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Abstract
Beam optics matching is a daily routine in the operation of

an X-ray free-electron laser facility. Usually, linear optics is
employed to conduct the beam matching in the control room.
However, the collective effects like space charge dominate
the electron bunch in the low-energy region which decreases
the accuracy of the existing tool. Therefore, we proposed a
scheme to construct a surrogate model with nonlinear optics
and collective effects to speed up the optics matching in the
European XFEL injector section. Furthermore, this model
also facilitates further research on beam dynamics for the
space-charge dominated beam.

INTRODUCTION
The X-ray free-electron laser facilities around the world

aim at generating high-brightness and coherent X-ray
pulses [1], which facilitate the ultra-fast scientific research
with atomic spatial resolution [2–4]. The European X-ray
Free-Electron Laser (EuXFEL), which is in the operational
stage since 2017, is designed to generate X-rays from 0.25 to
25 keV[5]. It is driven by a superconductive accelerator that
is able to produce up to 27,000 electron bunches per second
with maximum electron beam energy up to 17.5 GeV. As the
source of electron bunches, the photoinjector section aims at
generating the bunches with low emittance and matched op-
tics with design values which is essential to the downstream
beam delivery to the undulators. Therefore, it is required to
measure and optimize these transverse phase space parame-
ters by tuning the several injector settings, which is one of
the routine procedures of accelerator operation.

Usually, the multi-quadrupole scan method is applied to
optics measurement. These optical functions are calculated
based on the beam size measurement on the intercepting
screen whilst varying the upstream machine lattice. The de-
duction is based on the linear optics model to track the beam
from the first matching quadrupole to the final reference
point. However, collective effects such as space charge and
wakefields are not taken into account in this approach, which
might lead to inaccuracy. Moreover, the beam tracking with
these collective effects would take more computational re-
sources for one single simulation, making it not applicable
to be introduced in the online optimization of beam optics
matching. Therefore, the machine learning-based approach
is proposed to construct the surrogate model to deal with this
problem. The model involves the second-order optics and
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the beam collective effects, aiming to act as an alternative to
the existing tool to execute the optics matching in the control
room.

The machine learning technique has been applied to power
many scientific domains in these two decades due to the im-
provements in computational resources and the theory of
algorithms. As one of the classical approaches in machine
learning, supervised learning builds a function that maps the
input features to the output parameters using the sample set.
In the accelerator community, this method has been intro-
duced to tackle system modeling in several projects. Its most
useful strength is the fast execution of high-fidelity beam sim-
ulations with sufficient accuracy. Based on it, it facilitates
the fast offline beam dynamics optimization and design (i.e.
dynamics aperture maximization for storage ring, the emit-
tance, and energy spread in wakefield accelerator linacs) [6,
7], as well as providing on-the-fly prediction of the realistic
machine, for instance, switching between different operation
modes [8]. Hence, the machine learning-based surrogate
model is introduced to assist the online optics matching at
the injector section to replace the time-consuming beam
tracking with collective effects, as presented in Fig. 1. The
proof-of-principle experiment in the control room demon-
strates the accuracy of the surrogate model and it paves the
path for further exploration of machine learning applications
on accelerators.

Figure 1: The built surrogate model can substitute the slow
physical simulation and largely improve the evaluation ef-
ficiency, which facilitates the beam dynamics optimization
both in offline design and online control.

SURROGATE MODEL CONSTRUCTION
The injector section of the EuXFEL consists of a photo-

cathode electron gun, a booster accelerator, a third harmonic
cavity, and a laser heater chicane. In the following beam di-
agnostic section, the transverse deflecting cavity is deployed
to resolve the beam longitudinal properties. The surrogate
model is constructed under a deep neural network with the
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Figure 2: Schematic layout of partial EuXFEL injector from the gun cavity exit to the optics matching position.

sample set generated by beam dynamics simulations using
the tracking code OCELOT with all the collective effects
taken into account[9]. In Fig.2 the beam tracking region,
which starts from the gun cavity exit and ends in the op-
tics matching reference position, is presented. The beam
dynamics from the cathode to the end of the gun cavity are
simulated with ASTRA[10]. The sample generation is an es-

Table 1: The Nine Input Features and These Value Ranges
for Simulation

Parameters Range Unit
Optics function 𝛼𝑥𝑖 [-10, 3]
Optics function 𝛼𝑦𝑖 [-10, 3]
Optics function 𝛽𝑥𝑖 [1, 16] m
Optics function 𝛽𝑦𝑖 [1, 16] m

