex­per­i­ments. To in­crease the beam life­time and in­jec­tion ef­fi­ciency, we have de­vel­oped a model-in­de­pen­dent on­line op­ti­miza­tion of non­lin­ear beam dy­nam­ics using ad­vanced al­go­rithms, such as Ro­bust Con­ju­gate-Gra­di­ent Al­go­rithm (RCDS). The op­ti­miza­tion ob­jec­tive is the in­jec­tion ef­fi­ciency and op­ti­miza­tion vari­ables are the sex­tu­pole mag­net strengths. Using the on­line op­ti­miza­tion tech­nique, we in­creased the NSLS-II dy­namic aper­ture and re­duced the am­pli­tude-de­pen­dent tune shift. Re­cently, the sex­tu­pole op­ti­miza­tion was suc­cess­fully ap­plied to dou­ble the in­jec­tion ef­fi­ciency up to above 90% for the high-chro­matic­ity lat­tice being de­vel­oped to im­prove the beam sta­bil­ity and to in-crease the sin­gle-bunch beam in­ten­sity. Min­i­miz­ing the beam per­tur­ba­tion dur­ing in­jec­tion is the sec­ond ob­jec­tive in this pro­ject, re­al­ized by on­line op­ti­miza­tion of the in­jec­tion kick­ers. To op­ti­mize the full set of kicker pa­ra­me­ters, in­clud­ing the trig­ger tim­ing, am­pli­tude, and pulse width, we up­graded all kicker power sup­plies with the ca­pa­bil­ity of tun­able wave­form width. As a re­sult, we have re­duced the in­jec­tion tran­sient by a fac­tor of 29, down to the limit of 60 um.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT064  
About • Received ※ 18 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS019 Collimation Strategy for the Low-Emittance PETRA IV Storage Ring collimation, injection, undulator, emittance 1445
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil
    DESY, Hamburg, Germany
 
  The beam-in­ten­sity losses in the pro­posed PETRA IV elec­tron stor­age ring that will re­place DESY’s syn­chro­tron light source PETRA III will be dom­i­nated by the Tou­schek ef­fect due to the high bunch den­sity. The beam life­time will only be in the range of 5 h in the tim­ing mode (80 high-in­ten­sity bunches) lead­ing to a max­i­mum power loss of ~170 mW along the stor­age ring (ex­clud­ing in­jec­tion losses). To avoid the de­mag­ne­ti­za­tion of the per­ma­nent-mag­net un­du­la­tors and com­bined-func­tion mag­nets, this ra­di­a­tion-sen­si­tive hard­ware has to be shielded against losses as well as pos­si­ble. Such shield­ing elon­gates the life­time of the hard­ware and con­se­quently re­duces the time and the re­sources that are spent on main­te­nance once PETRA IV is op­er­a­tional. This con­tri­bu­tion pre­sents op­tions for col­li­ma­tor lo­ca­tions, e.g., at the dis­per­sion bump in the achro­mat cell, to re­duce the ex­po­sure to losses from the Tou­schek ef­fect and the in­jec­tion process. This con­tri­bu­tion also quan­ti­fies the risk of dam­ag­ing the in­stalled col­li­ma­tion sys­tem in case of hard­ware fail­ure, e.g., RF cav­ity or quadru­pole fail­ure, since the beam with an emit­tance of 20 pm could dam­age col­li­ma­tors if there is no emit­tance blow-up.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS019  
About • Received ※ 08 June 2022 — Accepted ※ 24 June 2022 — Issue date ※ 28 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS037 RCDS-S: An Optimization Method to Compensate Accelerator Performance Drifts experiment, simulation, operation, storage-ring 1506
 
  • Z. Zhang, X. Huang, M. Song
    SLAC, Menlo Park, California, USA
 
  We pro­pose an op­ti­miza­tion al­go­rithm, Safe Ro­bust Con­ju­gate Di­rec­tion Search (RCDS-S), which can per­form ac­cel­er­a­tor tun­ing while keep­ing the ma­chine per­for­mance within a des­ig­nated safe en­ve­lope. The al­go­rithm builds prob­a­bil­ity mod­els of the ob­jec­tive func­tion using Lip­schitz con­ti­nu­ity of the func­tion as well as char­ac­ter­is­tics of the drifts and ap­plies to the se­lec­tion of trial so­lu­tions to en­sure the ma­chine op­er­ates safely dur­ing tun­ing. The al­go­rithm can run dur­ing nor­mal user op­er­a­tion con­stantly, or pe­ri­od­i­cally, to com­pen­sate for the per­for­mance drifts. Sim­u­la­tion and on­line tests have been done to val­i­date the per­for­mance of the al­go­rithm.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS037  
About • Received ※ 08 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 30 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIYGD1 Achievements and Performance Prospects of the Upgraded LHC Injectors MMI, injection, brightness, proton 1610
 
