Keyword: dipole
Paper Title Other Keywords Page
MOOYSP1 Impact of Longitudinal Gradient Dipoles on Storage Ring Performance photon, emittance, storage-ring, electron 30
 
  • F. Zimmermann, Y. Papaphilippou, A. Poyet
    CERN, Meyrin, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement No 101004730 (iFAST).
In­no­v­a­tive new mag­nets with lon­gi­tu­di­nally vary­ing di­pole field are being pro­duced for in­stal­la­tion in a few mod­ern light-source stor­age rings. We in­ves­ti­gate some of the as­so­ci­ated beam-dy­nam­ics is­sues, in par­tic­u­lar the pho­ton spec­trum and quan­tum fluc­tu­a­tion as­so­ci­ated with such mag­nets, and we study whether the re­sult­ing equi­lib­rium emit­tance may de­vi­ate from the value ex­pected in the long-mag­net limit.
 
slides icon Slides MOOYSP1 [2.364 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOOYSP1  
About • Received ※ 08 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST001 Performance of Automated Synchrotron Lattice Optimisation Using Genetic Algorithm lattice, network, synchrotron, focusing 38
 
  • X. Zhang, S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
  • S.L. Sheehy
    ANSTO, Kirrawee DC New South Wales, Australia
 
  Funding: Work supported by Australian Government Research Training Program Scholarship
Rapid ad­vances in su­per­con­duct­ing mag­nets and re­lated ac­cel­er­a­tor tech­nol­ogy opens many un­ex­plored pos­si­bil­i­ties for fu­ture syn­chro­tron de­signs. We pre­sent an ef­fi­cient method to probe the fea­si­ble pa­ra­me­ter space of syn­chro­tron lat­tice con­fig­u­ra­tions. Using this method, we can con­verge on a suite of op­ti­mal so­lu­tions with mul­ti­ple op­ti­mi­sa­tion ob­jec­tives. It is a gen­eral method that can be adapted to other lat­tice de­sign prob­lems with dif­fer­ent con­straints or op­ti­mi­sa­tion ob­jec­tives. In this method, we tackle the lat­tice de­sign prob­lem using a multi-ob­jec­tive ge­netic al­go­rithm. The prob­lem is en­coded by rep­re­sent­ing the com­po­nents of each lat­tice as columns of a ma­trix. This new method is an im­prove­ment over the neural net­work based ap­proach* in terms of com­pu­ta­tional re­sources. We eval­u­ate the per­for­mance and lim­i­ta­tions of this new method with bench­mark re­sults.
*Conference Proceedings IPAC’21, 2021. DOI:10.18429/JACoW-IPAC2021-MOPAB182
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST001  
About • Received ※ 19 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST004 Beam-Based Measurement of Skew-Sextupole Errors in the CERN Proton Synchrotron sextupole, coupling, resonance, proton 46
 
  • S.J. Horney, A. Huschauer, E.H. Maclean
    CERN, Meyrin, Switzerland
 
  Dur­ing Pro­ton Syn­chro­tron (PS) com­mis­sion­ing in 2021, large beam losses were ob­served when cross­ing the 3Qy res­o­nance if the Beam Gas Ion­iza­tion (BGI) pro­file mon­i­tor was en­abled. This in­di­cated the pres­ence of a strong skew-sex­tu­pole source in this in­stru­ment. Beam-based mea­sure­ments of the skew sex­tu­pole com­po­nent in the BGI mag­net were per­formed, in order to bench­mark the BGI mag­netic model and to pro­vide quan­ti­ta­tive checks of sex­tu­pole cor­rec­tions de­ter­mined em­pir­i­cally to min­i­mize the beam-losses. In this con­tri­bu­tion, re­sults of the suc­cess­fully per­formed mea­sure­ments are pre­sented, in­clud­ing tune feed-down, chro­matic cou­pling and res­o­nance dri­ving terms.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST004  
About • Received ※ 08 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOST008 Simulations of Protons to Extraction at Gγ=7.5 in the AGS Booster resonance, proton, booster, polarization 62
 
  • K. Hock, H. Huang, F. Méot
    BNL, Upton, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
To pre­pare for po­lar­ized he­lion col­li­sions at the Elec­tron Ion Col­lider (EIC), po­lar­iza­tion trans­mis­sion at the in­jec­tors for the Hadron Stor­age Ring must be stud­ied and op­ti­mized. To this ef­fect, an AC di­pole has been in­stalled in the AGS Booster to max­i­mize po­lar­iza­tion trans­mis­sion of he­lions through sev­eral in­trin­sic res­o­nances. This in­stal­la­tion also al­lows po­lar­ized pro­tons to be ex­tracted at higher en­ergy with­out po­lar­iza­tion loss. By in­creas­ing the pro­ton ex­trac­tion en­ergy from $Gγ$ = 4.5 to $Gγ$ = 7.5, pro­tons will cross the $Gγ$ = 0 + νy$ and $Gγ = 12 - νy$ de­po­lar­iz­ing ver­ti­cal in­trin­sic res­o­nances, the $Gγ$ = 5, 6, and 7 im­per­fec­tion res­o­nances in ad­di­tion to the $Gγ$ = 3, 4 that are crossed in the pre­sent con­fig­u­ra­tion, and be in­jected into the AGS at a higher rigid­ity. By sim­u­la­tion, it is de­ter­mined that there is suf­fi­cient strength of the AC di­pole to fully flip the spin spin through each of the in­trin­sic res­o­nances, and there is suf­fi­cient cor­rec­tor cur­rent to pre­serve po­lar­iza­tion through the three ad­di­tional im­per­fec­tion res­o­nances. The higher in­jec­tion rigid­ity fa­cil­i­tates the hor­i­zon­tal and ver­ti­cal tunes being placed in­side the AGS spin-tune gap at in­jec­tion due to a sub­stan­tial im­prove­ment on the AGS ad­mit­tance at in­jec­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOST008  
About • Received ※ 06 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT040 Summary of the Post-Long Shutdown 2 LHC Hardware Commissioning Campaign MMI, operation, target, hardware 335
 
  • A. Apollonio, O.O. Andreassen, A. Antoine, T. Argyropoulos, M.C. Bastos, M. Bednarek, B. Bordini, K. Brodzinski, A. Calia, Z. Charifoulline, G.-J. Coelingh, G. D’Angelo, D. Delikaris, R. Denz, L. Fiscarelli, V. Froidbise, M.A. Galilée, J.C. Garnier, R. Gorbonosov, P. Hagen, M. Hostettler, D. Jacquet, S. Le Naour, D. Mirarchi, V. Montabonnet, B.I. Panev, T.H.B. Persson, T. Podzorny, M. Pojer, E. Ravaioli, F. Rodriguez-Mateos, A.P. Siemko, M. Solfaroli, J. Spasic, A. Stanisz, J. Steckert, R. Steerenberg, S. Sudak, H. Thiesen, E. Todesco, G. Trad, J.A. Uythoven, S. Uznanski, A.P. Verweij, J. Wenninger, G.P. Willering, D. Wollmann, S. Yammine
    CERN, Meyrin, Switzerland
  • V. Vizziello
    INFN/LASA, Segrate (MI), Italy
 
  In this con­tri­bu­tion we pro­vide a sum­mary of the LHC hard­ware com­mis­sion­ing cam­paign fol­low­ing the sec­ond CERN Long Shut­down (LS2), ini­tially tar­get­ing the nom­i­nal LHC en­ergy of 7 TeV. A sum­mary of the test pro­ce­dures and tools used for test­ing the LHC su­per­con­duct­ing cir­cuits is given, to­gether with sta­tis­tics on the suc­cess­ful test ex­e­cu­tion. The paper then fo­cuses on the ex­pe­ri­ence and ob­ser­va­tions dur­ing the main di­pole train­ing cam­paign, de­scrib­ing the en­coun­tered prob­lems, the re­lated analy­sis and mit­i­ga­tion mea­sures, ul­ti­mately lead­ing to the de­ci­sion to re­duce the en­ergy tar­get to 6.8 TeV. The re-com­mis­sion­ing of two pow­er­ing sec­tors, fol­low­ing the iden­ti­fied prob­lems, is dis­cussed in de­tail. The paper con­cludes with an out­look to the fu­ture hard­ware com­mis­sion­ing cam­paigns, dis­cussing the lessons learnt and pos­si­ble strate­gies mov­ing for­ward.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT040  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 27 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOPT049 Study on Energy Spectrum Measurement of Electron Beam for Producing MIR-FEL at PBP-CMU Electron Linac Laboratory electron, FEL, linac, emittance 367
 
  • P. Kitisri, S. Rimjaem, K. Techakaew
    Chiang Mai University, Chiang Mai, Thailand
  • S. Rimjaem
    ThEP Center, Commission on Higher Education, Bangkok, Thailand
 
  At the PBP-CMU Elec­tron Linac Lab­o­ra­tory (PCELL), we aim to pro­duce a mid-in­frared free-elec­tron laser (MIR-FEL) for pump-probe ex­per­i­ments in the fu­ture. The elec­tron beam is gen­er­ated from a thermionic cath­ode ra­dio-fre­quency (RF) gun with a 1.5-cell cav­ity be­fore going to an alpha mag­net. In this sec­tion, some part of the beam is fil­tered out by using en­ergy slits. The se­lected part of the beam is then fur­ther ac­cel­er­ated by an RF lin­ear ac­cel­er­a­tor (linac) to get higher en­ergy. This work fo­cuses on the mea­sure­ment of en­ergy spec­trum of elec­tron beam for pro­duc­ing mid-in­frared free-elec­tron laser (MIR-FEL). Since our bunch com­pres­sor (BC) for the MIR-FEL beam­line is an achro­mat sys­tem, the lon­gi­tu­di­nal dis­tri­b­u­tions of elec­tron beam at the en­trance and the exit of the BC are al­most the same. Thus, we can mea­sure the lon­gi­tid­i­nal prop­er­ties of the beam be­fore it trav­els to the BC. By using a di­pole mag­net and a Fara­day cup with a slit, we can mea­sure en­ergy spec­trum of elec­tron beam be­fore en­ter­ing the BC. In this study, the ASTRA code is used to in­ves­ti­gate the prop­er­ties of elec­tron beam as well as to de­sign the mea­sur­ing sys­tem. The de­sign re­sults in­clud­ing sys­tem­atic error of the mea­sur­ing sys­tem are pre­sented and dis­cussed in this con­tri­bu­tion. The re­sults from this work can be used as the guide­line for the mea­sur­ing sys­tem con­struc­tion as well as the beam op­er­a­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOPT049  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK009 Basic Design Choices for the BESSY III MBA Lattice emittance, lattice, sextupole, ECR 449
 
  • B.C. Kuske, M. Abo-Bakr, P. Goslawski
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Lat­tice de­vel­op­ment ef­forts for the 2.5GeV, low emit­tance suc­ces­sor of BESSY II, are on­go­ing at HZB for 2 years. The basic choice of a multi-bend achro­mat lat­tice is in­dis­pens­able due to the emit­tance goal of 100pm, re­quired to gen­er­ate dif­frac­tion lim­ited ra­di­a­tion up to 1keV. Hard bound­ary con­di­tions for the de­sign are a rea­son­ably short cir­cum­fer­ence of ~350m due to the ac­ces­si­ble con­struc­tion prop­er­ties in vicin­ity to Bessy II and 16 su­per-pe­ri­ods to not step be­hind the num­ber of ex­ist­ing ex­per­i­men­tal sta­tions. Ad­di­tion­ally, the Pysikalisch Tech­nis­che Bun­de­sanstalt, the long-term part­ner of HZB, re­quests ho­mo­ge­neous dipoles as a cal­cu­la­ble and trace­able source of ra­di­a­tion for metrol­ogy ap­pli­ca­tions. The con­fig­u­ra­tion of the two build­ing blocks of MBA lat­tices - unit cell and dis­per­sion sup­pres­sion cell - has been thor­oughly stud­ied from basic prin­ci­ples. It was found that gra­di­ent free bend­ing dipoles are the bet­ter choice for the BESSY III lat­tice, op­po­site to the con­cepts of com­pa­ra­ble pro­jects. This work sum­ma­rizes and ex­plains the find­ings of our in­ves­ti­ga­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK009  
About • Received ※ 21 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 11 June 2022 — Issue date ※ 13 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK024 Quasi-Frozen Spin Concept of Magneto-Optical Structure of NICA Adapted to Study the Electric Dipole Moment of the Deuteron and to Search for the Axion storage-ring, lattice, proton, insertion 492
 
  • Y. Senichev, A.E. Aksentyev, S.D. Kolokolchikov, A.A. Melnikov
    RAS/INR, Moscow, Russia
  • A.E. Aksentyev
    MEPhI, Moscow, Russia
  • V. Ladygin, E. Syresin
    JINR/VBLHEP, Dubna, Moscow region, Russia
  • N. Nikolaev
    Landau ITP, Chernogolovka, Russia
 
