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Abstract
The optics in the insertion regions of the LHC and its up-

grade project the High Luminosity LHC are very sensitive
to local magnetic errors, due to the extremely high beta-
functions. In collision optics, the non-zero closed orbit in
the same region leads to a “feed-down” of high-order errors
to lower orders, causing additional effects detrimental to
beam lifetime. An extension to the well-established method
for correcting these errors by locally suppressing resonance
driving terms has been undertaken, not only taking this feed-
down into account, but also adding the possibility of utilizing
it such that the powering of higher-order correctors will com-
pensate for lower order errors. Existing correction schemes
have also operated on the assumption of (anti-)symmetric
beta-functions of the optics in the two rings. This assump-
tion can fail for a multitude of reasons, such as inherently
asymmetric optics and unevenly distributed errors. In this
respect, an extension of this correction scheme has been
developed, removing the need for symmetry by operating on
the two separate optics of the beams simultaneously. Unlike
earlier implementations, the resonance driving terms to be
corrected can also be changed flexibly. The mathematical
background as well as some implementation details of this
new enhancement are presented.

INTRODUCTION
The sensitivity of accelerator beam optics to magnetic

errors depends directly on the 𝛽-function, which is highest
in the Insertion Regions (IR) around the Interaction Points
(IP) with the lowest 𝛽∗ (the value of the 𝛽-function at the lo-
cation of the IP). Hence, correcting the non-linear magnetic
errors in these regions has been of significant importance
in optimizing the LHC machine performance [1–6]. In-
stallation of stronger magnets in the IR and the decrease
of 𝛽∗ in operation in the High Luminosity upgrade of the
LHC (HL-LHC) [7, 8], is foreseen to result in even tighter
constraints on residual errors.

At the same time, the influence of feed-down has been ob-
served and investigated in the IRs of the LHC as well, where
the crossing-angle scheme of the collision optics creates a
large orbit bump. For both, LHC and HL-LHC, the need to
correct this feed-down has been established [2, 4–6, 9–12].

To estimate the powering of the corrector magnets, a local
correction scheme based on the Resonance Driving Terms
(RDTs) in the IRs has been utilized [13]. Up to now, the
implementation of this scheme calculated the correction
∗ this work has been sponsored by the Wolfgang Gentner Programme of
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based on the input from a single optics, for either Beam 1 or
Beam 2, and made use of symmetries between the beams to
optimize the correction for both. Cases can occur in which
this symmetry does not hold, e.g. through the introduction
of feed-down, or the use of inherently asymmetric optics.
An example of the latter are flat optics [14, 15], in which
the 𝛽∗ in the two transversal planes no longer has identical
values. These optics allow for a more distributed radiation
deposition in the LHC magnets as well as an increase in
luminosity [15]. Their feasibility has been studied during
machine developments in the LHC [16] and preliminary anal-
ysis regarding their influence on corrections and amplitude
detuning has been conducted [17].

A new and flexible version of the correction principle has
been implemented [18], taking both optics into account and
hence not relying on symmetry assumptions, allowing to
target RDTs freely, as well as including feed-down into the
calculations. The implementation allows for the feed-down
from higher orders to the RDT to be corrected, as well as
using the feed-down from higher order corrector magnets to
correct for lower order errors.

CORRECTOR PACKAGES

To compensate for errors locally, both sides of the LHC
IRs hosting experiments (ATLAS in IR1, ALICE in IR2,
CMS in IR5 and LHCb in IR8) are equipped with linear and
non-linear corrector packages. As shown in the schematics
for HL-LHC in Fig. 1, these packages are located within the
common aperture region of the machines, between Q3 and
the separation dipoles D1, and hence contain common mag-
nets for the two beams. Any correction should therefore take
the optics of both beams into account. In the experimental
IRs of the LHC and in HL-LHC IR2 and IR8, nonlinear
correctors for skew and normal sextupoles (𝑎3, 𝑏3), skew
and normal octupoles (𝑎4, 𝑏4) and normal dodecapoles (𝑏6)
are available. In IR1 and IR5 of HL-LHC on the other hand,
the corrector package will be upgraded to also include skew
and normal decapoles (𝑎4, 𝑏5) as well as skew dodecapoles
(𝑎6) and offer therefore a wider range of field errors to cor-
rect, to account for the increase in the 𝛽-function in this
high-performance machine [8, 12, 19].