Quadrupole strength Q37.k1 [-3, 1.5] m−2

Quadrupole strength Q38.k1 [1.3, 3.5] m−2

Quadrupole strength Q46.k1 [-4, 1.2] m−2

Quadrupole strength Q47.k1 [-1, 5.5] m−2

Quadrupole strength Q50.k1 [-2, 2] m−2

sential part of supervised learning. Here, the same standard
beam distribution simulated by ASTRA is used as the input
beam distribution for the OCELOT simulation. The initial
optical functions are varied randomly within a reasonable
range, and the strengths of the five matching quadrupoles
downstream of the accelerating cavity are also generated ran-
domly based on the information from the machine database
during operation. Each input parameter and its range can be
found in Table 1. These beam optical functions at the initial
position and quadrupole strengths are fed to the neural net-
work as the input features. The beam final optical properties
at the matching position are treated as the output parameters.

The simulations are executed in the DESY Maxwell HPC.
The sample set contains 190,000 simulation results and 80%
of them are used for training and the other 20% are used for
testing. The surrogate model is constructed under the deep
neural network architecture which is implemented based on
the Pytorch framework[11]. It contains four hidden layers,
each with 128 nodes and the tanh activation function. The
batch size is 4,000 and the Adam is selected as the optimizer.
The model is trained by minimizing the loss function, chosen
to be the mean squared error. The performance of the model
on the testing set can be found in Fig.3.

(a) (b)

(c) (d)

Figure 3: The performance of the neural network on the
testing set. The orange dots are the model prediction and
the blue dots are the ground truth values.

PROOF-OF-PRINCIPLE EXPERIMENT

Figure 4: The workflow of model application in the control
room. There are two different ways of validation: OCELOT
simulation and optics measurement.

After the construction, the surrogate model is introduced
in the control room for optics matching in the operational
machine. The workflow of the experiment is present in Fig.4.
In the beginning, the optics measurement at the reference
position is conducted, and the measured optics function val-
ues together with the strength of the matching quadrupoles
are fed to the model. Based on the simplex numerical opti-
mization [12], the beam optics values at the initial position
can be predicted. Then the surrogate model can provide the
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suggestion of matching quadrupoles settings which are sup-
posed to match the beam to the design optics values at the
reference point. The optimization iterations will continue
according to the updated optics measurement results and the
machine lattice.

The optical mismatch parameters BMAG is calculated as
[13]

𝜉 =
1
2
(𝛾𝛽0 − 2𝛼𝛼0 + 𝛽𝛾0)

BMAG = 𝜉 +
√︃
𝜉2 − 1,

(1)

where 𝛼0, 𝛽0, 𝛾0 are the design optics function values at
the matching position, the 𝛼, 𝛽, 𝛾 are the measured optics
functions. The optimization objective involves getting the
BMAG parameters below 1.1 in both horizontal and vertical
planes. The experimental result is presented in Fig.5. In
the initial condition, the good SASE lasing performance is
achieved with these working points whose beam mismatch
parameters in the transverse directions are 1.56 and 1.69
in 𝑥 and 𝑦 planes, respectively. After four iterations with
the constructed surrogate model, the two BMAG parame-
ters are optimized to be 1.05 and 1.03, indicating that the
perfect beam matching scenario is achieved using the surro-
gate model. Fig.6 presents the evolution of the four optical
functions, in which good agreement between the model pre-
diction and beam dynamics simulation can be found.

Figure 5: The mismatch parameters BMAG values evolu-
tion during the optimization. Iteration 0 denotes the initial
condition. The BMAG parameters below 1.1 in both the
transverse planes are considered to be good matching condi-
tions.

DISCUSSION AND CONCLUSION
In this paper, the machine learning-based surrogate model

for optics matching at European XFEL is constructed. The
experimental result demonstrates that the deep neural net-
work can be applied to fulfill the beam optics matching in
the injector efficiently. The surrogate model, which involves
the beam collective effects during the construction, also has
the potential to provide a fast beam diagnostic of transverse
properties at the gun cavity exit where the beam is dominated
by the space charge effect. Furthermore, the robustness of
the model can also be improved through introducing more

(a) (b)

(c) (d)

Figure 6: The evolution of the optical functions at the refer-
ence point during the optimization iterations. The surrogate
model prediction is shown in blue, the red dashed line is
the optics design values, the orange line is the optics values
acquired from optics measurement server, and OCELOT
simulation results are shown in green as the second valida-
tion.

machine settings (such as RF parameters within the gun cav-
ity and solenoid strength) that are able to adjust the beam
transverse phase space distributions to the features. Some
relevant proposals are scheduled in the following research
plan.