  Funding: We acknowledge a support by the joint Deutsche ForschungsGemeinschaft (DFG) and Russian Science Foundation (RSF) grant 22-42-04419
The "frozen spin" method is based on the fact that at a cer­tain pa­ra­me­ters of the ring, the par­ti­cle spin ro­tates with the fre­quency of the mo­men­tum, cre­at­ing con­di­tions for the con­tin­u­ous growth of the elec­tric di­pole mo­ment sig­nal. Since a straight­for­ward im­ple­men­ta­tion of the frozen spin regime at NICA is not pos­si­ble, we sug­gest an al­ter­na­tive quasi-frozen spin ap­proach con­cept. In this new regime, the spin os­cil­lates about par­ti­cle orbit with the spin phase ad­vance pi*gamma*G/2, lo­cally re­cov­er­ing the lon­gi­tu­di­nal ori­en­ta­tion at the lo­ca­tion of the elec­tric-mag­netic Wien fil­ters in the straight sec­tions. In the case of deuterons, thanks to the small mag­netic anom­aly G, the spin con­tin­u­ously os­cil­lates rel­a­tive to the di­rec­tion of the mo­men­tum with a small am­pli­tude of a few de­grees and the ex­pected EDM ef­fect is re­duced only by a few per­cent. In this paper, we study the spin-or­bital mo­tion with the aim of using the NICA col­lider to mea­sure the EDM. We also com­ment on the po­ten­tial of NICA as an axion an­tenna in both the quasi-frozen spin regime and be­yond.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK024  
About • Received ※ 16 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK031 10 TeV Center of Mass Energy Muon Collider collider, quadrupole, focusing, radiation 515
 
  • K. Skoufaris, C. Carli, D. Schulte
    CERN, Meyrin, Switzerland
 
  A Muon col­lider can pro­vide unique op­por­tu­ni­ties in high-en­ergy physics as an en­ergy fron­tier ma­chine. How­ever, a num­ber of chal­lenges have to be ad­dressed dur­ing the de­sign process pri­mar­ily due to the short life­time of muons. In this work, a lat­tice for a §I10{TeV} cen­ter-of-mass en­ergy col­lider is pre­sented. Some of the more im­por­tant chal­lenges faced are: the de­sign of an in­ter­ac­tion re­gion with β* val­ues of the order of a few mil­lime­ters and an ad­e­quate chro­matic com­pen­sa­tion with­out sac­ri­fic­ing the phys­i­cal and dy­namic aper­ture, the flex­i­bil­ity to con­trol the mo­men­tum com­paction fac­tor and the ra­di­a­tion gen­er­ated where neu­tri­nos from muons de­cays reach the sur­face. These is­sues are ad­dressed with the de­vel­op­ment of a new chro­matic cor­rec­tion scheme, the ex­ten­sive use of flex­i­ble mo­men­tum com­paction fac­tor cells and the ef­fi­cient con­trol of the op­ti­cal pa­ra­me­ters.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK031  
About • Received ※ 03 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK033 Beamline Design and Optimisation for High Intensity Muon Beams at PSI target, experiment, proton, solenoid 523
 
  • E.V. Valetov
    PSI, Villigen PSI, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 884104 (PSI-FELLOW-III-3i).
The High In­ten­sity Muon Beams (HIMB) pro­ject at the Paul Scher­rer In­sti­tute (PSI) will pro­vide muon in­ten­si­ties of the order of 1e10 muons/s for par­ti­cle physics and ma­te­r­ial sci­ence ex­per­i­ments, two or­ders of mag­ni­tude higher than the state of the art, which is cur­rently avail­able also at PSI. In par­ti­cle trans­port sim­u­la­tions for the HIMB, we use G4beam­line with mea­sured pi+ cross-sec­tions and with vari­ance re­duc­tion. We also use the codes COSY IN­FIN­ITY, TRANS­PORT, and TUR­TLE for some stud­ies. We per­form asyn­chro­nous Bayesian op­ti­mi­sa­tion of the beam­lines on a com­put­ing clus­ter using G4beam­line and the op­ti­mi­sa­tion pack­age Deep­Hy­per. We per­formed nu­mer­ous stud­ies for the de­sign of the HIMB, and we pro­duced var­i­ous re­sults, in­clud­ing the muon trans­mis­sion, beam phase space, po­lar­i­sa­tion, and mo­men­tum spec­trum.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK033  
About • Received ※ 16 May 2022 — Revised ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK035 Beam-Based Diagnostics of Electric Guide Fields and Lattice Parameters for Run-1 of the Muon g-2 Storage Ring at Fermilab storage-ring, detector, lattice, experiment 531
 
  • D.A. Tarazona, M. Berz, K. Makino
    MSU, East Lansing, Michigan, USA
  • J.D. Crnkovic, M.J. Syphers
    Fermilab, Batavia, Illinois, USA
  • K.S. Khaw
    Shanghai Jiao Tong University, Shanghai, People’s Republic of China
  • J. Mott
    BUphy, Boston, Massachusetts, USA
  • J. Price
    The University of Liverpool, Liverpool, United Kingdom
  • M.J. Syphers
    Northern Illinois University, DeKalb, Illinois, USA
  • D.A. Tarazona
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Tishchenko
    BNL, Upton, New York, USA
 
  Funding: Fermi National Accelerator Laboratory (Fermilab) resources, a US DoE, Office of Science, HEP User Facility. Fermilab is managed by Fermi Research Alliance under Contract No. DE-AC02-07CH11359.
A por­tion of the Muon g-2 Stor­age Ring elec­tric sys­tem, which pro­vides ver­ti­cal beam fo­cus­ing, ex­hib­ited an un­ex­pected time de­pen­dence that pro­duced a char­ac­ter­is­tic evo­lu­tion of the stored beam dur­ing Run-1 of the Muon g-2 Ex­per­i­ment at Fer­mi­lab (E989). A method to re­con­struct the Run-1 elec­tric guide fields has been de­vel­oped, which is based on a nu­mer­i­cal model of the muon stor­age ring and op­ti­miza­tion al­go­rithms sup­ported by COSY IN­FIN­ITY. This method takes beam pro­file mea­sure­ments from the Muon g-2 straw track­ing de­tec­tors as input, and it pro­duces a full re­con­struc­tion of the time-de­pen­dent fields. The fields can then be used for the re­pro­duc­tion of de­tailed beam track­ing sim­u­la­tions and the cal­cu­la­tion of ring lat­tice pa­ra­me­ters for ac­cep­tance stud­ies and sys­tem­atic error eval­u­a­tions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK035  
About • Received ※ 08 June 2022 — Revised ※ 12 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOTK039 Iron Yoke Effects in Quadrupole Magnets for High Rigidity Isotope Beams quadrupole, sextupole, superconducting-magnet, simulation 546
 
  • D.B. Greene, Y. Choi, J. DeKamp, P.N. Ostroumov, M. Portillo, J.D. Wenstrom, T. Xu
    FRIB, East Lansing, Michigan, USA
  • S.L. Manikonda
    AML, Melbourne, Florida, USA
 
  Iron-dom­i­nated su­per­con­duct­ing mag­nets are one of the most pop­u­lar and most used de­sign choices for su­per­con­duct­ing mag­netic quadrupoles for ac­cel­er­a­tor sys­tems. While the iron yoke and pole tips are eco­nomic and ef­fec­tive in shap­ing the field, the large amount of iron also leads to cer­tain draw­backs, namely, un­wanted har­mon­ics from the sex­tu­pole cor­rec­tors nested in­side of the quadru­pole. Ad­di­tional prob­lems in­clude the non­lin­ear field pro­file pre­sent in the high-field regime en­gen­dered by the pres­ence of steel, and the me­chan­i­cal and cryo­genic de­sign chal­lenges of the en­tire iron yoke being part of the cold mass. The pre­sented work dis­cusses these ef­fects and chal­lenges by com­par­ing an iron-dom­i­nated quadru­pole model to an equiv­a­lent coil-dom­i­nated quadru­pole model. The com­par­i­son of their re­spec­tive mag­netic har­mon­ics, in­te­grated strength, mul­ti­pole ef­fects, and me­chan­i­cal chal­lenges demon­strates that the coil-dom­i­nated de­sign is a more fa­vor­able choice for se­lect ac­cel­er­a­tor sys­tems.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOTK039  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPOMS032 Compact-Two-Octave-Spanning Perpendicular Kicker of MeV Electrons Based on a Cubic Magnet Dipole Array electron, radiation, laser, kicker 706
 
  • T. Rohwer, R. Bazrafshan, F.X. Kärtner, N.H. Matlis
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • R. Bazrafshan
    University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    The Hamburg Center for Ultrafast Imaging, University of Hamburg, Hamburg, Germany
  • F.X. Kärtner
    CFEL, Hamburg, Germany
  • P. Vagin
    DESY, Hamburg, Germany
 
  Funding: This work has been supported by the European Research Council under the European Union’s Seventh Framework Programme (FP7/2007-2013) through the Synergy Grant AXSIS (609920).
New com­pact par­ti­cle ac­cel­er­a­tion struc­tures, in­clud­ing but not lim­ited to plasma, THz and di­rect laser dri­ven ac­cel­er­a­tors, have in com­mon that they cover a wide en­ergy range of po­ten­tial final en­er­gies and often show a large en­ergy spread. More­over, they may ini­tially have a rather large emit­tance. To an­a­lyze the en­ergy range of a sin­gle shot and/or to de­flect the beam to safely dump the elec­trons away from an end-sta­tion re­quires an elec­tron kicker cov­er­ing a large en­ergy range. Here, we pre­sent a mag­netic di­pole struc­ture based on a 2D Hal­bach array. For the cur­rent ex­per­i­men­tal test ac­cel­er­a­tor in AXSIS, an elec­tron beam in the en­ergy range from 4 to 20 MeV is de­flected by 90 de­gree and en­er­get­i­cally dis­persed. In di­rect con­trast to a sim­ple mag­netic di­pole, an array of cubic mag­net blocks with tai­lored mag­ne­ti­za­tion di­rec­tions al­lows a fo­cus­ing of the beam for both lon­gi­tu­di­nal and trans­verse di­rec­tions at 90 de­gree bend. A generic al­go­rithm op­ti­mizes the mag­netic field array to the pre­de­fined de­flec­tion angle and di­ver­gence. The mod­u­lar array struc­ture, in com­bi­na­tion with the al­go­rithm en­ables a sim­ple ex­change of mag­nets to adapt for dif­fer­ent beam pa­ra­me­ters.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-MOPOMS032  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 12 June 2022 — Issue date ※ 14 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOZGD2 A Compact Synchrotron for Advanced Cancer Therapy with Helium and Proton Beams synchrotron, proton, extraction, injection 811
 
  • M. Vretenar, M.E. Angoletta, J.C.C.M. Borburgh, L. Bottura, K. Paļskis, R.L. Taylor, G. Tranquille
    CERN, Meyrin, Switzerland
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • M. Sapinski
    PSI, Villigen PSI, Switzerland
 
  Re­cent years have seen an in­creased in­ter­est in the use of he­lium for ra­di­a­tion ther­apy of can­cer. He­lium ions can be more pre­cisely de­liv­ered to the tu­mour than pro­tons or car­bon ions, presently the only beams li­censed for treat­ment, with a bi­o­log­i­cal ef­fec­tive­ness be­tween the two. The ac­cel­er­a­tor re­quired for he­lium is con­sid­er­ably smaller than a stan­dard car­bon ion syn­chro­tron. To ex­ploit the po­ten­tial of he­lium ther­apy and of other emerg­ing par­ti­cle ther­apy tech­niques, in the frame­work of the Next Ion Med­ical Ma­chine Study (NIMMS) at CERN the de­sign of a com­pact syn­chro­tron op­ti­mised for ac­cel­er­a­tion of pro­ton and he­lium beams has been in­ves­ti­gated. The syn­chro­tron is based on a new mag­net de­sign, prof­its from a novel in­jec­tor linac, and can pro­vide both slow and fast ex­trac­tion for con­ven­tional and FLASH ther­apy. Pro­duc­tion of mini-beams, and op­er­a­tion with mul­ti­ple ions for imag­ing and treat­ment are also con­sid­ered. This ac­cel­er­a­tor is in­tended to be­come the main el­e­ment of a fa­cil­ity de­voted to a pro­gramme of can­cer re­search and treat­ment with pro­ton and he­lium beams, to both cure pa­tients and con­tribute to the as­sess­ment of he­lium beams as a new tool to fight can­cer.  
slides icon Slides TUOZGD2 [1.940 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOZGD2  
About • Received ※ 20 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOZSP1 Prospects for Optics Measuements in FCC-ee optics, damping, collider, radiation 827
 
  • J. Keintzel, R. Tomás García, F. Zimmermann
    CERN, Meyrin, Switzerland
 
  Within the frame­work of the Fu­ture Cir­cu­lar Col­lider Fea­si­bil­ity Study, the de­sign of the elec­tron-positron col­lider FCC-ee is op­ti­mised, as a pos­si­ble fu­ture dou­ble col­lider ring, cur­rently fore­seen to start op­er­a­tion dur­ing the 2040s. With close to 100 km of cir­cum­fer­ence and strong syn­chro­tron ra­di­a­tion damp­ing at high­est beam en­ergy, ad­e­quate beam mea­sure­ments are needed to con­trol the op­tics at the de­sired level. Var­i­ous pos­si­ble tech­niques to mea­sure the op­tics in FCC-ee are ex­plored, in­clud­ing the op­tion of turn-by-turn mea­sure­ments in com­bi­na­tion with an AC-di­pole.  
slides icon Slides TUOZSP1 [2.738 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUOZSP1  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT006 The New FLASH1 Beamline for the FLASH2020+ Project undulator, FEL, electron, photon 1010
 