  • V. Kain, S.C.P. Albright, R. Alemany-Fernández, M.E. Angoletta, F. Antoniou, T. Argyropoulos, F. Asvesta, B. Balhan, M.J. Barnes, D. Barrientos, H. Bartosik, P. Baudrenghien, G. Bellodi, N. Biancacci, A. Boccardi, J.C.C.M. Borburgh, C. Bracco, E. Carlier, D.G. Cotte, J. Coupard, H. Damerau, G.P. Di Giovanni, A. Findlay, M.A. Fraser, A. Funken, B. Goddard, G. Hagmann, K. Hanke, A. Huschauer, M. Jaussi, I. Karpov, T. Koevener, D. Küchler, J.-B. Lallement, A. Lasheen, T.E. Levens, K.S.B. Li, A.M. Lombardi, N. Madysa, E. Mahner, M. Meddahi, L. Mether, B. Mikulec, J.C. Molendijk, E. Montesinos, D. Nisbet, F.-X. Nuiry, G. Papotti, K. Paraschou, F. Pedrosa, T. Prebibaj, S. Prodon, D. Quartullo, E. Renner, F. Roncarolo, G. Rumolo, B. Salvant, M. Schenk, R. Scrivens, E.N. Shaposhnikova, P.K. Skowroński, A. Spierer, F. Tecker, D. Valuch, F.M. Velotti, R. Wegner, C. Zannini
    CERN, Meyrin, Switzerland
 
  To pro­vide HL-LHC per­for­mance, the CERN LHC in­jec­tor chain un­der­went a major up­grade dur­ing an al­most 2-year-long shut­down. In the first half of 2021 the in­jec­tors were grad­u­ally re-started with the aim to reach at least pre-shut­down pa­ra­me­ters for LHC as well as for fixed tar­get beams. The strat­egy of the com­mis­sion­ing across the com­plex, a sum­mary of the many chal­lenges and fi­nally the achieve­ments will be pre­sented. Sev­eral lessons were learned and have been in­te­grated to de­fine the strat­egy for the per­for­mance ramp-up over the com­ing years. Re­main­ing lim­i­ta­tions and prospects for LHC beam pa­ra­me­ters at the exit of the LHC in­jec­tor chain in the years to come will be dis­cussed. Fi­nally, the emerg­ing need for im­proved op­er­abil­ity of the CERN com­plex will be ad­dressed, with a de­scrip­tion of the first ef­forts to meet the avail­abil­ity and flex­i­bil­ity re­quire­ments of the HL-LHC era while at the same time max­i­miz­ing fixed tar­get physics out­put.  
slides icon Slides WEIYGD1 [5.905 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIYGD1  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 09 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST011 Studies on Top-Up Injection into the FCC-ee Collider Ring injection, optics, collider, lattice 1699
 
  • P.J. Hunchak, M.J. Boland
    CLS, Saskatoon, Saskatchewan, Canada
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • W. Bartmann, Y. Dutheil, M. Hofer, R.L. Ramjiawan, F. Zimmermann
    CERN, Meyrin, Switzerland
  • M.J. Boland
    University of Saskatchewan, Saskatoon, Canada
 
  In order to max­i­mize the lu­mi­nos­ity pro­duc­tion time in the FCC-ee, top-up in­jec­tion will be em­ployed. The positron and elec­tron beams will be ac­cel­er­ated to the col­li­sion en­ergy in the booster ring be­fore being in­jected with ei­ther a small trans­verse or lon­gi­tu­di­nal sep­a­ra­tion to the stored beam. Using this scheme es­sen­tially keeps the beam cur­rent con­stant and, apart from a brief pe­riod dur­ing the in­jec­tion process, col­li­sion data can be con­tin­u­ously ac­quired. Two top-up in­jec­tion schemes, each with on- and off-mo­men­tum sub-schemes, vi­able for FCC-ee have been iden­ti­fied in the past and are stud­ied in fur­ther de­tail to find a suit­able de­sign for each of the four op­er­a­tion modes of the FCC-ee. In this paper, in­jec­tion straight op­tics, ini­tial in­jec­tion track­ing stud­ies and the ef­fect on the stored beam are pre­sented. Ad­di­tion­ally, a basic proxy error lat­tice is in­tro­duced as a first step to study­ing in­jec­tion into an im­per­fect ma­chine.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST011  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST025 A High Power Prototype of a Harmonic Kicker Cavity cavity, operation, MMI, electron 1749
 
  • G.-T. Park, G.A. Grose, J. Guo, A. OBrien, R.A. Rimmer, H. Wang, R.S. Williams
    JLab, Newport News, Virginia, USA
  • S.A. Overstreet
    ODU, Norfolk, Virginia, USA
 
  A har­monic kicker, a beam ex­change de­vice that can de­flect the beam at an ul­tra-fast time scale (a few ns), has been de­vel­oped in Jef­fer­son Lab *, **. The high power pro­to­type that can de­liver more than a 100 kV kick at 7 kW was fab­ri­cated. The RF per­for­mance of cav­ity such as the har­monic res­o­nant fre­quen­cies, kick pro­files, it’s sta­bil­ity, and elec­tric cen­ter is tested at bench. The cav­ity will even­tu­ally be tested with a beam at Up­graded In­jec­tor Test Fa­cil­ity (UITF) in Jef­fer­son Lab. In this paper, we re­port some fea­tures of fab­ri­ca­tion and bench test re­sults. We also briefly de­scribe our beam test plan in the fu­ture.
* G.Park, H.Wang, R.A.Rimmer, S. Wang, and J.Guo, THP092, Proceedings of IPAC2018, Vancouver, Canada (2018).
** G.Park, et al, WEPRBO99, Proceedings of IPAC2019, Melbourne, Australia (2019).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST025  
About • Received ※ 11 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT028 Design Update on the HSR Injection Kicker for the EIC impedance, injection, simulation, coupling 1904
 