CORRECTION PRINCIPLE

The algorithm aims to minimize the RDT locally at the
entrance of the IR, with some additional simplifications on
the calculation of the RDT value (compared to e.g. [20]) as
outlined in [13]:
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Figure 1: Schematic of the right hand side of HL-LHC IR1
and IR5. Q1a/b, Q2a/b and Q3a/b are the triplet quadrupoles.
C0, C1 and CP show the corrector packages with the field
order to be corrected indicated. The blue lines mark common
cryostats. The non-linear correctors are included in CP.

• Only the contribution from elements in a single IR to
the RDTs are minimized at a time, i.e. IRs are treated
independently.

• Constants between all contributing elements are ig-
nored (not needed for minimization).

• The phase per side of the IP is assumed constant, as

ΔΦ(𝑎, 𝑏) =
𝑏
∫
𝑎

1
𝛽(𝑠)𝑑𝑠 and 𝛽(𝑠) is very large in the

triplets.
• The phase-advance between the left and right side of

the IP is 𝜋.
With these approximations the effective RDT of order 𝑛 =
𝑗 + 𝑘 + 𝑙 + 𝑚 to minimize is:

𝑓 IR
𝑗𝑘𝑙𝑚 = ∫

IR
ℜ [𝑖𝑙+𝑚 (𝐾𝑛(𝑠) + 𝑖𝐽𝑛(𝑠))] ⋅

𝛽𝑥(𝑠)
𝑗+𝑘
2 𝛽𝑦(𝑠)

𝑙+𝑚
2 𝑒𝑖𝜋𝑛𝜃(𝑠−𝑠IP)d𝑠 ,

(1)

with 𝐾𝑛(𝑠) and 𝐽𝑛(𝑠) being the field strength of normal and
skew magnetic multipole fields of order 𝑛 (starting with
𝑛 = 1 for dipole fields), 𝜃(𝑥) the heaviside step function and
𝑠IP the location of the IP within the IR. The 𝑛 in the exponent
replaces 𝑗 − 𝑘 + 𝑙 − 𝑚 = 𝑛 − 2𝑘 − 2𝑙, as for even (odd) values
of 𝑛, this value will also be even (odd), independent of the
particular choices for 𝑗, 𝑘, 𝑙, 𝑚. The main concept of the
correction is to find the 𝐾𝑛(𝑠) and 𝐽𝑛(𝑠) of the corrector
magnets, which minimize a set of given 𝑓 IR

𝑗𝑘𝑙𝑚 based on given
optics.

As there are usually two correctors per multipole field
available (one on each side of the IP), two combinations of
𝑙 + 𝑚 and 𝑗 + 𝑘 (the exponents of the 𝛽 function) can be
corrected. As the correctors are responsible for the correc-
tion of both beams, the exponents need to be chosen, such
that the correction is valid for both beams, which means
that either only a single RDT per beam can be corrected or
two RDTs if they are compatible with the symmetry of the
optics [21].

Equation System
In our simulations, the input to the correction algorithm

will be the output of TWISS and ESAVE functions from MAD-
X [22]. These are tables in which 𝐾𝑛(𝑠) and 𝐽𝑛(𝑠) are not
continuous functions, but given as already integrated values
𝐾𝑛𝐿𝑤, 𝐽𝑛𝐿𝑤 (K𝑛−1L, K𝑛−1SL in the terminology of MAD-X)
for each element 𝑤. Values for the longitudinal position 𝑠𝑤,
𝛽𝑥,𝑤, 𝛽𝑥,𝑤 and the transversal orbit 𝑥𝑤, 𝑦𝑤, which will be

important when calculating feed-down (see below), are also
provided.

To assure an accurate estimate for the integral in Eq. (1),
the lattice is sliced in MAD-X, i.e. all magnets are approx-
imated by single kicks surrounded by drift-spaces. Long
magnets are cut into multiple slices to increase accuracy.
Corrector magnets on the other hand, which are in any case
short compared to e.g. dipoles, can be represented by a
single slice.