  • M. Vogt, J. Zemella
    DESY, Hamburg, Germany
 
  The 2nd stage of the FLASH2020+ pro­ject will be an up­grade of the FLASH1 beam­line, down­stream of the in­jec­tor/linac sec­tion FLAH0 which is cur­rently being up­graded. The cur­rently ex­ist­ing beam­line dri­ves the orig­i­nal pla­nar fixed gap SASE un­du­la­tors from the TTF-2 setup, a THz un­du­la­tor that uses the spent elec­tron beam and de­flects the e-beam into a dump beam­line ca­pa­ble of safely dump­ing sev­eral thou­sand bunches per sec­ond. The up­dated beam­line has been de­signed for EEHG seed­ing with 2 mod­u­la­tors, 3 chi­canes, and a he­li­cal Ap­ple-III un­du­la­tor beam­line as seed­ing ra­di­a­tor, fol­lowed by a trans­verse de­flect­ing (S-band) struc­ture for lon­gi­tu­di­nal di­ag­nos­tics. The sep­a­ra­tion of the elec­tron beam from the FEL beam will be moved up­stream w.r.t. the old de­sign to cre­ate more space for the pho­ton di­ag­nos­tics and will be achieved by a 5 deg dou­ble-bend-al­most-achro­mat. To allow en­able high power THz ra­di­a­tion out­put from a mod­er­ately com­pressed seed­ing beam, a post com­pres­sor will be in­stalled. The ca­pa­bil­ity of dump­ing the the long bunch trains safely may and will not be com­pro­mised by the de­sign. This ar­ti­cle de­scribes the con­cep­tional and some tech­ni­cal and de­tails of the beam­line.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT006  
About • Received ※ 07 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 23 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT016 Status of the THz@PITZ Project - The Proof-of-Principle Experiment on a THz SASE FEL at the PITZ Facility undulator, FEL, electron, experiment 1033
 
  • T. Weilbach, P. Boonpornprasert, G.Z. Georgiev, G. Koss, M. Krasilnikov, X.-K. Li, A. Lueangaramwong, F. Mueller, A. Oppelt, S. Philipp, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
 
  Funding: This work was supported by the European XFEL research and development program.
In order to allow THz pump/X-ray probe ex­per­i­ments at full bunch rep­e­ti­tion rate for users at the Eu­ro­pean XFEL, the Photo In­jec­tor Test Fa­cil­ity at DESYin Zeuthen (PITZ) is build­ing a pro­to­type of an ac­cel­er­a­tor-based THz source. The goal is to gen­er­ate THz SASE FEL ra­di­a­tion with a mJ en­ergy level per bunch using an un­du­la­tor dri­ven by the elec­tron beam from PITZ. There­fore, the ex­ist­ing PITZ beam line is ex­tended into a tun­nel annex down­stream of the ex­ist­ing ac­cel­er­a­tor tun­nel. The final de­sign of the beam line ex­ten­sion con­sists of a bunch com­pres­sor, a col­li­ma­tion sys­tem and a beam dump in the PITZ tun­nel. In the tun­nel annex one LCLS-I un­du­la­tor is in­stalled for the pro­duc­tion of the THz ra­di­a­tion with a quadru­pole triplet in front of it for match­ing the beam pa­ra­me­ters for the FEL process. Be­hind the un­du­la­tor two screen sta­tions cou­ple out the THz ra­di­a­tion, for mea­sure­ments of bunch com­pres­sion, pulse en­ergy or spa­tial dis­tri­b­u­tion. A di­pole sep­a­rates the elec­tron from the THz beam and a quadru­pole dou­blet trans­ports the elec­tron beam to the beam dump. The in­stal­la­tion progress will be pre­sented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT016  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOPT046 Electron Transport for the LCLS-II-HE Low Emittance Injector diagnostics, emittance, quadrupole, cryomodule 1103
 
  • Y.M. Nosochkov, C. Adolphsen, R. Coy, C.E. Mayes, T.O. Raubenheimer, M.D. Woodley
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Department of Energy Contract DE-AC02-76SF00515.
The Low Emit­tance In­jec­tor (LEI) is a re­cent ad­di­tion to the LCLS-II High En­ergy (LCLS-II-HE) Pro­ject under de­sign at SLAC Na­tional Ac­cel­er­a­tor Lab­o­ra­tory. It will pro­vide a sec­ond beam source ca­pa­ble of pro­duc­ing a low emit­tance elec­tron beam that in­creases the XFEL pho­ton en­ergy reach to 20 keV. The LEI will in­clude an SRF elec­tron gun, a buncher sys­tem, a 1.3 GHz cry­omod­ule, and a beam trans­port sys­tem with a con­nec­tion to the LCLS-II beam­line and a stand-alone di­ag­nos­tic line. The LEI trans­port beam­lines and di­ag­nos­tic are dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOPT046  
About • Received ※ 08 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 08 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOTK062 Settings for Improved Betatron Collimation in the First Run of the High Luminosity LHC collimation, luminosity, collider, hadron 1366
 
  • B. Lindström, A. Abramov, R. Bruce, R. De Maria, P.D. Hermes, J. Molson, S. Redaelli, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  Funding: This work was supported by the High Luminosity LHC project
The cur­rent be­ta­tron col­li­ma­tion sys­tem in the LHC is not op­ti­mized to ab­sorb off-mo­men­tum par­ti­cles scat­tered out from the pri­mary col­li­ma­tors. The high­est losses are con­cen­trated in the down­stream dis­per­sion sup­pres­sor (DS). Given the in­creased beam in­ten­sity in the High Lu­mi­nos­ity LHC (HL-LHC), there is con­cern that these losses could risk quench­ing the su­per­con­duct­ing DS mag­nets. Con­se­quently, a ded­i­cated up­grade of the DS has been stud­ied. How­ever, at this stage, the de­ploy­ment for the startup of the HL-LHC is un­cer­tain due to de­lays in the avail­abil­ity of high-field mag­nets needed to in­te­grate new col­li­ma­tors into the DS. In this paper, we de­scribe the ex­pected col­li­ma­tion setup for the first run of the HL-LHC and ex­plore var­i­ous tech­niques to im­prove the col­li­ma­tion clean­ing. These in­clude ex­ploit­ing the asym­met­ric re­sponse of the two jaws of each pri­mary col­li­ma­tor and ad­just­ing the lo­cally gen­er­ated dis­per­sion in the col­li­ma­tion in­ser­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOTK062  
About • Received ※ 07 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS021 PETRA III Operational Performance and Availability operation, synchrotron, experiment, synchrotron-radiation 1453
 
  • R. Wanzenberg, M. Bieler, J. Keil, L. Liao, G.K. Sahoo, M. Schaumann
    DESY, Hamburg, Germany
 
  At DESY the Syn­chro­tron Light Source PETRA III of­fers sci­en­tists out­stand­ing op­por­tu­ni­ties for ex­per­i­ments with hard X-rays of ex­cep­tion­ally high bril­liance since 2009. The light source is op­er­ated mainly in two op­er­a­tion modes with 480 and 40 bunches at a beam en­ergy of 6 GeV. With the com­ple­tion of the last mile­stone of the ex­ten­sion pro­ject in sum­mer 2021 that brought the new di­pole beam­line P66 into op­er­a­tion, 2022 is the first year where al­most 5000 hours of user run time could be sched­uled. This paper will re­view the sta­tis­tics of avail­abil­ity and fail­ures over the years and pro­vides a de­tailed de­scrip­tion of the op­er­a­tion in 2021. Ad­di­tion­ally, an out­look for the next runs is given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS021  
About • Received ※ 19 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 17 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS029 Status of the PETRA IV Machine Project cavity, alignment, operation, emittance 1475
 
  • R. Bartolini, I.V. Agapov, A. Aloev, R. Bacher, R. Böspflug, H.-J. Eckoldt, J. Hauser, M. Hüning, P. Hülsmann, N. Koldrack, B. Krause, L. Lilje, G. Loisch, R. Onken, A. Petrov, S. Pfeiffer, J. Prenting, H. Schlarb, M. Thede, M. Tischer
    DESY, Hamburg, Germany
 
  DESY is plan­ning the up­grade of PETRA III to a fourth gen­er­a­tion light source, pro­vid­ing high bright­ness, quasi dif­frac­tion lim­ited hard X-ray pho­tons. The pro­ject is un­der­pinned by the con­struc­tion of a new stor­age ring PETRA IV, based on a 20 pm ac­cel­er­a­tor lat­tice using a hy­brid 6-bend achro­mat con­cept. We re­view here the sta­tus of the ma­chine pro­ject, the lat­est de­vel­op­ment in the dif­fer­ent tech­ni­cal sub­sys­tems, the sta­tus of the en­gi­neer­ing in­te­gra­tion and the plans for the im­ple­men­ta­tion of the new ring in the ex­ist­ing PETRA III tun­nel.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS029  
About • Received ※ 14 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS046 Fabrication and Low-Power Test of Disk-and-Washer Cavity for Muon Acceleration cavity, experiment, linac, acceleration 1534
 
  • Y. Takeuchi, J. Tojo
    Kyushu University, Fukuoka, Japan
  • E. Cicek, H. Ego, K. Futatsukawa, N. Kawamura, T. Mibe, M. Otani, N. Saito, T. Yamazaki, M. Yoshida
    KEK, Ibaraki, Japan
  • Y. Iwashita
    Kyoto University, Research Reactor Institute, Osaka, Japan
  • R. Kitamura, T. Morishita
    JAEA/J-PARC, Tokai-Mura, Naka-Gun, Ibaraki-Ken, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
  • Y. Nakazawa
    Ibaraki University, Hitachi, Ibaraki, Japan
  • Y. Sue, K. Sumi, M. Yotsuzuka
    Nagoya University, Graduate School of Science, Chikusa-ku, Nagoya, Japan
  • H.Y. Yasuda
    University of Tokyo, Tokyo, Japan
 
  The muon g-2/EDM ex­per­i­ment is under prepa­ra­tion at Japan Pro­ton Ac­cel­er­a­tor Re­search Com­plex (J-PARC), and the muon lin­ear ac­cel­er­a­tor for the ex­per­i­ment is being de­vel­oped. A Disk-and-Washer (DAW) cav­ity will be used for the medium-ve­loc­ity part of the ac­cel­er­a­tor, and muons will be ac­cel­er­ated from v/c=ß=0.3 to 0.7 with the op­er­at­ing fre­quency of 1.296 GHz. Ma­chin­ing, braz­ing, and low-power mea­sure­ments of a pro­to­type cell re­flect­ing the de­sign of the first tank of DAW were per­formed to iden­tify fab­ri­ca­tion prob­lems. Sev­eral prob­lems were iden­ti­fied, such as dis­place­ment of wash­ers dur­ing braz­ing, and some mea­sures will be taken in the ac­tual tank fab­ri­ca­tion. In this paper, the re­sults of the pro­to­type cell fab­ri­ca­tion will be re­ported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS046  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPOMS057 Design Study of HOM Couplers for the C-Band Accelerating Structure factory, GUI, damping, cavity 1561
 
  • D. Kim, E.I. Simakov
    LANL, Los Alamos, New Mexico, USA
  • S. Biedron
    UNM-ECE, Albuquerque, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
 
  Funding: High Energy Physics (HEP) at the U.S. Department of Energy (DOE)
A cold cop­per dis­trib­uted cou­pling ac­cel­er­a­tor, with a high ac­cel­er­at­ing gra­di­ent at cryo­genic tem­per­a­tures (~77 K), is pro­posed as a base­line struc­ture for the next gen­er­a­tion of lin­ear col­lid­ers. This novel tech­nol­ogy im­proves ac­cel­er­a­tor per­for­mance and al­lows more de­grees of free­dom for op­ti­miza­tion of in­di­vid­ual cav­i­ties. It has been sug­gested that C-band ac­cel­er­at­ing struc­tures at 5.712 GHz may allow to main­tain high ef­fi­ciency, achieve high ac­cel­er­at­ing gra­di­ent, and be suit­able beam dy­nam­ics with wake­field damp­ing and de­tun­ing of the cav­i­ties. The op­ti­miza­tion of the cav­ity shape was per­formed and we com­puted qual­ity fac­tor, shunt im­ped­ance, and beam kick fac­tor for each of the pro­posed cav­ity geome­tries using CST mi­crowave stu­dio. Next, we pro­posed a con­fig­u­ra­tion for higher order mode (HOM) sup­pres­sion that in­cludes wave­guide slots run­ning par­al­lel to the axis of the ac­cel­er­a­tor. This pre­sen­ta­tion will re­port de­tails of the para­met­ric study of per­for­mance of the HOM sup­pres­sion wave­guide, and the de­pen­dence of HOM Q-fac­tors and kick-fac­tors on the cav­ity’s and HOM wave­guide’s geome­tries.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-TUPOMS057  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 09 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEOYGD3 Isochronous Mode of the Experimental Storage Ring (ESR) at GSI experiment, sextupole, electron, detector 1620
 
  • S.A. Litvinov, R. Hess, B. Lorentz, M. Steck
    GSI, Darmstadt, Germany
 
  The isochro­nous op­tics of the ESR is a unique ion-op­ti­cal set­ting in which the par­ti­cles within a fi­nite mo­men­tum ac­cep­tance cir­cu­late at con­stant fre­quency. It is used for di­rect mass mea­sure­ments of short-lived ex­otic nu­clei by a Time-of-Flight method. Be­sides the mass spec­trom­e­try, the isochro­nous ESR has been used as an in­stru­ment for the search of short lived iso­mers stored in the ring, which was per­formed in 2021 for the first time. In­tro­duc­tion to the isochro­nous mode of the ESR, com­par­i­son with a stan­dard op­er­a­tional mode, re­cent ma­chine ex­per­i­ments will be pre­sented here. Pos­si­ble im­prove­ments of the isochro­nous op­tics at the ESR and per­spec­tives of the isochro­nous mode at CR, FAIR will be out­lined.  
slides icon Slides WEOYGD3 [6.871 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEOYGD3  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEIZSP2 Trapping of Neutral Molecules by the Electromagnetic Beam Field vacuum, electron, simulation, alignment 1649
 
  • G. Franchetti
    GSI, Darmstadt, Germany
  • F. Zimmermann
    CERN, Meyrin, Switzerland
 