  • M.P. Sangroula, C.J. Liaw, C. Liu, J. Sandberg, N. Tsoupas, B.P. Xiao
    BNL, Upton, New York, USA
  • X. Sun
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy
The Elec­tron-Ion Col­lider (EIC), the next-gen­er­a­tion nu­clear sci­ence fa­cil­ity, is under the de­sign at the Brookhaven Na­tional Lab­o­ra­tory. The pre­sent RHIC rings will be re­con­fig­ured as the Hadron Stor­age Ring (HSR) for the EIC. De­sign of a stripline in­jec­tion kicker for the HSR for beams with the rigid­ity of  ∼  81   T-m poses some tech­ni­cal chal­lenges due to the ex­pected shorter bunch spac­ing, heat­ing due to higher peak cur­rent and the larger num­ber of bunches, and the re­quired higher pulsed volt­age. Re­cently, we up­dated its me­chan­i­cal de­sign to op­ti­mize the char­ac­ter­is­tic and beam cou­pling im­ped­ances. In ad­di­tion, we in­cor­po­rated the im­ped­ance tun­ing ca­pa­bil­ity by in­tro­duc­ing the kicker aper­ture ad­just­ment mech­a­nism. Fi­nally, we in­cor­po­rated high volt­age FID feedthroughs (FC26) to this kicker. This paper re­ports the de­sign and op­ti­miza­tion up­dates of the HSR in­jec­tion kicker in­clud­ing the im­ped­ance tun­ing ca­pa­bil­ity, op­ti­miza­tion of both the char­ac­ter­is­tic and the beam cou­pling im­ped­ances, and fi­nally the in­cor­po­ra­tion of a high volt­age feedthrough de­sign.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT028  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT034 Reconfiguration of RHIC Straight Sections for the EIC electron, hadron, focusing, quadrupole 1916
 
  • C. Liu, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, H. Lovelace III, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, S. Verdú-Andrés, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, Virginia, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 and Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
The Elec­tron-Ion Col­lider (EIC) will be built in the ex­ist­ing Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) tun­nel with the ad­di­tion of elec­tron ac­cel­er­a­tion and stor­age rings. The two RHIC rings will be re­con­fig­ured as a sin­gle Hadron Stor­age Ring (HSR) for ac­cel­er­at­ing and stor­ing ion beams. The pro­ton beam en­ergy will be raised from 255 to 275 GeV to achieve the de­sired cen­ter-of-mass en­ergy range: 20’140 GeV. It is also manda­tory to op­er­ate the HSR with a con­stant rev­o­lu­tion fre­quency over a large en­ergy range (41’275 GeV for pro­tons) to syn­chro­nize with the Elec­tron Stor­age Ring (ESR). These and other re­quire­ments/chal­lenges dic­tate mod­i­fi­ca­tions to RHIC ac­cel­er­a­tors. This re­port gives an overview of the mod­i­fi­ca­tions to the RHIC straight sec­tions to­gether with their in­di­vid­ual chal­lenges.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT034  
About • Received ※ 06 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT035 Optics for Strong Hadron Cooling in EIC HSR-IR2 electron, hadron, optics, cavity 1920
 
  • S. Peggs, W.F. Bergan, D. Bruno, Y. Gao, D. Holmes, R.F. Lambiase, C. Liu, H. Lovelace III, G.J. Mahler, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, E. Wang, D. Weiss, D. Xu
    BNL, Upton, New York, USA
  • S.V. Benson, T.J. Michalski
    JLab, Newport News, Virginia, USA
  • F. Micolon
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC001 2704, and by Jefferson Science Associates, LLC under Contract No. DE-AC05-06OR23177.
In­ser­tion Re­gion 2 (IR2) of the Rel­a­tivis­tic Heavy Ion Col­lider will be mod­i­fied to ac­com­mo­date a Strong Hadron Cool­ing fa­cil­ity in the Hadron Stor­age Ring (HSR) of the Elec­tron-Ion Col­lider (EIC). This paper de­scribes the cur­rent proof-of-prin­ci­ple de­sign of HSR-IR2 - lay­out, op­ti­cal per­for­mance, de­sign method­ol­ogy, and en­gi­neer­ing re­quire­ments. It also de­scribes the chal­lenges and op­por­tu­ni­ties in the fu­ture de­vel­op­ment of the HSR-IR2 de­sign, in order to fur­ther op­ti­mize Strong Hadron Cool­ing per­for­mance.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT035  
About • Received ※ 02 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 18 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT047 Beam Optics of the Injection/Extraction and Beam Transfer in the Electron Rings of the EIC Project injection, extraction, electron, optics 1964
 
  • N. Tsoupas, D. Holmes, C. Liu, C. Montag, V. Ptitsyn, V.H. Ranjbar, J. Skaritka, J.E. Tuozzolo, E. Wang, F.J. Willeke
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) pro­ject* has been ap­proved by the De­part­ment of En­ergy to be built at the site of Brookhaven Na­tional Lab­o­ra­tory (BNL). The goal of the pro­ject is the col­li­sion of en­er­getic (of many GeV/amu) ion species with elec­tron bunches of en­er­gies up to 18 GeV. The EIC in­cludes two elec­tron rings, the Rapid Cy­cling Syn­chro­tron (RCS) which ac­cel­er­ates the elec­tron beam up to 18 GeV, and the Elec­tron Stor­age Ring (ESR) which stores the elec­tron beam for col­li­sions with hadron beam, both to be in­stalled in the same tun­nel as the Hadron Stor­age Ring (HSR). This paper dis­cusses the lay­out and the beam op­tics of the in­jec­tion/ex­trac­tion beam lines the elec­tron rings and the beam op­tics of the trans­fer line from the RCS to the ESR ring.
* https://www.bnl.gov/eic/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT047  
About • Received ※ 05 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK023 Simulation Study of Fast Extraction in the Absence of One Septum Magnet for J-Parc Main Ring septum, operation, extraction, vacuum 2100
 
