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Abstract

In particles accelerators, beam position monitors (BPMs)
are used extensively as a non-intercepting diagnostic. Sig-
nificant information about beam dynamics can often be ex-
tracted from BPM measurements, and used to tune the ac-
celerator. Common measurement tools such as measure-
ments of kicked beams may become more difficult when
very strong nonlinearities are present or generally when data
is very noisy.

In this work we examine the use of variational autoen-
coders (VAEs) as a technique for extracting measurements
of the beam from simulated turn-by-turn BPM data. In
particular we show that VAEs may have the possibility to
outperform other dimensionality reduction techniques that
have historically been used to analyze such data. When the
data collection period is limited, or the data is noisy, VAEs
may offer significant advantages.

INTRODUCTION

The beam position monitor (BPM) is a ubiquitous diagnos-
tic tool in particle accelerators for monitoring the transverse
position of a passing charged particle beam. Source sepa-
ration techniques such as independent component analysis
(ICA) are commonly used [1] on data from sets of BPMs
to extract measurements of an accelerator’s operating point,
beyond what might be available from raw BPM signals.

Autoencoder (AE) neural networks seek to create a
reduced-dimensionality representation of their input by train-
ing to reproduce that input after data is compressed to a latent
space at lower dimension than the input. The variational au-
toencoder (VAE) can be seen as an adaptation of the vanilla
AE structure that instead seeks to represent a parameteriza-
tion of the input data as distributions over the latent space.
This representation by distribution allows for smooth inter-
polation over the latent space, and makes the VAE a useful
tools for performing inference to make measurements of the
accelerator.

In this work we demonstrate the ability of VAEs to mea-
sure tune from an analytic, continuous focusing model that
is representative of the idealized transverse dynamics of a
charge particle beam in an accelerator. In particular we ex-
plore the use of variational autoencoders for this task due
to their ability to smoothly interpolate between latent space
values. The capabilities of the VAE are compared against
a vanilla autoencoder, and against a typical ICA analysis.
Even when given data with a very short measurement period,
or noisy measurements VAE models are shown to give good
tune measurements.
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METHODOLOGY
Analytic Accelerator Model

For exploration of this technique we use data generated
from a simplified model of a circular (periodic) accelera-
tor with analytic solutions [1]. Rather than composing the
accelerator of discrete focusing magnets we consider a uni-
form focusing channel with coupled optics. This reduces
the problem to that of a coupled harmonic oscillator. We
consider only motion in the transverse plane so that we have
coupled differential equations:
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Where C is the coupling strength and 6 = 2sf¢ is the frac-
tional revolution period. The solutions to the coupled equa-
tions of motion will then be:
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x(0) =A,cos (v,0) + By.cos (v_0)

y(6) = Aycos (v,0) + Bycos (v_6), @

with the coupled oscillation frequency given by:
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The principal goal of the analysis tools developed in this
paper will be to extract the correct independent frequencies
from noisy, periodic measurements of x and y. These are
referred to as the tunes, v, and v, in Equation 1. The am-
plitude coefficients may be uniquely determined from the
initial x and y positions, but are not included here as we
do not use them in analyzing performance of the methods
presented.

To create test and training data the continuous x and y po-
sition data generated from the model is sampled as if from M
BPMs placed around a ring so that BPM m will have a phase
offset of ¢ = 2;rm/M. Noise in the measurements at each
turn N is sampled from a normal distribution A" (0, o).
Where the variance o ,,, representing the noisiness of each
BPM, has been set by sampling from a normal distribution
N'(0, 0 ,,pis5¢). An example of data produced from the model
is shown in Fig. 1.

Variational Autoencoders Model

For the VAE model, since we are analyzing time series
data, we use a recurrent network architecture for the encoder
and decoder. The implementation of the VAE architecture
is based on [2] and uses Long Short-Term Memory (LSTM)
units for both the encoder and decoder. A schematic of
the VAE is shown in Fig. 2 together with the regressor for
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Figure 1: Example of data produced from discrete sampling of Equation 2 to simulate BPM placement around a ring. Data

was created with noise of ¢,,,;,, = 0.25 applied.

extracting measurement of the tune. Both encoder and de-
coder contain 1 hidden layer of size 90. Linear layers are
used to transform from the LSTM output to the distribution
parameterization for sampling the latent space. The loss
function is composed of two terms: the Kullback—Leibler
divergence [3] — which acts as a regularization term — and
the reconstruction loss. For the reconstruction loss mean
squared error between the encoder input and decoder output
is used.
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M1 N
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Figure 2: Structure of the VAE together with regressor which
determines tunes from the latent space distribution parame-
terization.