  Neu­tral un­charged mol­e­cules are af­fected by the elec­tro­mag­netic field of a charged par­ti­cle beam if they carry ei­ther an elec­tric or a mag­netic di­pole mo­ment. The resid­ual gas in an ac­cel­er­a­tor beam pipe con­sists of such mol­e­cules. In this paper we study their dy­nam­ics. Under a few ap­prox­i­ma­tions, whose va­lid­ity we ex­plore and jus­tify, we de­rive the equa­tions of mo­tion of neu­tral mol­e­cules and their in­vari­ants, de­ter­mine the con­di­tions for these neu­tral mol­e­cules to be­come trapped in the field of the beams as func­tion of beam-pipe tem­per­a­ture, and com­pute the re­sult­ing en­hance­ment of mol­e­cule den­sity in the vicin­ity of the beam. We demon­strate that large ag­glom­er­ates of mol­e­cules, "flakes," are much more likely to be pulled into the beam than sin­gle mol­e­cules, and sug­gest that this phe­nom­e­non might help ex­plain some beam ob­ser­va­tions at the Large Hadron Col­lider.  
slides icon Slides WEIZSP2 [6.142 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEIZSP2  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 22 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST001 Radiation Load Studies for Superconducting Dipole Magnets in a 10 TeV Muon Collider collider, radiation, shielding, electron 1671
 
  • D. Calzolari, C. Carli, B. Humann, A. Lechner, G. Lerner, F. Salvat Pujol, D. Schulte, K. Skoufaris
    CERN, Meyrin, Switzerland
  • B. Humann
    TU Vienna, Wien, Austria
 
  Among the var­i­ous fu­ture lep­ton col­lid­ers under study, muon col­lid­ers offer the prospect of reach­ing the high­est col­li­sion en­er­gies. De­spite the promis­ing po­ten­tial of a multi-TeV muon col­lider, the short life­time of muons poses a se­vere tech­no­log­i­cal chal­lenge for the col­lider de­sign. In par­tic­u­lar, the co­pi­ous pro­duc­tion of decay elec­trons and positrons along the col­lider ring re­quires the in­te­gra­tion of con­tin­u­ous ra­di­a­tion ab­sorbers in­side su­per­con­duct­ing mag­nets. The ab­sorbers are needed to avoid quenches, re­duce the heat dis­si­pa­tion in the cold mass and pre­vent mag­net fail­ures due to long-term ra­di­a­tion dam­age. In this paper, we pre­sent FLUKA shower sim­u­la­tions as­sess­ing the shield­ing re­quire­ments for high-field mag­nets of a 10 TeV muon col­lider. We quan­tify in par­tic­u­lar the role of syn­chro­tron pho­ton emis­sion by decay elec­trons and positrons, which helps in dis­pers­ing the en­ergy car­ried by the decay prod­ucts. For com­par­i­son, se­lected re­sults for a 3 TeV muon col­lider are also pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST001  
About • Received ※ 08 June 2022 — Revised ※ 11 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST003 Implications of the Upgrade II of LHCb on the LHC Insertion Region 8: From Energy Deposition Studies to Mitigation Strategies luminosity, radiation, detector, experiment 1679
 
  • A. Ciccotelli
    The University of Manchester, Manchester, United Kingdom
  • R.B. Appleby
    UMAN, Manchester, United Kingdom
  • F. Butin, F. Cerutti, A. Ciccotelli, L.S. Esposito, B. Humann, M. Wehrle
    CERN, Meyrin, Switzerland
  • B. Humann
    TU Vienna, Wien, Austria
 
  Start­ing from LHC Run3, a first up­grade of the LHCb ex­per­i­ment (Up­grade I) will en­able oer­a­tion with a sig­nif­i­cantly in­creased in­stan­ta­neous lu­mi­nos­ity in the LHC In­ser­tion Re­gion 8 (IR8), up to 2·1033/(cm2 s). More­over, the pro­posed sec­ond up­grade of the LHCb ex­per­i­ment (Up­grade II) aims at in­creas­ing it by an extra fac­tor 7.5 and col­lect­ing an in­te­grated lu­mi­nos­ity of 400/fb by the end of Run6. Such an am­bi­tious goal poses chal­lenges not only for the de­tec­tor but also for the ac­cel­er­a­tor com­po­nents. Monte Carlo sim­u­la­tions rep­re­sent a valu­able tool to pre­dict the im­pli­ca­tions of the ra­di­a­tion im­pact on the ma­chine, es­pe­cially for fu­ture op­er­a­tional sce­nar­ios. A de­tailed IR8 model im­ple­mented by means of the FLUKA code is pre­sented in this study. With such a model, we cal­cu­lated the power den­sity and dose dis­tri­b­u­tions in the su­per­con­duct­ing coils of the LHC final fo­cus­ing quadrupoles (Q1-Q3) and sep­a­ra­tion di­pole (D1) and we high­light a few crit­i­cal is­sues call­ing for mit­i­ga­tion mea­sures. Our study ad­dresses also the re­com­bi­na­tion di­pole (D2) and the suit­abil­ity of the pre­sent TANb ab­sorber, as well as the pro­ton losses in the Dis­per­sion Sup­pres­sor (DS) and their im­pli­ca­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST003  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOST031 RHIC Polarized Proton Operation in Run 22 operation, polarization, proton, luminosity 1765
 
  • V. Schoefer, E.C. Aschenauer, D. Bruno, K.A. Drees, W. Fischer, C.J. Gardner, K. Hock, H. Huang, R.L. Hulsart, C. Liu, Y. Luo, I. Marneris, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, M.G. Minty, J. Morris, A. Poblaguev, V. Ptitsyn, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, J. Sandberg, W.B. Schmidke, F. Severino, T.C. Shrey, P. Thieberger, J.E. Tuozzolo, M. Valette, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno
    BNL, Upton, New York, USA
 
  The Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) Run 22 physics pro­gram con­sisted of col­li­sions with ver­ti­cally po- lar­ized pro­ton beams at a sin­gle col­li­sion point (the STAR de­tec­tor). Dur­ing ini­tial startup of the col­lider, power out- ages dam­aged two of the coils in one of the RHIC he­li­cal di­pole snake mag­nets used for po­lar­iza­tion preser­va­tion in the Blue ring. That snake was re­con­fig­ured for use as a par­tial snake. We will out­line some of the re­me­di­at­ing mea- sures taken to max­i­mize po­lar­iza­tion trans­mis­sion in this con­fig­u­ra­tion. These mea­sures in­cluded chang­ing the col- lid­ing beam en­ergy from 255 GeV to 254.2 GeV to ad­just the spin closed orbit at store and ad­just­ment of the field in the other he­li­cal di­pole in the Blue ring to im­prove in­jec­tion spin match­ing. Later in the run, the pri­mary motor gener- ator for the AGS (the in­jec­tor to RHIC) failed and a lower volt­age backup had to be used, re­sult­ing in a pe­riod of lower po­lar­iza­tion. Other ef­forts in­clude de­tailed mea­sure­ment of the sta­ble spin di­rec­tion at store and the com­mis­sion­ing of a ma­chine pro­tec­tion relay sys­tem to pre­vent spu­ri­ous fir­ing of the RHIC abort kick­ers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOST031  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 04 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT006 Investigation of Spin-Decoherence in the NICA Storage Ring for the Future EDM-Measurement Experiment polarization, experiment, storage-ring, GUI 1835
 
  • A.E. Aksentyev, A.A. Melnikov, Y. Senichev
    RAS/INR, Moscow, Russia
  • A.E. Aksentyev
    MEPhI, Moscow, Russia
  • V. Ladygin, E. Syresin
    JINR, Dubna, Moscow Region, Russia
 
  Funding: We acknowledge support by the joint Deutsche ForschungsGemeinschaft (DFG) and Russian Science Foundation (RSF) grant 22-42-04419
A new ex­per­i­ment to mea­sure elec­tric di­pole mo­ments (EDMs) of el­e­men­tary par­ti­cles, based on the Fre­quency Do­main method, has been pro­posed for im­ple­men­ta­tion at the NICA fa­cil­ity (JINR, Rus­sia). EDM ex­per­i­ments in gen­eral, being mea­sure­ment-of-po­lar­iza­tion ex­per­i­ments, re­quire long spin-co­her­ence times at around 1,000 sec­onds. The FD method in­volves a fur­ther com­pli­ca­tion (well paid off in or­ders of pre­ci­sion) of switch­ing the po­lar­ity of the guid­ing field as part of its CW-CCW in­jec­tion pro­ce­dure. This lat­ter pro­ce­dure ne­ces­si­tates a cal­i­bra­tion process, dur­ing which the beam po­lar­iza­tion axis changes its ori­en­ta­tion from the ra­dial (used for the mea­sure­ment) to the ver­ti­cal (used for the cal­i­bra­tion) di­rec­tion. If this change oc­curs adi­a­bat­i­cally, the beam par­ti­cles’ spin-vec­tors fol­low the di­rec­tion of the po­lar­iza­tion axis, which un­der­mines the cal­i­bra­tion tech­nique; how­ever, con­cerns were raised as to whether vi­o­la­tion of adi­a­batic­ity could dam­age spin-co­her­ence.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT006  
About • Received ※ 16 May 2022 — Accepted ※ 15 June 2022 — Issue date ※ 22 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT014 The Effect of a Partially Depleted Halo on the Criticality and Detectability of Fast Failures in the HL-LHC beam-losses, simulation, luminosity, collider 1866
 
  • C. Hernalsteens, C. Lannoy, O.K. Tuormaa, M. Villén Basco, C. Wiesner, D. Wollmann
    CERN, Meyrin, Switzerland
 
  In the High Lu­mi­nos­ity LHC (HL-LHC) era, the bunch in­ten­sity will be in­creased to νm{2.2e11} pro­tons, which is al­most twice the nom­i­nal LHC in­ten­sity. The stored en­ergy in each of the two beams will in­crease to §I{674}{MJ}. The HL-LHC will fea­ture beams whose trans­verse halos are par­tially de­pleted by means of a hol­low elec­tron lens. The re­duced stored en­ergy in the beam tails will sig­nif­i­cantly change the de­vel­op­ment of losses caused by fail­ures. This paper re­ports on beam track­ing sim­u­la­tions eval­u­at­ing the ef­fect of a par­tially de­pleted halo on the crit­i­cal­ity and de­tec­tion of fail­ures orig­i­nat­ing from the su­per­con­duct­ing mag­net pro­tec­tion sys­tems. In ad­di­tion, the ef­fect of the trans­verse damper op­er­at­ing as a co­her­ent ex­ci­ta­tion sys­tem lead­ing to orbit ex­cur­sions on a beam with a par­tially de­pleted halo is dis­cussed. The re­sults in terms of time-de­pen­dent beam losses are pre­sented. The mar­gins be­tween the fail­ure onset, its de­tec­tion, and the time to reach crit­i­cal loss lev­els, are dis­cussed. The re­sults are ex­trap­o­lated to fail­ure cases of dif­fer­ent ori­gins that in­duce sim­i­lar beam loss dy­nam­ics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT014  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT016 Beam-Based Reconstruction of the Shielded Quench-Heater Fields for the LHC Main Dipoles shielding, operation, optics, injection 1874
 
  • L.C. Richtmann, L. Bortot, E. Ravaioli, C. Wiesner, D. Wollmann
    CERN, Meyrin, Switzerland
 
  Small orbit os­cil­la­tions of the cir­cu­lat­ing par­ti­cle beams have been ob­served im­me­di­ately fol­low­ing quenches in the LHC’s su­per­con­duct­ing main di­pole mag­nets. Mag­netic fields gen­er­ated dur­ing the dis­charge into the quench heaters were iden­ti­fied as the cause. Since the re­sult­ing, shielded field in­side the beam screen can­not be mea­sured in-situ, the time evo­lu­tion of the field has to be re­con­structed from the mea­sured beam ex­cur­sions. In this paper, the field-re­con­struc­tion method using ro­ta­tion in nor­mal­ized phase space and the op­ti­mized fit­ting al­go­rithm are de­scribed. The re­sult­ing rise times and mag­netic field lev­els are pre­sented for quench events that oc­curred dur­ing reg­u­lar op­er­a­tion as well as for ded­i­cated beam ex­per­i­ments. Fi­nally, dif­fer­ent ap­proaches to model the shield­ing be­hav­ior of the beam screen are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT016  
About • Received ※ 16 May 2022 — Accepted ※ 13 June 2022 — Issue date ※ 26 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT042 Designing the EIC Electron Storage Ring Lattice for a Wide Energy Range solenoid, electron, lattice, quadrupole 1946
 
  • D. Marx, J.S. Berg, J.S. Berg, J. Kewisch, Y. Li, Y. Li, C. Montag, V. Ptitsyn, V. Ptitsyn, S. Tepikian, F.J. Willeke, F.J. Willeke, D. Xu
    BNL, Upton, New York, USA
  • Y. Cai, Y.M. Nosochkov
    SLAC, Menlo Park, California, USA
  • B.R. Gamage, V.S. Morozov, V.S. Morozov
    JLab, Newport News, Virginia, USA
  • G.H. Hoffstaetter, G.H. Hoffstaetter, D. Sagan, D. Sagan, J.E. Unger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
  • M.G. Signorelli
    Cornell University, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC, under Contract No. DE-SC0012704, by Jefferson Science Associates, LLC, under Contract No. DE-AC05-06OR23177, by UT-Battelle, LLC, under contract DE-AC05-00OR22725, and by SLAC under Contract No. DE-AC02-76SF00515 with the U.S. Department of Energy.
The Elec­tron-Ion Col­lider (EIC) will col­lide elec­trons with hadrons at cen­ter-of-mass en­er­gies up to 140 GeV (in the case of elec­tron-pro­ton col­li­sions). A 3.8-kilo­me­ter elec­tron stor­age ring is being de­signed, which will store elec­trons with a range of en­er­gies up to 18 GeV for col­li­sions at one or two in­ter­ac­tion points. At en­er­gies up to 10 GeV the arcs will be tuned to pro­vide 60 de­gree phase ad­vance per cell in both planes, whereas at top en­ergy of 18 GeV a 90 de­gree phase ad­vance per cell will be used, which largely com­pen­sates for the hor­i­zon­tal emit­tance in­crease with en­ergy. The op­tics must be matched at three sep­a­rate en­er­gies, and the dif­fer­ent phase-ad­vance re­quire­ments in both the arc cells and the straight sec­tions make this chal­leng­ing. More­over, the spin ro­ta­tors must ful­fill re­quire­ments for po­lar­iza­tion and spin match­ing at widely dif­fer­ent en­er­gies while sat­is­fy­ing tech­ni­cal con­straints. In this paper these chal­lenges and pro­posed so­lu­tions are pre­sented and dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT042  
About • Received ※ 16 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT059 Corrections of Systematic Normal Decapole Field Errors in the HL-LHC Separation/Recombination Dipoles target, resonance, dynamic-aperture, simulation 1991
 