  • S. Iwata, S. Igarashi, K. Ishii, H. Matsumoto, N. Matsumoto, Y. Sato, T. Shibata, T. Sugimoto, T.Y. Yasui
    KEK, Tokai, Ibaraki, Japan
 
  At J-PARC main ring (MR), the two fast ex­tract­ing beam­lines to the neu­trino fa­cil­ity and to the abort dump have a sym­met­ri­cal lay­out of 6 sep­tum mag­nets each, a total of 12. Since there are many mag­nets, it is nec­es­sary to be care­ful about fail­ure. It is im­por­tant to con­sider how to con­tinue beam sup­ply even if one of the sep­tum mag-nets is miss­ing. From July 2021, up­grade works of the FX sep­tum mag­nets com­menced with an aim of in­creas­ing the beam power of MR to 1.3 MW from 500 kW. We sim­u­lated the beam ex­trac­tion with­out one of the sep­tum mag­nets under the con­di­tions of the new geom­e­try of sep­tum mag­nets and the new aper­ture. We found that the beam can be ex­tracted by in­creas­ing the cur­rent of the sur­round­ing sep­tum mag­nets and com­pen­sat­ing for the out­put.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK023  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK025 Concepts and Considerations for FCC-ee Top-Up Injection Strategies injection, septum, multipole, collider 2106
 
  • R.L. Ramjiawan, W. Bartmann, Y. Dutheil, M. Hofer
    CERN, Meyrin, Switzerland
  • M. Aiba
    PSI, Villigen PSI, Switzerland
  • P.J. Hunchak
    University of Saskatchewan, Saskatoon, Canada
  • P.J. Hunchak
    CLS, Saskatoon, Saskatchewan, Canada
 
  The Fu­ture Cir­cu­lar elec­tron-positron Col­lider (FCC-ee) is pro­posed to op­er­ate in four modes, with beam en­er­gies from 45.6 GeV (Z-pole) to 182.5 GeV (tt-bar pro­duc­tion) and lu­mi­nosi­ties up to 4.6×1036 cm2s-1. At the high­est en­er­gies the beam life­time would be less than one hour, mean­ing that top-up in­jec­tion will be cru­cial to max­imise the in­te­grated lu­mi­nos­ity. Two top-up in­jec­tion strate­gies are con­sid­ered here: con­ven­tional in­jec­tion, em­ploy­ing a closed orbit bump and sep­tum, and mul­ti­pole-kicker in­jec­tion, with a pulsed mul­ti­pole mag­net and sep­tum. On-axis and off-axis in­jec­tions are con­sid­ered for both. We pre­sent a com­par­i­son of these in­jec­tion strate­gies tak­ing into ac­count as­pects such as spa­tial con­straints, ma­chine pro­tec­tion, dis­tur­bance to the stored beam and in­jec­tion ef­fi­ciency. We overview po­ten­tial kicker and sep­tum tech­nolo­gies for each.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK025  
About • Received ※ 03 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS004 Investigation of RF Heating for the Multipole Injection Kicker Installed at SOLEIL impedance, injection, simulation, operation 2233
 
  • A. Gamelin, P. Alexandre, R. Ben El Fekih, J. Da Silva Castro, M. El Ajjouri, A. Letresor, L.S. Nadolski, R. Ollier, T.S. Thoraud
    SOLEIL, Gif-sur-Yvette, France
  • M. Sacko, S. Taurines
    Avantis Concept, SAINT-CERE, France
 
  Dur­ing the com­mis­sion­ing of the new Mul­ti­pole In­jec­tion Kicker (MIK) pulsed mag­net at SOLEIL syn­chro­tron, an anom­alously high heat­ing of the MIK cham­ber and flanges was found. To bet­ter man­age the heat load, fans di­rected to­ward the MIK were added to im­prove the air-cool­ing flow. This al­lowed the nom­i­nal cur­rent to be reached in all op­er­a­tion modes while keep­ing rea­son­able tem­per­a­tures on the MIK. Post-in­stal­la­tion in­ves­ti­ga­tions sub­se­quently showed that the ini­tial es­ti­mate of the max­i­mal heat load was in agree­ment with the mea­sured tem­per­a­ture in sev­eral op­er­a­tion modes both with and with­out the ad­di­tional fans. In this ar­ti­cle, we pre­sent the com­plete study, start­ing from the im­ped­ance cal­cu­la­tion to ther­mal sim­u­la­tions, and com­par­i­son with the mea­sured data with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS004  
About • Received ※ 18 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 24 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS029 Modeling of the Optical Stochastic Cooling at the IOTA Storage Ring Using ELEGANT radiation, experiment, coupling, undulator 2307
 
  • A.J. Dick, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • J.D. Jarvis
    Fermilab, Batavia, Illinois, USA
  • P. Piot
    ANL, Lemont, Illinois, USA
 
  In sup­port of the Op­ti­cal Sto­chas­tic Cool­ing (OSC) ex­per­i­ment at IOTA, we im­ple­mented a high-fi­delity model of OSC in EL­E­GANT. The el­e­ment is gen­er­al­iz­able to any OSC ex­per­i­ment and cap­tures three main be­hav­iors; (i) the lon­gi­tu­di­nal time of flight OSC, (ii) the ef­fects be­tween the trans­verse mo­tion of par­ti­cles in the beam and the trans­verse dis­tri­b­u­tion of un­du­la­tor ra­di­a­tion, and (iii) the in­co­her­ent con­tri­bu­tions of neigh­bor­ing par­ti­cles. To­gether these pro­duce a highly ac­cu­rate model of OSC and were bench­marked using the re­sults from the IOTA OSC ex­per­i­ment.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS029  
About • Received ※ 14 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 05 July 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS032 Simulations of Coherent Electron Cooling with Orbit Deviation electron, simulation, plasma, hadron 2319
 