The VAE was trained on generated data with a sequence
length of 28 turns and with 56 features (28 BPM measure-
ments of x and 28 measurements of y). Initially training
data amplitude was normalized, however, this seemed to
result in over-fitting and the model would show poor perfor-
mance when applied to datasets with noise levels or period
that differed from the training set. Training with a dataset
of random initial amplitudes significantly improved overall
performance.

The latent space of the trained VAE is shown in Fig. 3,
reduced to a 2 dimensional representation using t-SNE, gen-
erated from a portion of the validation data. The coloring of
points in the latent space by tune suggests very good corre-
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lation between tune of the data and the latent space vector.
It is expected that the VAE will show significantly better
performance in use for predicting tune, over a standard au-
toencoder, given its ability to smoothly interpolate across
the latent space.

Figure 3: Latent space of the VAE visualized in 2 dimen-
sions using t-SNE. Left: coloring of points corresponds to
horizontal tune v,. Right: coloring of points corresponds
to vertical tune v,.

Training for both types of autoencoders was performed
on NVIDIA Tesla V100 GPUs. A dataset of 50 000 samples
was generated from the analytic accelerator model with Gaus-
sian noise of ¢,,,,;5, = 0.25. From this dataset 90 % was used
for training and 10 % for validation.

RESULTS

To assess performance of the VAE model, comparisons
of tune predication — that is v, and nu, in Eq. (2) — are
made against ICA and a standard autoencoder (AE). The
ICA identification uses the implementation in scikit-learn [4]
sklearn.decomposition.FastICA with 4 components.
The resulting source signals are analyzed using NAFF [5]
as implemented by PYNAFF ! to obtain measurements of
vyeand v,.

For both the AE and VAE models a multilayer per-
ceptron regressor (MLP) model with 3 hidden layers of

1 https://github.com/nkarast/PyNAFF
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Table 1: R? Values for Tune Prediction

Model 28 Turns 64 Turns 128 Turns 256 Turns

O noise = 0.0
ICA 0.8980 0.9951 0.9986 1.0000
AE 0.9627 0.7222  -1.2863 -6.6645
VAE 09807 09869 0.9843 0.9733
O noise = 0.01
ICA 0.6990 0.8157 0.8996 0.9117
AE 0.9563  0.7288  -1.2566 -6.8219
VAE 09814 0.9869 0.9857 0.9747
O noise = 0.25
ICA -1.6670 -0.8499 -0.7010 -0.5698
AE 0.9561 0.7165 -1.1897 -6.4335
VAE 09807 0.9867 0.9843 0.9734

100, 80 and 40 units and rectified linear unit activation
functions is used to predict the tunes from the latent
space. The regressor was implemented from scikit-learn
sklearn.neural_network.MLPRegressor. Three test
datasets were generated with varying levels of Gaussian
noise, g,,,;s.» of 0.0, 0.01 and 0.25. In a real particle accel-
erator the relevant length of the turn-by-turn data to use may
vary. To study how each model would handle this we also
generated datasets with varying turn numbers of 28, 64, 128
and 256 turns at each noise level, each of these datasets con-
tained 1000 samples. The ability of each model to predict
the true tune values was quantified using a calculation of the
R? score of the measured tune from each model against the
true values. The results are summarized in Table 1.

While ICA performs extremely well without noise it does
suffer somewhat when the number of turns available is low.
At high levels of noise ICA fails to make accurate measure-
ments for any number of turns considered. The AE works
well at the training length of 28 turns at all noise levels, but
fails to generalize to inputs with more turn data. In contrast,
the VAE works well in all regimes for both noise level and
number of turns, and is able to provide excellent predictions
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of the tunes even when the input data contains significant
noise and very few turns.

CONCLUSION

We have shown that variational recurrent autoencoders
may offer significant advantages for analysis of data from
beam position monitors in particle accelerators. When the
interval of collected data is short or very noisy the VAE
shows extremely good performance at analyzing important
information, such as the accelerator tune. Use of a model
like a VAE on an actual particle accelerator does come with
the requirement that sufficient data be available for the initial
training. However, given the increasing adoption of machine
learning for particle accelerators large volumes of data are
becoming ever more accessible. In the future the use VAEs
for such analysis could also offer further advantages over
current methods, like ICA, due to its ability to learn nonlinear
relationships in the data.
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