  • J. Dilly, M. Giovannozzi, R. Tomás García, F.F. Van der Veken
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the HiLumi Project and been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Re-search.
Mag­netic mea­sure­ments re­vealed that the nor­mal de­ca­pole (b5) er­rors of the re­com­bi­na­tion dipoles (D2) could have a sys­tem­atic com­po­nent of up to 11 units. Based on pre­vi­ous stud­ies, it was pre­dicted that the cur­rent cor­rec­tions would not be able to com­pen­sate this, thereby lead­ing to a degra­da­tion of the dy­namic aper­ture by about 0.5 - 1 ’. On the other hand, the sep­a­ra­tion di­pole D1 is ex­pected to have a sys­tem­atic b5 com­po­nent of 6-7 units and its con­tri­bu­tion to the res­o­nance dri­ving terms will partly com­pen­sate the ef­fect of D2, due to the op­po­site field strength of the main com­po­nent. Sim­u­la­tions were per­formed with the HL-LHC V1.4 lat­tice to test these con­cerns and to ver­ify the com­pen­sa­tion as­sump­tion. In ad­di­tion, var­i­ous nor­mal de­ca­pole res­o­nance dri­ving terms were ex­am­ined for cor­rec­tion, the re­sults of which are pre­sented in this con­tri­bu­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT059  
About • Received ※ 07 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOPT061 A Flexible Nonlinear Resonance Driving Term Based Correction Algorithm with Feed-Down optics, luminosity, resonance, insertion 1999
 
  • J. Dilly, R. Tomás García
    CERN, Meyrin, Switzerland
 
  Funding: This work has been supported by the HiLumi Project and been sponsored by the Wolfgang Gentner Programme of the German Federal Ministry of Education and Re-search.
The op­tics in the in­ser­tion re­gions of the LHC and its up­grade pro­ject the High Lu­mi­nos­ity LHC are very sen­si­tive to local mag­netic er­rors, due to the ex­tremely high beta-func­tions. In col­li­sion op­tics, the non-zero closed orbit in the same re­gion leads to a "feed-down" of high-or­der er­rors to lower or­ders, caus­ing ad­di­tional ef­fects detri­men­tal to beam life­time. An ex­ten­sion to the well-es­tab­lished method for cor­rect­ing these er­rors by lo­cally sup­press­ing res­o­nance dri­ving terms has been un­der­taken, not only tak­ing this feed-down into ac­count, but also adding the pos­si­bil­ity of uti­liz­ing it such that the pow­er­ing of higher-or­der cor­rec­tors will com­pen­sate for lower order er­rors. Ex­ist­ing cor­rec­tion schemes have also op­er­ated on the as­sump­tion of (anti-)sym­met­ric beta-func­tions of the op­tics in the two rings. This as­sump­tion can fail for a mul­ti­tude of rea­sons, such as in­her­ently asym­met­ric op­tics and un­evenly dis­trib­uted er­rors. In this re­spect, an ex­ten­sion of this cor­rec­tion scheme has been de­vel­oped, re­mov­ing the need for sym­me­try by op­er­at­ing on the two sep­a­rate op­tics of the beams si­mul­ta­ne­ously.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOPT061  
About • Received ※ 07 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 15 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK014 Hadron Storage Ring 4 O’clock Injection Design and Optics for the Electron-Ion Collider injection, optics, electron, septum 2068
 
  • H. Lovelace III, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, C. Liu, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, D. Weiss
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, N. Tsoupas, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • B.R. Gamage, T. Satogata, W. Wittmer
    JLab, Newport News, Virginia, USA
 
  The Hadron Stor­age Ring (HSR) of the Elec­tron-Ion Col­lider (EIC) will ac­cel­er­ate pro­tons and heavy ions up to a pro­ton en­ergy of 275 GeV and an Au+79 110 GeV/u to col­lide with elec­trons of en­er­gies up to 18 GeV. To ac­com­plish the ac­cel­er­a­tion process, the hadrons are pre-ac­cel­er­ated in the Al­ter­nat­ing Gra­di­ent Syn­chro­tron (AGS), ex­tracted, and trans­ferred to HSR for in­jec­tion. The planned area for in­jec­tion is the cur­rent Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) 4 o’clock straight sec­tion. To in­ject hadrons, a se­ries of mod­i­fi­ca­tions must be made to the ex­ist­ing RHIC 4 o’clock straight sec­tion to ac­com­mo­date for the 20 new ~18 ns in­jec­tion kick­ers and a new in­jec­tion sep­tum, while pro­vid­ing suf­fi­cient space and proper beam con­di­tions for po­larime­try equip­ment. These mod­i­fi­ca­tions will be dis­cussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK014  
About • Received ※ 02 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 21 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK015 The Electron-Ion Collider Hadron Storage Ring 10 O’clock Switchyard Design hadron, quadrupole, electron, cavity 2071
 
  • H. Lovelace III, J.S. Berg, D. Bruno, C. Cullen, K.A. Drees, W. Fischer, X. Gu, R.C. Gupta, D. Holmes, R.F. Lambiase, C. Liu, C. Montag, S. Peggs, V. Ptitsyn, G. Robert-Demolaize, R. Than, J.E. Tuozzolo, M. Valette, D. Weiss
    BNL, Upton, New York, USA
  • B. Bhandari, F. Micolon, S. Verdú-Andrés
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
  • T. Satogata, W. Wittmer
    JLab, Newport News, Virginia, USA
 
  The Elec­tron-Ion Col­lider (EIC) Hadron Stor­age Ring (HSR) will be com­posed of the cur­rent Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) yel­low ring sex­tants with the ex­cep­tion of the 1 o’clock and the 11 o’clock arc. These two arcs use the ex­ist­ing blue ring inner (1 o’clock) and outer (11 o’clock) mag­netic lat­tice for 275 GeV pro­ton op­er­a­tion. The inner yel­low 11 o’clock arc is used for 41 GeV en­ergy op­er­a­tion. A switch­ing mag­net must be used to guide the hadron beam from the low and high en­ergy arc re­spec­tively into the shared arc. This re­port pro­vides the nec­es­sary lat­tice con­fig­u­ra­tion, mag­netic fields, and op­tics for the 10 o’clock util­ity straight sec­tion (USS) switch­yard for both high and low en­ergy con­fig­u­ra­tion while pro­vid­ing the nec­es­sary space al­lo­ca­tions and beam spec­i­fi­ca­tions for ac­cel­er­a­tor sys­tems such as an ad­di­tional ra­diofre­quency cav­ity and beam dump.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK015  
About • Received ※ 01 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK033 Layouts for Feasibility Studies of Fixed-Target Experiments at the LHC target, experiment, proton, collimation 2134
 
  • P.D. Hermes, K.A. Dewhurst, A.S. Fomin, D. Mirarchi, S. Redaelli
    CERN, Meyrin, Switzerland
 
  The Physics Be­yond Col­lid­ers (PBC) study in­ves­ti­gates means of ex­ploit­ing the po­ten­tial of the CERN ac­cel­er­a­tor com­plex to com­ple­ment the lab­o­ra­tory’s sci­en­tific pro­gramme at the main Large Hadron Col­lider (LHC) ex­per­i­ments. The LHC fixed-tar­get (FT) work­ing group stud­ies new ex­per­i­ments at beam en­er­gies up to 7 TeV. One of the pro­posed ex­per­i­ments is based on a bent crys­tal, part of the col­li­ma­tion hi­er­ar­chy, to ex­tract sec­ondary halo par­ti­cles and steer them onto a tar­get. A sec­ond bent crys­tal im­me­di­ately down­stream of the tar­get is used to study elec­tric and mag­netic di­pole mo­ments of short-lived baryons. The pos­si­bil­ity to in­stall a test stand in the LHC off-mo­men­tum col­li­ma­tion In­ser­tion Re­gion (IR3) to demon­strate the fea­si­bil­ity and per­for­mance of this chal­leng­ing scheme is cur­rently under in­ves­ti­ga­tion. The in­te­gra­tion of a spec­trom­e­ter mag­net into the pre­sent lay­out is par­tic­u­larly crit­i­cal. In this con­tri­bu­tion, we study a pos­si­ble test setup that could be used in LHC Run 3.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK033  
About • Received ※ 08 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 28 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK035 Layout of the 12 O’clock Collimation Straight Section for the EIC Hadron Storage Ring hadron, operation, electron, storage-ring 2142
 
  • G. Robert-Demolaize, J.S. Berg, K.A. Drees, D. Holmes, H. Lovelace III, S. Peggs, M. Valette
    BNL, Upton, New York, USA
  • B. Bhandari
    Brookhaven National Laboratory (BNL), Electron-Ion Collider, Upton, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract No. DE-SC0012704.
The de­sign of the Elec­tron-Ion Col­lider (EIC) Hadron Stor­age Ring (HSR) calls for using parts of both of the Rel­a­tivis­tic Heavy Ion Col­lider (RHIC) Blue and Yel­low beam­lines. With the HSR hav­ing to cir­cu­late low (41 GeV) and high (100+ GeV) en­ergy hadron beams while match­ing the time of flight in the Elec­tron Stor­age Ring (ESR), it be­comes nec­es­sary for the ring lat­tice to switch from an outer arc to an inner arc in order to ac­com­mo­date for the change in cir­cum­fer­ence. To do so, a switch­yard is planned for in­stal­la­tion in the HSR straight sec­tion at 12 o’clock with the other switch­yard being placed in the straight sec­tion im­me­di­ately down­stream, 10 o’clock. The 12 o’clock straight sec­tion is si­mul­ta­ne­ously ded­i­cated to the EIC 2-stage col­li­ma­tion sys­tem. The fol­low­ing re­views the lay­out con­straints in the12 o’clock straight sec­tion that come with in­stalling such a switch­yard, along with the im­pli­ca­tions on the lin­ear op­tics for that straight sec­tion at all HSR rigidi­ties. The space al­lo­ca­tion, twiss pa­ra­me­ters and the me­chan­i­cal re­quire­ments of the HSR be­ta­tron col­li­ma­tors that will be in­stalled in this sec­tion are also dis­cussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK035  
About • Received ※ 07 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 27 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK040 Spin-Tracking Simulations in a COSY Model Using Bmad simulation, resonance, polarization, experiment 2158
 
  • M. Vitz
    FZJ, Jülich, Germany
 
  The mat­ter-an­ti­mat­ter asym­me­try might be un­der­stood by in­ves­ti­gat­ing the EDM (Elec­tric Di­pole Mo­ment) of el­e­men­tary charged par­ti­cles. A per­ma­nent EDM of a sub­atomic par­ti­cle vi­o­lates time re­ver­sal and par­ity sym­me­try at the same time and would be, with the cur­rently achiev­able ex­per­i­men­tal ac­cu­racy, an in­di­ca­tion for fur­ther CP vi­o­la­tion than es­tab­lished in the Stan­dard Model. The JEDI-Col­lab­o­ra­tion (Jülich Elec­tric Di­pole mo­ment In­ves­ti­ga­tions) in Jülich has per­formed a di­rect EDM mea­sure­ment for deuterons with the so called pre­curser ex­per­i­ments at the stor­age ring COSY (COoler SYn­chro­tron). In order to un­der­stand the mea­sured data and to dis­en­tan­gle an EDM sig­nal from sys­tem­atic ef­fects, spin track­ing sim­u­la­tions in an ac­cu­rate sim­u­la­tion model of COSY are needed. There­fore a model of COSY was im­ple­mented using the soft­ware li­brary Bmad. Sys­tem­atic ef­fects were con­sid­ered by in­clud­ing el­e­ment mis­align­ments, ef­fec­tive di­pole short­en­ing and steerer kicks. These ef­fects ro­tate the in­vari­ant spin axis ad­di­tional to the EDM and have to be an­a­lyzed and un­der­stood. The most re­cent spin track­ing re­sults as well as the meth­ods to find the in­vari­ant spin axis will be pre­sented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK040  
About • Received ※ 02 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOTK053 Simulation of Bunch Formation for the Mu2e Experiment proton, impedance, simulation, experiment 2180
 
  • K.P. Harrig, E. Prebys
    UCD, Davis, California, USA
  • V.P. Nagaslaev, S.J. Werkema
    Fermilab, Batavia, Illinois, USA
 