  • J. Ma, V. Litvinenko, G. Wang
    BNL, Upton, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-SC0012704 with the U.S. Department of Energy.
Co­her­ent elec­tron cool­ing (CeC) is a novel tech­nique for rapidly cool­ing high-en­ergy, high-in­ten­sity hadron beam. Plasma cas­cade am­pli­fier (PCA) has been pro­posed for the CeC ex­per­i­ment in the Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) at Brookhaven Na­tional Lab­o­ra­tory (BNL). Cool­ing per­for­mance of PCA based CeC has been pre­dicted in 3D start-to-end CeC sim­u­la­tions using code SPACE. The de­pen­dence of the PCA gain and the cool­ing rate on the elec­tron beam’s orbit de­vi­a­tion has been ex­plored in the sim­u­la­tion stud­ies.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS032  
About • Received ※ 16 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST017 Physical Design of a 10 MeV High Scanning Frequency Irradiation Electron Linear Accelerator electron, radiation, gun, simulation 2476
 
  • S. Zhang, Z.D. Zhang
    UCAS, Beijing, People’s Republic of China
  • Y.L. Chi, M. Iqbal, J.R. Zhang, S. Zhang, Z.D. Zhang, Z.S. Zhou
    IHEP, Beijing, People’s Republic of China
 
  A com­pact 10 MeV ir­ra­di­a­tion S-band elec­tron lin­ear ac­cel­er­a­tor has been pro­posed to carry out the elec­tron ra­di­a­tion ef­fect test of ma­te­ri­als and de­vices. The Linac in­cludes a stand­ing wave pre-buncher, a trav­el­ing wave bunch­ing ac­cel­er­at­ing struc­ture. The trav­el­ing wave ac­cel­er­at­ing struc­ture uses a 5MW kly­stron as RF source and pro­vides elec­tron beam en­ergy 3.5-10MeV and av­er­age cur­rent 0.01-1mA. The re­quired ir­ra­di­a­tion scan­ning fre­quency is very high, up to 100Hz and ir­ra­di­a­tion area is large (200mm×200mm). To meet the re­quire­ments, a novel beam scan­ning sys­tem, in­clud­ing one kicker for hor­i­zon­tal scan­ning and one mag­net for ver­ti­cal scan­ning, have been pro­posed. This paper pre­sents the phys­i­cal de­sign of the 10MeV elec­tron Linac and beam dy­nam­ics sim­u­la­tion re­sults.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST017  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST039 SPS Beam Dump System (SBDS) Commissioning After Relocation and Upgrade MMI, controls, vacuum, hardware 2530
 
  • P. Van Trappen, E. Carlier, L. Ducimetière, V. Namora, V. Senaj, F.M. Velotti, N. Voumard
    CERN, Meyrin, Switzerland
 
  In order to over­come sev­eral ma­chine lim­i­ta­tions, the SBDS has been re­lo­cated from LSS1 (Long Straight Sec­tion 1) to LSS5 dur­ing LS2 (Long Shut­down 2) with an im­por­tant up­grade of the ex­trac­tion kicker in­stal­la­tion. An ad­di­tional ver­ti­cal de­flec­tion kicker mag­net (MKDV) was pro­duced and in­stalled while the high volt­age (HV) pulse gen­er­a­tors have been up­graded by chang­ing gas-dis­charge switches (thyra­trons and ig­ni­trons) to semi­con­duc­tor stacks op­er­at­ing in oil. Fur­ther­more the hor­i­zon­tal sweep gen­er­a­tors have been up­graded to allow for a lower kick strengths. The con­trols, pre­vi­ously con­sol­i­dated dur­ing LS1, went through an ad­di­tional light con­sol­i­da­tion phase with among oth­ers the up­grade of the trig­ger & re­trig­ger dis­tri­b­u­tion sys­tem and the in­stal­la­tion of a new fast-in­ter­locks de­tec­tion sys­tem. This paper de­scribes the com­mis­sion­ing with­out and with beam and elab­o­rates on the mea­sured im­prove­ments and en­coun­tered prob­lems with cor­rec­tive mit­i­ga­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST039  
About • Received ※ 07 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST048 RHIC Machine Protection System Upgrades detector, power-supply, operation, monitoring 2548
 
  • M. Valette, D. Bruno, K.A. Drees, P.S. Dyer, R.L. Hulsart, J.S. Laster, J. Morris, G. Robert-Demolaize, J. Sandberg, C. Schultheiss, T.C. Shrey, G.M. Tustin
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
’In order to pro­tect the fu­ture sPHENIX de­tec­tor from spon­ta­neous and asyn­chro­nous fir­ing of one of the five RHIC abort kick­ers, me­chan­i­cal re­lays were added to the trig­ger­ing chan­nel for each of them. The me­chan­i­cal re­lays add sev­eral mil­lisec­onds to the delay be­tween the de­tec­tion of a fail­ure or beam loss and the beam being safely dis­posed of. In order to ac­count for this delay new in­puts were in­cluded into the RHIC Ma­chine Pro­tec­tion Sys­tem to en­sure de­tec­tion of ab­nor­mal con­di­tions as early as pos­si­ble. These in­puts in­clude sys­tem di­ag­nos­tics and beam mea­sure­ments such as Beam Po­si­tion Mon­i­tor sig­nals. In this paper we de­tail the up­grades that will allow re­li­able op­er­a­tions with high in­ten­sity and high en­ergy ion beams and the new de­tec­tor as well as re­lated op­er­a­tional chal­lenges and how they were ad­dressed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST048  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT018 Aperture Sharing Injection for Diamond-II injection, storage-ring, lattice, septum 2606
 