In conclusion, the machine learning technique has great
potential to improve the operation efficiency of XFEL facili-
ties. Here the proposed approach establishes the available
toolkit to facilitate online optics matching in the injector
section. It lays the foundation for further exploration of
machine learning applications in the accelerator operation.

ACKNOWLEDGEMENTS
The authors acknowledge the support from Deutsches

Elecktronen-Synchrotron DESY. This work was supported
by the Youth Innovation Promotion Association CAS
(2021282) and CAS-DAAD Program for Promotion of Out-
standing Young Scholars, 2021 (57575641).

REFERENCES
[1] C. Pellegrini, A. Marinelli, and S. Reiche, “The physics of x-

ray free-electron lasers,” Rev. Mod. Phys., vol. 88, p. 015 006,
1 2016, doi:https://doi.org/10.1103/RevModPhys.
88.015006

[2] H. Öström et al., “Probing the transition state region in
catalytic co oxidation on ru,” Science, vol. 347, no. 6225,
pp. 978–982, 2015, doi:10.1126/science.1261747

[3] C. Dejoie et al., “Serial snapshot crystallography for materi-
als science with swissfel,” IUCrJ, vol. 2, no. 3, pp. 361–370,
2015, doi:10.1107/S2052252515006740

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-MOPOTK013

MC5: Beam Dynamics and EM Fields

D01: Beam Optics - Lattices, Correction Schemes, Transport

MOPOTK013

463

C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I



[4] J. M. Martin-Garcia, C. E. Conrad, J. Coe, S. Roy-
Chowdhury, and P. Fromme, “Serial femtosecond crystal-
lography: A revolution in structural biology,” Archives of
Biochemistry and Biophysics, vol. 602, pp. 32–47, 2016, Pro-
tein Crystallography, doi:https://doi.org/10.1016/j.
abb.2016.03.036

[5] W. Decking et al., “A mhz-repetition-rate hard x-ray free-
electron laser driven by a superconducting linear accelera-
tor,” Nature photonics, vol. 14, no. 6, pp. 391–397, 2020,
doi:10.1038/s41566-020-0607-z

[6] J. Wan, P. Chu, and Y. Jiao, “Neural network-based multiob-
jective optimization algorithm for nonlinear beam dynam-
ics,” Phys. Rev. Accel. Beams, vol. 23, p. 081 601, 8 2020,
doi:10.1103/PhysRevAccelBeams.23.081601

[7] A. Edelen, N. Neveu, M. Frey, Y. Huber, C. Mayes, and
A. Adelmann, “Machine learning for orders of magnitude
speedup in multiobjective optimization of particle accelerator
systems,” Phys. Rev. Accel. Beams, vol. 23, p. 044 601, 4
2020, doi:10.1103/PhysRevAccelBeams.23.044601

[8] A. L. Edelen, S. V. Milton, S. G. Biedron, J. P. Edelen, and

P. J. van der Slot, “Using a neural network control policy for
rapid switching between beam parameters in an fel,” Los
Alamos National Lab.(LANL), Los Alamos, NM (United
States), Tech. Rep., 2017.

[9] S. I. Tomin, I. V. Agapov, M. Dohlus, and I. Zagorodnov,
“OCELOT as a Framework for Beam Dynamics Simulations
of X-Ray Sources,” pp. 2642–2645, doi:10.18429/JACoW-
IPAC2017-WEPAB031

[10] K. Flöttmann et al. “Astra: A space charge tracking algo-
rithm.” (2011).

[11] A. Paszke et al., “Pytorch: An imperative style, high-
performance deep learning library,” vol. 32, 2019, https:
//proceedings.neurips.cc/paper/2019/file/
bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[12] J. A. Nelder and R. Mead, “A Simplex Method for Function
Minimization,” The Computer Journal, vol. 7, no. 4, pp. 308–
313, 1965, doi:10.1093/comjnl/7.4.308

[13] M. Sands, “A Beta mismatch parameter,” SLAC-AP-085,
1991.

13th Int. Particle Acc. Conf. IPAC2022, Bangkok, Thailand JACoW Publishing
ISBN: 978-3-95450-227-1 ISSN: 2673-5490 doi:10.18429/JACoW-IPAC2022-MOPOTK013

MOPOTK013C
on

te
nt

fr
om

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

s
of

th
e

C
C

B
Y

4.
0

lic
en

ce
(©

20
22

).
A

ny
di

st
ri

bu
tio

n
of

th
is

w
or

k
m

us
tm

ai
nt

ai
n

at
tr

ib
ut

io
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

is
he

r,
an

d
D

O
I

464

MC5: Beam Dynamics and EM Fields

D01: Beam Optics - Lattices, Correction Schemes, Transport