  Funding: Grant DE-SC0019254, The U.S. Department of Energy, Office of Science and Fermi Research Alliance, LLC Contract No. DE-AC02-07CH11359
The Fer­mi­lab Re­cy­cler is an 8 GeV stor­age ring com­posed of per­ma­nent mag­nets that was cru­cial to the suc­cess of the Fer­mi­lab Teva­tron Col­lider pro­gram. It is cur­rently being used to slip-stack pro­tons for the high en­ergy neu­trino pro­gram and to re-bunch pro­tons for use in the Muon g-2 and Mu2e ex­per­i­ments. For the lat­ter ap­pli­ca­tions, the Re­cy­cler re-bunches each 1.6 µs "batch" from the Fer­mi­lab Booster into four 2.5 MHz bunches. For the Mu2e ex­per­i­ment, it is cru­cial that beam more than 125 ns from the nom­i­nal bunch cen­ter be sup­pressed by at least a fac­tor of 1E-5. While bunch for­ma­tion is cur­rently in op­er­a­tion for the g-2 ex­per­i­ment, this out of time re­quire­ment has not been met, and the rea­son is not un­der­stood. This work pre­sents a sim­u­la­tion of bunch for­ma­tion in the Re­cy­cler, in an ef­fort to un­der­stand the rea­son for this ex­ces­sive out of time beam and to search for a way to re­duce it.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOTK053  
About • Received ※ 30 May 2022 — Revised ※ 16 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 11 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS030 A Path-Length Stability Experiment for Optical Stochastic Cooling at the Cornell Electron Storage Ring lattice, experiment, radiation, storage-ring 2311
 
  • S.J. Levenson, M.B. Andorf, I.V. Bazarov, V. Khachatryan, J.M. Maxson, D.L. Rubin, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work was supported by the U.S. National Science Foundation under Award PHY-1549132, the Center for Bright Beams and NYSTAR award C150153.
To achieve suf­fi­cient par­ti­cle delay with re­spect to the op­ti­cal path in order to en­able high gain am­pli­fi­ca­tion, the de­sign of the Op­ti­cal Sto­chas­tic Cool­ing (OSC) ex­per­i­ment in the Cor­nell Elec­tron Stor­age Ring (CESR) places the pickup (PU) and kicker (KU) un­du­la­tors ap­prox­i­mately 80 m apart. The ar­rival times at the KU of par­ti­cles and the light they pro­duce in the PU must be syn­chro­nized to an ac­cu­racy of less than an op­ti­cal wave­length, which for this ex­per­i­ment is 780 nm. To test this syn­chro­niza­tion, a planned demon­stra­tion of the sta­bil­ity of the by­pass in CESR is pre­sented where, in lieu of un­du­la­tors, an in­ter­fer­ence pat­tern formed with ra­di­a­tion from two dipoles flank­ing the by­pass is used. In ad­di­tion to demon­strat­ing sta­bil­ity, the fringe vis­i­bil­ity of the pat­tern is re­lated to the cool­ing ranges, a crit­i­cal pa­ra­me­ter needed for OSC. We pre­sent progress on this sta­bi­liza­tion ex­per­i­ment in­clud­ing the de­sign of a sec­ond-or­der isochro­nous by­pass, as well as op­ti­miza­tions of the Dy­namic Aper­ture (DA) and in­jec­tion ef­fi­ciency.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS030  
About • Received ※ 08 June 2022 — Revised ※ 17 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 26 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPOMS045 Modeling and Mitigation of Long-Range Wakefields for Advanced Linear Colliders linac, wakefield, HOM, collider 2350
 
  • F. Bosco, M. Carillo, L. Giuliano, M. Migliorati, A. Mostacci, L. Palumbo
    Sapienza University of Rome, Rome, Italy
  • O. Camacho, A. Fukasawa, N. Majernik, J.B. Rosenzweig
    UCLA, Los Angeles, USA
  • E. Chiadroni, B. Spataro, C. Vaccarezza
    LNF-INFN, Frascati, Italy
  • L. Faillace, A. Giribono
    INFN/LNF, Frascati, Italy
 
  Funding: This work is supported by DARPA under Contract N.HR001120C0072, by DOE Contract DE-SC0009914 and DE-SC0020409, by the National Science Foundation Grant N.PHY-1549132 and by INFN.
The lu­mi­nos­ity re­quire­ments of TeV-class lin­ear col­lid­ers de­mand use of in­tense charged beams at high rep­e­ti­tion rates. Such fea­tures imply multi-bunch op­er­a­tion with long cur­rent trains ac­cel­er­ated over the km length scale. Con­se­quently, par­ti­cle beams are ex­posed to the mu­tual par­a­sitic in­ter­ac­tion due to the long-range wake­fields ex­cited by the lead­ing bunches in the ac­cel­er­at­ing struc­tures. Such per­tur­ba­tions to the mo­tion in­duce trans­verse os­cil­la­tions of the bunches, po­ten­tially lead­ing to in­sta­bil­i­ties such as trans­verse beam break-up. Here we pre­sent a ded­i­cated track­ing code that stud­ies the ef­fects of long-range trans­verse wake­field in­ter­ac­tion among dif­fer­ent bunches in lin­ear ac­cel­er­a­tors. Being de­scribed by means of an ef­fi­cient ma­trix for­mal­ism, such ef­fects can be in­cluded while pre­serv­ing short com­pu­ta­tional times. As a ref­er­ence case, we use our code to in­ves­ti­gate the per­for­mance of a state-of-the-art lin­ear col­lider cur­rently under de­sign and, in ad­di­tion, we dis­cuss pos­si­ble mit­i­ga­tion tech­niques based on fre­quency de­tun­ing and damp­ing.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-WEPOMS045  
About • Received ※ 20 May 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST005 Tracking Dynamic Aperture in the iRCMS Hadrontherapy Synchrotron synchrotron, dynamic-aperture, acceleration, focusing 2442
 
  • F. Méot, P.N. Joshi, N. Tsoupas
    BNL, Upton, New York, USA
  • J.P. Lidestri, M.R. Subramanian
    Best Medical International, Springfield, USA
 
  Funding: Work supported by a TSA between Best Medical International and Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Dy­namic aper­ture (DA) stud­ies which are part of the ion Rapid Cy­cling Med­ical Syn­chro­tron (iRCMS) lat­tice de­sign have been un­der­taken. They are aimed at sup­port­ing on-go­ing plans to launch the pro­duc­tion of the six mag­netic sec­tors which com­prise the iRCMS race­track arcs. The main bend mag­netic gap is tight, so al­low­ing smaller vol­ume mag­nets and re­sult­ing in a com­pact ring. The DA hap­pens to be com­men­su­rate with the me­chan­i­cal aper­ture, thus track­ing ac­cu­racy is in order. In that aim, DA track­ing uses the OPERA field maps of the six 60 de­gree mag­netic sec­tors of the arcs. Sim­u­la­tion out­comes are sum­ma­rized here.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST005  
About • Received ※ 03 June 2022 — Revised ※ 18 June 2022 — Accepted ※ 22 June 2022 — Issue date ※ 02 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST018 The Design of a Second Beamline for the CLEAR User Facility at CERN experiment, quadrupole, focusing, electron 2479
 
  • L.A. Dyks, R. Corsini, P. Korysko
    CERN, Meyrin, Switzerland
  • P. Burrows
    JAI, Oxford, United Kingdom
  • P. Burrows, P. Korysko
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  The CERN Lin­ear Elec­tron Ac­cel­er­a­tor for Re­search (CLEAR) has been op­er­at­ing as a gen­eral user fa­cil­ity since 2017 pro­vid­ing beams for a wide range of user ex­per­i­ments. How­ever, with its cur­rent op­ti­cal lay­out, the beams avail­able to users are not able to cover every re­quest. To over­come this, a sec­ond ex­per­i­men­tal beam­line has been pro­posed. In this paper we dis­cuss the po­ten­tial op­tics of the new line as well as de­tail­ing the hard­ware re­quired for its con­struc­tion. Branch­ing from the cur­rent beam­line, via a dog­leg chi­cane that could be used for bunch com­pres­sion, the new beam­line would pro­vide an ad­di­tional in-air test stand to be avail­able to users. The beam­line be­fore the test stand would utilise large aper­ture quadrupoles to allow the ir­ra­di­a­tion of large tar­get areas or strong fo­cussing of beams onto a tar­get. In ad­di­tion to this there would also be fur­ther in-vac­uum space to in­stall ex­per­i­ments.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST018  
About • Received ※ 07 June 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 19 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOST023 Current Status of the FFA@CEBAF Energy Upgrade Study linac, experiment, permanent-magnet, extraction 2494
 
  • R.M. Bodenstein, J.F. Benesch, S.A. Bogacz, A. Coxe, K.E. Deitrick, B.R. Gamage, G.A. Krafft, K.E.Price. Price, Y. Roblin, A. Seryi
    JLab, Newport News, Virginia, USA
  • J.S. Berg, S.J. Brooks, D. Trbojevic
    BNL, Upton, New York, USA
  • D. Douglas
    Douglas Consulting, York, Virginia, USA
  • G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V.S. Morozov
    ORNL RAD, Oak Ridge, Tennessee, USA
 
  Funding: This material is based upon work supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE-AC05-06OR23177.
This work will de­scribe the cur­rent sta­tus of the FFA@​CEBAF en­ergy up­grade fea­si­bil­ity stud­ies. Tech­ni­cal up­dates are given, but more spe­cific de­tails are left to sep­a­rate con­tri­bu­tions. Specif­i­cally, this work will dis­cuss im­prove­ments to the FFA arcs, a new re­cir­cu­lat­ing in­jec­tor pro­posal, and nu­mer­ous mod­i­fi­ca­tions to the cur­rent 12 GeV CEBAF which will be re­quired, such as the spread­ers and re­com­bin­ers ar­chi­tec­ture, split­ters (time-of-flight chi­canes), the ex­trac­tion sys­tem, and the hall lines.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOST023  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT004 Design of a Compact 180-Degree Single-Shot Energy Spectrometer Based on a Halbach Dipole Magnet electron, vacuum, simulation, detector 2564
 
  • R. Bazrafshan, T. Rohwer
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • M. Fakhari, N.H. Matlis
    CFEL, Hamburg, Germany
  • F.X. Kaernter
    DESY, Hamburg, Germany
 
  In the AXSIS pro­ject at DESY, we de­velop com­pact THz ac­cel­er­at­ing struc­tures for a table-top x-ray source. Ac­cel­er­a­tion is achieved by pass­ing the elec­tron beam through a di­elec­tric-loaded wave­guide pow­ered by multi-cy­cle THz ra­di­a­tion. The final elec­tron en­ergy strongly de­pends on THz-power in­jected into the LINAC and tim­ing. Thus in first ex­per­i­ments we ex­pect large en­ergy fluc­tu­a­tions and a large range of en­er­gies to cover. We de­signed an elec­tron en­ergy spec­trom­e­ter for a wide range of final en­er­gies cov­er­ing 5 to 20 MeV in a sin­gle-shot. Here, we pre­sent the de­sign of an en­ergy spec­trom­e­ter which uses a com­pact di­pole mag­net based on the Hal­bach array con­cept to de­flect the elec­tron beam through a 180° path in­ter­cepted by a Fiber Optic Scin­til­la­tor (FOS) mounted in­side the vac­uum per­pen­dic­u­lar to the beam. The 180-de­gree bend­ing geom­e­try pro­vides the pos­si­bil­ity of hav­ing the focus point of all en­er­gies at the same dis­tance from the mag­net edge which makes the de­sign sim­pler and more com­pact. It also re­moves the ne­ces­sity of in­stalling a safety di­pole at the end of the ac­cel­er­a­tor. A slit sys­tem at the spec­trom­e­ter en­trance in­creases res­o­lu­tion to bet­ter than 0.2%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT004  
About • Received ※ 08 June 2022 — Revised ※ 10 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT007 High Bunch Charges in the Second Injection Beamline of MESA electron, simulation, operation, acceleration 2574
 
  • A.A. Kalamaiko, K. Aulenbacher, M.A. Dehn, S. Friederich, C.P. Stoll
    KPH, Mainz, Germany
 
  MESA (Mainz En­ergy-re­cov­er­ing Su­per­con­duct­ing Ac­cel­er­a­tor) is an ac­cel­er­a­tor with two laser-dri­ven elec­tron sources (po­lar­ized and un­po­lar­ized) op­er­at­ing at 100 kV which is under con­struc­tion at the Jo­hannes Guten­berg Uni­ver­sity in Mainz. The un­po­lar­ized elec­tron source MIST (MESA In­jec­tor Source Two) al­lows to pro­duce high charged elec­tron bunches with charge up to 7.7 pC. This source and a Mott po­larime­ter will be arranged on the same height above the MESA in­jec­tor main beam­line. A par­al­lel shift­ing beam­line was de­vel­oped which al­lows to trans­port high charged beam from the source MIST to the main MESA beam­line. More­over, the de­signed beam­line al­lows to trans­port beam from the elec­tron source STEAM to the Mott po­larime­ter. This re­port is ded­i­cated to the de­sign of the sep­a­ra­tion beam­line which trans­ports and com­presses highly charged elec­tron bunches from the elec­tron source MIST to the first ac­cel­er­a­tion sec­tion of MESA.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT007  
About • Received ※ 08 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 23 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT013 Emittance Reduction with the Variable Dipole for the ELETTRA 2.0 Ring emittance, lattice, optics, damping 2586
 
  • A. Poyet, Y. Papaphilippou
    CERN, Meyrin, Switzerland
  • M.A. Domínguez, F. Toral
    CIEMAT, Madrid, Spain
  • R. Geometrante, E. Karantzoulis
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • R. Geometrante
    KYMA, Trieste, Italy
 