  • J. Kallestrup, H. Ghasem, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
 
  The planned Di­a­mond-II stor­age ring will pro­vide users with an in­crease in bright­ness of up to two or­ders of mag­ni­tude com­pared with the ex­ist­ing Di­a­mond fa­cil­ity. The aim is to main­tain ex­cel­lent pho­ton beam sta­bil­ity in top-up mode, which re­quires fre­quent in­jec­tions. This paper in­tro­duces the aper­ture shar­ing in­jec­tion scheme de­signed for Di­a­mond-II. The scheme promises, through the use of short striplines equipped with high-volt­age nano-sec­ond pulsers, a quasi-trans­par­ent in­jec­tion while main­tain­ing an ap­prox­i­mately 100% in­jec­tion ef­fi­ciency.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT018  
About • Received ※ 31 May 2022 — Accepted ※ 30 June 2022 — Issue date ※ 01 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT039 Performance Report of the SOLEIL Multipole Injection Kicker injection, storage-ring, MMI, synchrotron 2675
 
  • R. Ollier, P. Alexandre, R. Ben El Fekih, A. Gamelin, N. Hubert, M. Labat, A. Nadji, L.S. Nadolski, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  A Mul­ti­pole In­jec­tion Kicker (MIK) was in­stalled in a short straight sec­tion of the SOLEIL stor­age ring and suc­cess­fully com­mis­sioned in 2021. A small hor­i­zon­tal orbit dis­tor­tion in the mi­crom­e­ter range was achieved out­per­form­ing the stan­dard bump-based in­jec­tion scheme in­stalled in a 12-m long straight sec­tion. Re­fined stud­ies have been con­ducted to fully un­der­stand and fur­ther im­prove the per­for­mance of the de­vice. In­deed, a novel gen­er­a­tion of the MIK will be the key el­e­ment for the in­jec­tion scheme of the SOLEIL Up­grade. We re­port sim­u­la­tion stud­ies and the lat­est MIK ex­per­i­men­tal per­for­mance. Both in­jected and stored beam-based mea­sure­ments were per­formed using new types of di­ag­nos­tics with turn-by-turn ca­pa­bil­ity (Lib­era Bril­lance+ BPM, KA­LYPSO: 2x1D imag­ing). The resid­ual per­tur­ba­tions on the beam po­si­tions and sizes were mea­sured; the mag­netic field of the MIK de­vice was re­con­structed. An un­ex­pected kick was de­tected in the ver­ti­cal plane and an ac­tive cor­rec­tion im­ple­mented to can­cel the re­sult­ing per­tur­ba­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT039  
About • Received ※ 09 June 2022 — Accepted ※ 29 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT040 Injection Using a Non-Linear Kicker at the ESRF injection, SRF, simulation, emittance 2679
 
  • S.M. White, T.P. Perron
    ESRF, Grenoble, France
 
  The ESRF in­jec­tion con­sists in a stan­dard four kick­ers bump off-axis in­jec­tion. Al­though this scheme is very ro­bust and re­li­able it is known to dis­turb users dur­ing in­jec­tions and may rep­re­sent a se­vere lim­i­ta­tion in case fre­quent in­jec­tions are re­quired. The non-lin­ear kicker in­jec­tion scheme pro­vides a pos­si­ble so­lu­tion to this prob­lem by act­ing only on the in­jected beam. This paper re­ports on the po­ten­tial in­te­gra­tion of a non-lin­ear kicker in­jec­tion scheme at the ESRF. A lay­out and spec­i­fi­ca­tions for the kicker are pro­posed and sim­u­la­tions are pro­vided to eval­u­ate the per­for­mance and lim­i­ta­tions of such scheme.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT040  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT041 Commissioning of New Kicker Power Supplies to Improve Injection Perturbations at the ESRF injection, power-supply, SRF, storage-ring 2683
 
  • S.M. White, N. Carmignani, L.R. Carver, M. Dubrulle, L. Hoummi, M. Morati, T.P. Perron, B. Roche
    ESRF, Grenoble, France
 
  The ESRF-EBS stor­age ring re­sumed op­er­a­tion in 2020. Due to the re­duced life­time, top-up in­jec­tion is re­quired for all op­er­a­tion modes. Per­tur­ba­tions on the stored beam in­tro­duced by the pulsed in­jec­tion el­e­ments rep­re­sent a sig­nif­i­cant dis­tur­bance to the beam lines that need to run ex­per­i­ments across in­jec­tion. In order to re­duce these per­tur­ba­tion, new kicker power sup­plies with slower ramp­ing times and bet­ter shot-to-shot re­pro­ducibil­ity were de­vel­oped at ESRF to im­prove the ef­fi­ciency of the feed-for­ward com­pen­sa­tion scheme. This paper re­ports on the de­sign, com­mis­sion­ing and first ex­per­i­men­tal val­i­da­tion of these new power sup­plies.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT041  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT043 Injection Design Options for the Low-Emittance PETRA IV Storage Ring septum, injection, emittance, lattice 2689
 
  • M.A. Jebramcik, I.V. Agapov, S.A. Antipov, R. Bartolini, R. Brinkmann, D. Einfeld, T. Hellert, J. Keil, G. Loisch, F. Obier
    DESY, Hamburg, Germany
 