  ELET­TRA is a 2/2.4 GeV third-gen­er­a­tion elec­tron stor­age ring, lo­cated near Tri­este, Italy. In view of a sub­stan­tial in­crease of the ma­chine per­for­mance in terms of bril­liance, the so-called ELET­TRA 2.0 up­grade is cur­rently on-go­ing. This up­grade is based on a 6-bends achro­mat, four dipoles of which hav­ing a lon­gi­tu­di­nally vari­able field. So far, those dipoles are fore­seen to pro­vide a field with a two step pro­file. The VAri­able Di­pole for the ELET­TRA Ring (VADER) task, dri­ven by the I.​FAST Eu­ro­pean pro­ject, aims at de­vel­op­ing a new di­pole de­sign based on a trape­zoidal shape of the bend­ing ra­dius, which would allow for a fur­ther re­duc­tion of the hor­i­zon­tal emit­tance. A pro­to­type of this mag­net should be de­signed by the CIEMAT lab­o­ra­tory and built by KYMA com­pany. This paper dis­cusses the new di­pole field spec­i­fi­ca­tion and de­scribes the cor­re­spond­ing op­tics op­ti­miza­tion that was per­formed in order to re­duce at best the emit­tance of the ELET­TRA ring.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT013  
About • Received ※ 07 June 2022 — Revised ※ 09 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 03 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT035 A Second Generation Light Source Aiming at High Power on the Giant Dipole Resonance insertion, cavity, photon, resonance 2661
 
  • X. Buffat, L.L. Cuanillon, E.N. Kneubuehler
    CERN, Meyrin, Switzerland
 
  We pro­pose an ac­cel­er­a­tor con­cept which could en­able nu­clear waste trans­mu­ta­tion and en­ergy am­pli­fi­ca­tion using a sec­ond gen­er­a­tion light source rather than a high power pro­ton beam. The main pa­ra­me­ters of the ring and in­ser­tion de­vices are es­ti­mated, tar­get­ing a pho­ton beam power of 1 GW with a spec­trum that max­i­mizes the po­ten­tial for nu­clear re­ac­tions via the Giant Di­pole Res­o­nance. The syn­er­gies with tech­nolo­gies de­vel­oped for high en­ergy physics, in par­tic­u­lar within the Fu­ture Cir­cu­lar Col­lider study (FCC), are high­lighted.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT035  
About • Received ※ 03 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 25 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT047 A Double Dipole Kicker for Off and On-Axis Injection for ALBA-II kicker, injection, vacuum, storage-ring 2701
 
  • G. Benedetti, M. Carlà, M. Pont
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  In­jec­tion into the ALBA-II stor­age ring will be per­formed off-axis in a 4 me­ters straight sec­tion with a sin­gle mul­ti­pole kicker. We pre­sent a novel topol­ogy for the coils of the in­jec­tion kicker, named dou­ble di­pole kicker (DDK). The re­sult­ing mag­netic field is the su­per­po­si­tion of two op­po­site dipoles, gen­er­ated by four inner and four outer con­duc­tor rods. When the eight rods are pow­ered, the di­pole term can­cels and the re­main­ing mul­ti­pole field is used for off-axis in­jec­tion. Al­ter­na­tively, when the four inner rods are switched off, an al­most pure di­pole is pro­duced, that is use­ful for on-axis in­jec­tion dur­ing the com­mis­sion­ing. A pro­to­type of DDK is presently under de­sign to be in­stalled and tested in the ex­ist­ing ALBA stor­age ring. The po­si­tion­ing of the rods is cal­cu­lated in order to max­imise the kick ef­fi­ciency in mrad/kA and min­imise the dis­tur­bance to the orbit and the emit­tance of the stored beam. A metal­lic coat­ing with op­ti­mised thick­ness along the inner ce­ramic vac­uum cham­ber should pro­vide com­pen­sa­tion for the eddy cur­rents in­duced field in order to min­i­mize the dis­tur­bance to the stored beam while en­sur­ing suf­fi­ciently low heat dis­si­pa­tion by the beam image cur­rents.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT047  
About • Received ※ 16 May 2022 — Revised ※ 10 June 2022 — Accepted ※ 14 June 2022 — Issue date ※ 20 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOPT059 Development of a Transfer Line for LPA-Generated Electron Bunches to a Compact Storage Ring storage-ring, injection, quadrupole, plasma 2730
 
  • B. Härer, E. Bründermann, D. El Khechen, A.-S. Müller, A.I. Papash, S.C. Richter, R. Ruprecht, J. Schäfer, M. Schuh, C. Widmann
    KIT, Karlsruhe, Germany
  • L. Jeppe
    Deutsches Elektronen Synchrotron (DESY) and Center for Free Electron Science (CFEL), Hamburg, Germany
  • A.R. Maier, J. Osterhoff, E. Panofski
    DESY, Hamburg, Germany
  • P. Messner
    University of Hamburg, Hamburg, Germany
 
  The in­jec­tion of LPA-gen­er­ated beams into a stor­age ring is con­sid­ered to be one of the most promi­nent ap­pli­ca­tions of laser plasma ac­cel­er­a­tors (LPAs). In a com­bined en­deav­our be­tween Karl­sruhe In­sti­tute of Tech­nol­ogy (KIT) and Deutsches Elek­tro­nen-Syn­chro­tron (DESY) the key chal­lenges will be ad­dressed with the aim to suc­cess­fully demon­strate in­jec­tion of LPA-gen­er­ated beams into a com­pact stor­age ring with large en­ergy ac­cep­tance and dy­namic aper­ture. Such a stor­age ring and the cor­re­spond­ing trans­fer line are cur­rently being de­signed within the cSTART pro­ject at KIT and will be ide­ally suited to ac­cept bunches from a 50 MeV LPA pro­to­type de­vel­oped at DESY. This con­tri­bu­tion pre­sents the fore­seen lay­out of the trans­fer line from the LPA to the in­jec­tion point of the stor­age ring and dis­cusses the sta­tus of beams op­tics cal­cu­la­tions.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOPT059  
About • Received ※ 05 June 2022 — Revised ※ 15 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 28 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK001 Variable Permanent Hybrid Magnets for the Bessy III Storage Ring lattice, quadrupole, HOM, storage-ring 2763
 
  • J. Völker, V. Dürr, P. Goslawski, A. Jankowiak, M. Titze
    HZB, Berlin, Germany
 
  The Helmholtz Zen­trum Berlin (HZB) is work­ing on the con­cep­tual de­sign of a suc­ces­sor source to BESSY II, an new BESSY III fa­cil­ity, de­signed for a beam en­ergy of 2.5GeV and based on a multi-bend achro­mat (MBA) lat­tice for a low emit­tances of 100pm-rad. Bend­ing and fo­cus­ing mag­nets in the MBA cells should con­sist of per­ma­nent mag­nets (PM), to allow for a com­pet­i­tive and com­pact lat­tice, to in­crease the mag­netic sta­bil­ity and to de­crease the elec­tric power con­sump­tion of the ma­chine. How­ever, using pure per­ma­nent mag­net sys­tems would re­sult in a com­pletely fixed lat­tice. There­fore, we are de­vel­op­ing Vari­able Per­ma­nent Hy­brid Mag­nets (VPHM), com­bin­ing PM ma­te­ri­als like NdFeB with a sur­round­ing soft iron yoke and ad­di­tional elec­tric coils. This de­sign can achieve the same field strength and field qual­ity as con­ser­v­a­tive mag­nets, with only a small frac­tion of the elec­tric power con­sump­tion, and a ca. 10% vari­abil­ity in the field am­pli­tudes. In this paper, de­sign and first op­ti­miza­tion re­sults of the mag­nets will be pre­sented, which are a promis­ing op­tion for the new BESSY III fa­cil­ity, and an es­ti­mated re­duc­tion in total power con­sump­tion for the mag­net lat­tice of up to 80%.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK001  
About • Received ※ 08 June 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 01 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK002 Magnet Design for the PETRA IV Storage Ring quadrupole, storage-ring, octupole, sextupole 2767
 
  • R. Bartolini, I.V. Agapov, A. Aloev, H.-J. Eckoldt, D. Einfeld, B. Krause, A. Petrov, M. Thede, M. Tischer
    DESY, Hamburg, Germany
  • J. Chavanne
    ESRF, Grenoble, France
 
  The pro­posed PETRA IV elec­tron stor­age ring that will re­place DESY’s flag­ship syn­chro­tron light source PETRA III will fea­ture a hor­i­zon­tal emit­tance as low as 20 pmrad. It is based on a hy­brid six-bend achro­mat lat­tice. In ad­di­tion to the stor­age ring PETRA IV, the Booster Syn­chro­tron and the cor­re­spond­ing trans­fer line will be re­newed. Over­all about 4000 mag­nets will be man­u­fac­tured. The lat­tice de­sign re­quire high-gra­di­ent quadrupoles, which are un­fea­si­ble with con­ven­tional steel, used tra­di­tion­ally for nor­mal-con­duct­ing mag­nets. The re­quired gra­di­ent is safely reached with the poles, made of Per­me­n­dur. The bend­ing mag­nets for the stor­age ring will be based on per­ma­nent mag­nets. This con­tri­bu­tion pre­sents the elec­tro­mag­netic de­sign of the mag­nets for the stor­age ring and booster syn­chro­tron.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK002  
About • Received ※ 09 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 05 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK007 Magnet Systems for Korea 4GSR Light Source quadrupole, emittance, multipole, sextupole 2781
 
  • D.E. Kim, T. Ha, G. Hahn, Y.G. Jung, H.-G. Lee, J. Lee, S. Shin, H.S. Suh
    PAL, Pohang, Republic of Korea
 
  Funding: Work supported by NRF of the Republic of Korea.
A 4th gen­er­a­tion stor­age ring based light source is being de­vel­oped in Korea since 2021. It fea­tures < 100 pm rad emit­tance, about 800 m cir­cum­fer­ence, 4 GeV e-beam en­ergy, full en­ergy booster in­jec­tion, and more than 40 beam­lines which in­cludes more than 24 in­ser­tion de­vice (ID) beam­lines. This ma­chine re­quires about ~1000 mag­nets in­clud­ing di­pole, lon­gi­tu­di­nal gra­di­ent di­pole, trans­verse gra­di­ent di­pole, sex­tupoles, and cor­rec­tors. The aper­tures are small and the lat­tice space re­quire­ments are very tight. In this re­port, a pre­lim­i­nary de­sign of the each mag­net is pre­sented with de­tailed plan for the fu­ture.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK007  
About • Received ※ 13 June 2022 — Accepted ※ 20 June 2022 — Issue date ※ 07 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK009 Design of a Permanent Magnet Based Dipole Quadrupole Magnet permanent-magnet, quadrupole, operation, multipole 2784
 
  • A.G. Hinton
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • M. Kokole, T. Milharčič
    KYMA, Trieste, Italy
  • A. Shahveh
    DLS, Oxfordshire, United Kingdom
  • B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • B.J.A. Shepherd
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  Per­ma­nent mag­net tech­nol­ogy can fa­cil­i­tate the de­sign of ac­cel­er­a­tor mag­nets with much lower power con­sump­tion than tra­di­tional re­sis­tive elec­tro­mag­nets. By re­duc­ing the power re­quire­ments of mag­nets, more sus­tain­able ac­cel­er­a­tors can be de­signed and built. At STFC, as part of the I.​FAST col­lab­o­ra­tion, we are work­ing to de­velop sus­tain­able tech­nolo­gies for fu­ture ac­cel­er­a­tors. As part of this work, we have de­signed a per­ma­nent mag­net based di­pole-quadru­pole mag­net with pa­ra­me­ters suited to meet the re­quire­ments of the pro­posed Di­a­mond-II up­grade. We pre­sent here the mag­netic de­sign of the di­pole-quadru­pole mag­net. The de­sign, based on a sin­gle sided di­pole-quadru­pole, uses per­ma­nent mag­nets to gen­er­ate the field in the mag­net bore. The de­sign in­cludes the shap­ing of the pole tips to re­duce mul­ti­pole er­rors as well as meth­ods of pro­vid­ing ther­mal sta­bil­i­sa­tion using ther­mal shunts and field tun­ing using re­sis­tive coils. The me­chan­i­cal de­sign of the mag­net is being un­der­taken by col­leagues at Kyma and a pro­to­type of the mag­net will soon be built and tested.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK009  
About • Received ※ 06 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 06 July 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK013 Cold Test Results of the FAIR Super-FRS First-of-Series Multiplets and Dipole quadrupole, sextupole, cryogenics, octupole 2796
 
  • A. Chiuchiolo, A. Beaumont, E.J. Cho, F. Greiner, P. Kosek, M. Michels, H. Müller, C. Roux, H. Simon, K. Sugita, V. Velonas, F. Wamers, M. Winkler, Y. Xiang
    GSI, Darmstadt, Germany
  • H. Allain, V. Kleymenov, A. Madur
    CEA-IRFU, Gif-sur-Yvette, France
 
  Within the col­lab­o­ra­tion be­tween GSI and CERN, a ded­i­cated cryo­genic test fa­cil­ity has been built at CERN (Geneva, Switzer­land) in order to per­form the site ac­cep­tance tests of the 56 Su­per­con­duct­ing FRag­ment Sep­a­ra­tor cry­omod­ules be­fore their in­stal­la­tion at the the Fa­cil­ity for An­tipro­ton and Ion Re­search (Darm­stadt, Ger­many). Two of the three benches of the CERN test fa­cil­ity were suc­cess­fully com­mis­sioned with the pow­er­ing tests of the first-of-se­ries mul­ti­plets and di­pole. The long mul­ti­plet, with a warm bore ra­dius of 192 mm, is com­posed of nine mag­nets of dif­fer­ent type (quadru­pole, sex­tu­pole, steer­ing di­pole and oc­tu­pole) as­sem­bled with Nb-Ti race­track and co­sine-theta coils, mounted in a cold iron yoke and in a com­mon cryo­stat. This work pre­sents the first re­sults of the cold pow­er­ing tests at 4.5 K dur­ing which ded­i­cated mea­sure­ments have been im­ple­mented for the mag­netic char­ac­ter­i­za­tion of the sin­gle mag­nets up to nom­i­nal cur­rent (300 A for a long quadru­pole) and the study of their crosstalk ef­fects. The re­sults of the ac­cep­tance tests will be pre­sented to­gether with the chal­lenges and lessons learnt dur­ing the fa­cil­ity com­mis­sion­ing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK013  
About • Received ※ 08 June 2022 — Revised ※ 14 June 2022 — Accepted ※ 15 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOTK023 Ferrite Specification for the Mu2e 300 kHz and 4.4 MHz AC Dipole Magnets proton, experiment, electron, target 2816
 