  The pro­posed PETRA IV elec­tron stor­age ring that will re­place DESY’s flag­ship syn­chro­tron light source PETRA III will fea­ture a hor­i­zon­tal emit­tance as low as 20 pm based on a hy­brid six-bend achro­mat lat­tice. Such a lat­tice de­sign leads to the dif­fi­culty of in­ject­ing the in­com­ing beam into an ac­cep­tance that is as small as 2.6 um. In con­trast to ear­lier lat­tice it­er­a­tions based on a seven-bend achro­mat lat­tice, the lat­est ver­sion al­lows ac­cu­mu­la­tion, i.e., the off-axis in­jec­tion of the in­com­ing beam. In this con­tri­bu­tion, the ef­fects of de­ploy­ing dif­fer­ent sep­tum types, namely a pulsed or a Lam­bert­son sep­tum, on the in­jec­tion process as well as the in­jec­tion ef­fi­ciency are pre­sented. This analy­sis in­cludes the ef­fects of com­mon ma­nip­u­la­tions to the in­jected beam, e.g., beam ro­ta­tion and aper­ture shar­ing, on the in­jec­tion ef­fi­ciency. Fur­ther­more, the op­tion of a non­lin­ear kicker and its op­ti­miza­tion (wire po­si­tions, wire cur­rent, op­tics func­tions) are pre­sented since a non­lin­ear kicker could pro­vide an al­ter­na­tive to the rather large num­ber of strip-line kick­ers that are nec­es­sary to gen­er­ate the orbit bump at the sep­tum.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT043  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 07 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT047 A Double Dipole Kicker for Off and On-Axis Injection for ALBA-II injection, dipole, vacuum, storage-ring 2701
 
  • G. Benedetti, M. Carlà, M. Pont
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  In­jec­tion into the ALBA-II stor­age ring will be per­formed off-axis in a 4 me­ters straight sec­tion with a sin­gle mul­ti­pole kicker. We pre­sent a novel topol­ogy for the coils of the in­jec­tion kicker, named dou­ble di­pole kicker (DDK). The re­sult­ing mag­netic field is the su­per­po­si­tion of two op­po­site dipoles, gen­er­ated by four inner and four outer con­duc­tor rods. When the eight rods are pow­ered, the di­pole term can­cels and the re­main­ing mul­ti­pole field is used for off-axis in­jec­tion. Al­ter­na­tively, when the four inner rods are switched off, an al­most pure di­pole is pro­duced, that is use­ful for on-axis in­jec­tion dur­ing the com­mis­sion­ing. A pro­to­type of DDK is presently under de­sign to be in­stalled and tested in the ex­ist­ing ALBA stor­age ring. The po­si­tion­ing of the rods is cal­cu­lated in order to max­imise the kick ef­fi­ciency in mrad/kA and min­imise the dis­tur­bance to the orbit and the emit­tance of the stored beam. A metal­lic coat­ing with op­ti­mised thick­ness along the inner ce­ramic vac­uum cham­ber should pro­vide com­pen­sa­tion for the eddy cur­rents in­duced field in order to min­i­mize the dis­tur­bance to the stored beam while en­sur­ing suf­fi­ciently low heat dis­si­pa­tion by the beam image cur­rents.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT047  
About • Received ※ 16 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK040 Few-Nanosecond Stripline Kickers for Top-Up Injection into PETRA IV injection, feedback, vacuum, synchrotron 2858
 
  • G. Loisch, V. Belokurov, F. Obier
    DESY, Hamburg, Germany
 
  PETRA IV is the planned ul­tralow-emit­tance up­grade of the PETRA III syn­chro­tron light source at DESY, Ham­burg. The cur­rent base­line in­jec­tion scheme is an off-axis, top-up in­jec­tion with few-nanosec­ond stripline kick­ers, which would allow for ac­cu­mu­la­tion and least dis­tur­bance of ex­per­i­ments dur­ing in­jec­tion. Be­sides the re­quire­ments on kick-strength, field qual­ity, pulse rise-rate, and heat man­age­ment, two me­chan­i­cal de­signs with dif­fer­ent aper­tures are nec­es­sary, as the de­vices will be used for in­jec­tion and the trans­verse multi-bunch feed­back sys­tem. In this con­tri­bu­tion we will pre­sent the cur­rent sta­tus of 3D fi­nite el­e­ment sim­u­la­tions of elec­tro­mag­netic fields and heat­ing as well as the me­chan­i­cal de­sign and first pulse elec­tron­ics tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK040  
About • Received ※ 20 May 2022 — Revised ※ 17 June 2022 — Accepted ※ 25 June 2022 — Issue date ※ 29 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK041 Development of Programmable Bipolar Multi kHz Kicker Drivers for Long Pulse Superconducting Electron Linacs FEL, electron, gun, laser 2862
 
  • J.L. Teichgräber, W. Decking, J. Kahl, F. Obier
    DESY, Hamburg, Germany
 
  Deutsches Elek­tro­nen-Syn­chro­tron DESY, Notkestrasse 85, 22607 Ham­burg, Ger­many Su­per­con­duct­ing cav­i­ties allow for long rf-pulses, which en­able the ac­cel­er­a­tion of thou­sands of elec­tron bunches within one rf-pulse. Due to tran­sient ef­fects, e.g. cou­pler kicks, eddy cur­rents or wake­fields, bunch prop­er­ties like the beam tra­jec­tory can change along the pulse train. To com­pen­sate for this, kicker sys­tems based on high-cur­rent op­er­a­tional am­pli­fiers have been de­vel­oped for the free elec­tron lasers Eu­ro­pean XFEL and FLASH at DESY in Ham­burg. Here, we pre­sent the lay­out of the kicker sys­tem, the setup of the pulse elec­tron­ics, and op­er­a­tional re­sults with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK041  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK043 Mitigation of High Voltage Breakdown of the Beam Screen of a CERN SPS Injection Kicker Magnet impedance, injection, simulation, coupling 2868
 