  • K.P. Harrig, E. Prebys
    UCD, Davis, California, USA
  • L. Elementi, C.C. Jensen, H. Pfeffer, D.A. Still, I. Terechkine, S.J. Werkema, M. Wong
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the U.S. Department of Energy, Office of Science, in addition to grant DE-SC0019254.
The Mu2e ex­per­i­ment at Fer­mi­lab will mea­sure the rate for neu­tri­no­less-con­ver­sion of neg­a­tive muons into elec­trons with never-be­fore-seen pre­ci­sion. This ex­per­i­ment will use a pulsed 8 GeV pro­ton beam with pulses sep­a­rated by 1.7 µs. To sup­press beam in­duced back­grounds to this process, a set of dipoles op­er­at­ing at 300 kHz and 4.4 MHz have been de­vel­oped that will re­duce the frac­tion of out-of-time pro­tons at the level of 1E-10 or less. Se­lec­tion of mag­netic fer­rite ma­te­r­ial for con­struc­tion must be care­fully con­sid­ered given the high rep­e­ti­tion rate and duty cycle that can lead to ex­cess heat­ing in con­ven­tional mag­netic ma­te­r­ial. A model of the elec­tro­mag­netic and ther­mal prop­er­ties of can­di­date fer­rite ma­te­ri­als has been con­structed. Mag­netic per­me­abil­ity, in­duc­tance, and power loss were mea­sured at the two op­er­at­ing fre­quen­cies in toroidal fer­rite sam­ples as well as in the fer­rites from which pro­to­type mag­nets were built. Ad­di­tion­ally, the out­gassing rates of the fer­rite ma­te­r­ial was mea­sured to de­ter­mine vac­uum com­pat­i­bil­ity. The out­come of this work is a de­tailed spec­i­fi­ca­tion of the elec­tri­cal and me­chan­i­cal de­tails of the fer­rite ma­te­r­ial re­quired for this ap­pli­ca­tion.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOTK023  
About • Received ※ 30 May 2022 — Revised ※ 11 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 23 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS001 TURBO: A Novel Beam Delivery System Enabling Rapid Depth Scanning for Charged Particle Therapy proton, optics, controls, multipole 2929
 
  • J.S.L. Yap, S.L. Sheehy
    The University of Melbourne, Melbourne, Victoria, Australia
  • R.B. Appleby, H.X.Q. Norman, A.F. Steinberg
    UMAN, Manchester, United Kingdom
 
  Charged par­ti­cle ther­apy (CPT) is a well-es­tab­lished modal­ity of can­cer treat­ment and is in­creas­ing in world­wide pres­ence due to im­proved ac­cel­er­a­tor tech­nol­ogy and mod­ern tech­niques. The beam de­liv­ery sys­tem (BDS) de­ter­mines the over­all tim­ing and beam shap­ing ca­pa­bil­i­ties, but is re­stricted by the en­ergy vari­a­tion speed: en­ergy layer switch­ing time (ELST). Ex­ist­ing treat­ment beam­lines have a ±1% mo­men­tum ac­cep­tance range, need­ing time to change the mag­netic fields as the beam is de­liv­ered in lay­ers at var­i­ous depths across the tu­mour vol­ume. Min­imis­ing the ELST can en­able the de­liv­ery of faster, more ef­fec­tive and ad­vanced treat­ments but re­quires an im­proved BDS. A pos­si­bil­ity for this could be achieved with a de­sign using Fixed Field Al­ter­nat­ing Gra­di­ent (FFA) op­tics, en­abling a large en­ergy ac­cep­tance to rapidly trans­port beams of vary­ing en­er­gies. A scaled-down, novel sys­tem - Tech­nol­ogy for Ultra Rapid Beam Op­er­a­tion (TURBO) - is being de­vel­oped at the Uni­ver­sity of Mel­bourne, to ex­plore the po­ten­tial of rapid depth scan­ning. Ini­tial sim­u­la­tion stud­ies, beam and field mea­sure­ments, pro­ject plans and clin­i­cal con­sid­er­a­tions are dis­cussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS001  
About • Received ※ 20 May 2022 — Revised ※ 16 June 2022 — Accepted ※ 17 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS011 Beam Optics Studies for a Novel Gantry for Hadrontherapy optics, quadrupole, operation, hadrontherapy 2962
 
  • E. Felcini, G. Frisella, A. Mereghetti, M.G. Pullia, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • M.T.F. Pivi
    EBG MedAustron, Wr. Neustadt, Austria
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The de­sign of smaller and less costly gantries for car­bon ion par­ti­cle ther­apy rep­re­sents a major chal­lenge to the dif­fu­sion of this treat­ment. Here we pre­sent the work done on the lin­ear beam op­tics of pos­si­ble gantry lay­outs, dif­fer­ing for geom­e­try, mo­men­tum ac­cep­tance, and mag­net tech­nol­ogy, which share the use of com­bined func­tion su­per­con­duct­ing mag­nets with a bend­ing field of 4T. We per­formed par­al­lel-to-point and point-to-point op­tics match­ing at dif­fer­ent mag­ni­fi­ca­tion fac­tors to pro­vide two dif­fer­ent beam sizes at the isocen­ter. More­over, we con­sid­ered the orbit dis­tor­tion gen­er­ated by mag­net er­rors and we in­tro­duced beam po­si­tion mon­i­tors and cor­rec­tors. The study, to­gether with con­sid­er­a­tions on the cri­te­ria for com­par­i­son, is the basis for the de­sign of a novel and com­pact gantry for hadron­ther­apy.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS011  
About • Received ※ 20 May 2022 — Revised ※ 13 June 2022 — Accepted ※ 16 June 2022 — Issue date ※ 30 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS012 Explorative Studies of an Innovative Superconducting Gantry optics, superconducting-magnet, quadrupole, hadrontherapy 2966
 
  • M.G. Pullia, M. Donetti, E. Felcini, G. Frisella, A. Mereghetti, A. Mirandola, A. Pella, S. Savazzi
    CNAO Foundation, Pavia, Italy
  • E. Benedetto
    SEEIIST, Geneva, Switzerland
  • L. Dassa, M. Karppinen, D. Perini, D. Tommasini, M. Vretenar
    CERN, Meyrin, Switzerland
  • E. De Matteis, L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • C. Kurfürst, M.T.F. Pivi, M. Stock
    EBG MedAustron, Wr. Neustadt, Austria
  • S. Mariotto, M. Prioli
    INFN-Milano, Milano, Italy
  • L. Piacentini, A. Ratkus, T. Torims, J. Vilcans
    Riga Technical University, Riga, Latvia
  • L. Sabbatini, A. Vannozzi
    LNF-INFN, Frascati, Italy
  • S. Uberti
    Università di Brescia, Brescia, Italy
 
  Funding: This study was (partially) supported by the European Union’s Horizon 2020 research and innovation programme under grant agreement no. 101008548 (HITRIplus).
The Heavy Ion Ther­apy Re­search In­te­gra­tion plus (HITRIplus) is a Eu­ro­pean pro­ject that aims to in­te­grate and pro­pel re­search and tech­nolo­gies re­lated to can­cer treat­ment with heavy ions beams. Among the am­bi­tious goals of the pro­ject, a spe­cific work pack­age in­cludes the de­sign of a gantry for car­bon ions, based on su­per­con­duct­ing mag­nets. The first mile­stone to achieve is the choice of the fun­da­men­tal gantry pa­ra­me­ters, namely the beam op­tics lay­out, the su­per­con­duct­ing mag­net tech­nol­ogy, and the main user re­quire­ments. Start­ing from a ref­er­ence 3T de­sign, the col­lab­o­ra­tion widely ex­plored dozens of pos­si­ble gantry con­fig­u­ra­tions at 4T, aim­ing to find the best com­pro­mise in terms of foot­print, cap­i­tal cost, and re­quired R&D. We pre­sent here a sum­mary of these con­fig­u­ra­tions, un­der­ly­ing the ini­tial cor­re­la­tion be­tween the beam op­tics, the me­chan­ics, and the main su­per­con­duct­ing dipoles de­sign: the bend­ing field (up to 4 T), com­bined func­tion fea­tures (in­te­grated quadru­pole), mag­net aper­ture (up to 90 mm), and an­gu­lar length (30°-45°). The re­sult­ing main pa­ra­me­ters are then listed, com­pared, and used to drive the choice of the best gantry lay­out to be de­vel­oped in HITRIplus.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS012  
About • Received ※ 20 May 2022 — Revised ※ 12 June 2022 — Accepted ※ 13 June 2022 — Issue date ※ 16 June 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS020 Beam Optics Study for a Potential VHEE Beam Delivery System scattering, electron, optics, quadrupole 2992
 
  • C.S. Robertson, P. Burrows
    JAI, Oxford, United Kingdom
  • M. Dosanjh, A. Gerbershagen, A. Latina
    CERN, Meyrin, Switzerland
 
  VHEE (Very High En­ergy Elec­tron) ther­apy can be su­pe­rior to con­ven­tional ra­dio­ther­apy for the treat­ment of deep seated tu­mours, whilst not nec­es­sar­ily re­quir­ing the space and cost of pro­ton or heavy ion fa­cil­i­ties. De­vel­op­ments in high gra­di­ent RF tech­nol­ogy have al­lowed elec­trons to be ac­cel­er­ated to VHEE en­er­gies in a com­pact space, mean­ing that treat­ment could be pos­si­ble with a shorter linac. A cru­cial com­po­nent of VHEE treat­ment is the trans­fer of the beam from ac­cel­er­a­tor to pa­tient. This is re­quired to mag­nify the beam to cover the trans­verse ex­tent of the tu­mour, whilst en­sur­ing a uni­form beam dis­tri­b­u­tion. Two prin­ci­ple method­olo­gies for the de­sign of a com­pact trans­fer line are pre­sented. The first of these is based upon a quadru­pole lat­tice and op­ti­cal mag­ni­fi­ca­tion of beam size. A min­imi­sa­tion al­go­rithm is used to en­force cer­tain cri­te­ria on the beam dis­tri­b­u­tion at the pa­tient, defin­ing the lat­tice through an au­to­mated rou­tine. Sep­a­rately, a dual scat­ter­ing-foil based sys­tem is also pre­sented, which uses sim­i­lar al­go­rithms for the op­ti­mi­sa­tion of the foil geom­e­try in order to achieve the de­sired beam shape at the pa­tient lo­ca­tion.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS020  
About • Received ※ 19 May 2022 — Accepted ※ 16 June 2022 — Issue date ※ 18 June 2022  
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPOMS049 Energy Comparison of Room Temperature and Superconducting Synchrotrons for Hadron Therapy synchrotron, operation, proton, extraction 3080
 
  • G. Bisoffi
    INFN/LNL, Legnaro (PD), Italy
  • E. Benedetto, M. Karppinen, M.R. Khalvati, M. Vretenar, R. van Weelderen
    CERN, Meyrin, Switzerland
  • M.G. Pullia, G. Venchi
    CNAO Foundation, Pavia, Italy
  • L. Rossi
    INFN/LASA, Segrate (MI), Italy
  • M. Sapinski
    PSI, Villigen PSI, Switzerland
  • M. Sorbi
    Universita’ degli Studi di Milano & INFN, Segrate, Italy
  • R.U. Valente
    La Sapienza University of Rome, Rome, Italy
 
  The yearly en­ergy re­quire­ments of nor­mal con­duct­ing (NC) and su­per­con­duct­ing (SC) mag­net op­tions of a new hadron ther­apy (HT) fa­cil­ity are com­pared. Spe­cial ref­er­ence is made to the lay­outs con­sid­ered for the pro­posed SEEI­IST fa­cil­ity. Bench­mark­ing with the NC CNAO HT cen­tre in Pavia (Italy) was car­ried out. The en­ergy com­par­i­son is cen­tred on the dif­fer­ent syn­chro­tron so­lu­tions, as­sum­ing the same in­jec­tor and lines in the de­signs. The beam cur­rent is more than a fac­tor 10 higher with re­spect to pre­sent gen­er­a­tion fa­cil­i­ties. This al­lows ef­fi­cient ’multi-en­ergy ex­trac­tion’ (MEE), which short­ens the ther­apy treat­ment and is needed es­pe­cially in the SC op­tion, be­cause of the slow mag­net ramp­ing time. Hence, power val­ues of the fa­cil­ity in the tra­di­tional mode were con­verted into MEE ones, for the sake of a fair step­wise com­par­i­son be­tween NC and SC mag­nets. The use of cry­ocool­ers and a liq­ue­fier are also com­pared, for syn­chro­tron re­frig­er­a­tion. This study shows that a NC fa­cil­ity op­er­ated in MEE mode re­quires the least av­er­age en­ergy, fol­lowed by the SC syn­chro­tron so­lu­tion with a liq­ue­fier, while the most en­ergy in­ten­sive so­lu­tion is the SC one with cry­ocool­ers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2022-THPOMS049  
About • Received ※ 20 May 2022 — Revised ※ 17 June 2022 — Accepted ※ 28 June 2022 — Issue date ※ 10 July 2022
Cite • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)