  • M.J. Barnes, W. Bartmann, M. Díaz Zumel, L. Ducimetière, L.M.C. Feliciano, T. Kramer, V. Namora, T. Stadlbauer, D. Standen, P. Trubacova, F.M. Velotti, C. Zannini
    CERN, Meyrin, Switzerland
 
  The SPS in­jec­tion kicker mag­nets (MKP) were de­vel­oped in the 1970’s, be­fore beam in­duced power de­po­si­tion was con­sid­ered an issue. These mag­nets are very lossy from a beam im­ped­ance per­spec­tive: this is ex­pected to be an issue dur­ing SPS op­er­a­tion with the higher in­ten­sity beams needed for HL-LHC. A de­sign, with serig­ra­phy ap­plied to an alu­mina car­rier, has been de­vel­oped to sig­nif­i­cantly re­duce the broad­band beam cou­pling im­ped­ance and hence mit­i­gate the heat­ing is­sues. Dur­ing high volt­age pulse test­ing there were elec­tri­cal dis­charges as­so­ci­ated with the serig­ra­phy. De­tailed math­e­mat­i­cal mod­els have been de­vel­oped to aid in un­der­stand­ing the tran­siently in­duced volt­ages and to re­duce the mag­ni­tude and du­ra­tion of elec­tric field. In this paper, we dis­cuss the so­lu­tions im­ple­mented to mit­i­gate the elec­tri­cal dis­charges while main­tain­ing an ad­e­quately low beam-cou­pling im­ped­ance. In ad­di­tion, the re­sults of high volt­age tests are re­ported. The alu­mina sub­strate has a high sec­ondary elec­tron yield and thus elec­tron-cloud could be an issue, with SPS beam, if mit­i­gat­ing mea­sures were not taken: this paper also dis­cusses the mea­sures im­ple­mented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK043  
About • Received ※ 07 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK045 Branch Module for an Inductive Voltage Adder for Driving Kicker Magnets with a Short Circuit Termination operation, injection, impedance, controls 2875
 
  • J. Ruf, M.J. Barnes, Y. Dutheil, T. Kramer
    CERN, Meyrin, Switzerland
  • M. Sack
    KIT, Karlsruhe, Germany
 
  For dri­ving kicker mag­nets ter­mi­nated in a short cir­cuit, a branch mod­ule for an in­duc­tive volt­age adder has been de­signed and as­sem­bled. The mod­ule has been de­signed for a max­i­mum charg­ing volt­age of 1.2 kV and an out­put cur­rent of 200 A con­sid­er­ing the cur­rent dou­bling due to the short cir­cuit ter­mi­na­tion. It fea­tures three con­sec­u­tive modes of op­er­a­tion: en­ergy in­jec­tion, free­wheel­ing, and en­ergy ex­trac­tion. There­fore, the topol­ogy of the branch mod­ule con­sists of two in­de­pen­dently con­trolled SiC MOS­FET switches and one diode switch. In order not to ex­tend the field rise time of the kicker mag­net sig­nif­i­cantly be­yond the mag­net fill time, the pulse must have a fast rise time. Hence, the switch for en­ergy in­jec­tion is dri­ven by a gate boost­ing dri­ver fea­tur­ing a half bridge of GaN HEMTs and a dri­ving volt­age of 80 V. Mea­sure­ments of the drain source volt­age of this switch showed a fall time of 2.7 ns at a volt­age of 600 V re­sult­ing in a volt­age rise time of 5.4 ns at the out­put ter­mi­nated with a re­sis­tive load. To meet both the rise time and cur­rent re­quire­ments, a par­al­lel con­fig­u­ra­tion of four SiC MOS­FETs was im­ple­mented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK045  
About • Received ※ 16 May 2022 — Accepted ※ 14 June 2022 — Issue date ※ 10 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRIXGD1 Status and Prospects in Fast Beam-Based Feedbacks feedback, cavity, pick-up, hadron 3112
 
  • W. Höfle
    CERN, Meyrin, Switzerland
 
  Fast beam-based Feed­back sys­tems play an im­por­tant role in cir­cu­lar ac­cel­er­a­tors to mit­i­gate in­sta­bil­i­ties and re­duce the im­pact of in­jec­tion os­cil­la­tions and per­tur­ba­tions on beam qual­ity, both in the lon­gi­tu­di­nal and trans­verse planes. The sta­tus and prospects of such beam-based feed­back sys­tems for cir­cu­lar ac­cel­er­a­tors are re­viewed. This in­cludes progress to­wards the fun­da­men­tal lim­its in noise and feed­back gain and the pos­si­bil­i­ties of mod­ern dig­i­tal sys­tems to ex­tract large amounts of data that can be used to char­ac­terise beam prop­er­ties. The talk con­cen­trates on ma­chines with hadrons and gives an out­look on pos­si­ble de­vel­op­ments for fu­ture ac­cel­er­a­tor pro­jects under study.  
slides icon Slides FRIXGD1 [3.562 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-FRIXGD1  
About • Received ※ 08 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 20 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)