In this thin-lens approximation, Eq. (1) transforms into a
sum over all elements (slices) 𝑤 in the IR, which needs to
be set to zero to suppress the RDT:

𝑓 IR
𝑗𝑘𝑙𝑚 = ∑

𝑤∈IR
ℜ [𝑖𝑙+𝑚 (𝐾𝑛𝐿𝑤 + 𝑖𝐽𝑛𝐿𝑤)] ⋅

𝛽
𝑗+𝑘
2𝑥,𝑤𝛽

𝑙+𝑚
2𝑦,𝑤 𝑒𝑖𝜋𝑛𝜃(𝑠𝑤−𝑠IP) != 0 .

(2)

Splitting the elements into corrector elements 𝒞 and non-
corrector elements IR 𝒞, Eq. (2) transforms into:

∑
𝑤∈𝒞

ℜ [𝑖𝑙+𝑚 (𝐾𝑛𝐿𝑤 + 𝑖𝐽𝑛𝐿𝑤)] 𝛽
𝑗+𝑘
2𝑥,𝑤𝛽

𝑙+𝑚
2𝑦,𝑤 𝑒𝑖𝜋𝑛𝜃(𝑠𝑤−𝑠IP)

= −∑
𝑤∈IR𝒞

ℜ [𝑖𝑙+𝑚 (𝐾𝑛𝐿𝑤 + 𝑖𝐽𝑛𝐿𝑤)] 𝛽
𝑗+𝑘
2𝑥,𝑤𝛽

𝑙+𝑚
2𝑦,𝑤 𝑒𝑖𝜋𝑛𝜃(𝑠𝑤−𝑠IP) .

(3)

It is important to note, that each corrector is defined by
either 𝐾𝑛𝐿 or 𝐽𝑛𝐿, so that per order 𝑛 and orientation (normal,
skew) only a limited set of correctors is left. As there are two
of these correctors per IR in the LHC/HL-LHC, 𝒞 = {𝑐𝑙, 𝑐𝑟},
a left (𝑐𝑙) and a right (𝑐𝑟) corrector element. Defining the
sum over IR𝒞 in Eq. (3) as 𝐼𝑗𝑘𝑙𝑚 and

𝑏(𝑐𝑙)
𝑗𝑘𝑙𝑚 = 𝑖𝑙+𝑚 𝛽

𝑗+𝑘
2

𝑥,𝑐𝑙𝛽
𝑙+𝑚

2
𝑦,𝑐𝑙

𝑏(𝑐𝑟)
𝑗𝑘𝑙𝑚 = (−1)𝑛 𝑖𝑙+𝑚 𝛽

𝑗+𝑘
2𝑥,𝑐𝑟𝛽

𝑙+𝑚
2

𝑦,𝑐𝑙 ,
(4)

Eq. (3) can be split into a two equation system

(𝑏(𝑐𝑙)
𝑗𝑘𝑙𝑚 𝑏(𝑐𝑟)

𝑗𝑘𝑙𝑚) (𝐾𝑛𝐿𝑐𝑙
𝐾𝑛𝐿𝑐𝑟

) = −𝐼𝑗𝑘𝑙𝑚 if 𝑙 + 𝑚 even,

( 𝑏(𝑐𝑙)
𝑗𝑘𝑙𝑚 𝑏(𝑐𝑟)

𝑗𝑘𝑙𝑚) (𝐽𝑛𝐿𝑐𝑙
𝐽𝑛𝐿𝑐𝑟

) = 𝑖𝐼𝑗𝑘𝑙𝑚 if 𝑙 + 𝑚 odd,
(5)

each of which can be easily extended to include multiple
RDTs, e.g.:

⎛⎜
⎝

𝑏(𝑐𝑙)
𝑗𝑘𝑙𝑚 𝑏(𝑐𝑟)

𝑗𝑘𝑙𝑚
𝑏(𝑐𝑙)

𝑗′𝑘′𝑙′𝑚′ 𝑏(𝑐𝑟)
𝑗′𝑘′𝑙′𝑚′

⎞⎟
⎠

(𝐾𝑛𝐿𝑐𝑙
𝐾𝑛𝐿𝑐𝑟

) = − ( 𝐼𝑗𝑘𝑙𝑚
𝐼𝑗′𝑘′𝑙′𝑚′

) (6)

with 𝑗 +𝑘 +𝑙 +𝑚 = 𝑗′ +𝑘′ +𝑙′ +𝑚′ = 𝑛 and 𝑙 +𝑚 and 𝑙′ +𝑚′

both even. Including multiple beam optics, e.g. from LHC
Beam 1 (B1) and Beam 2 (B2), can be done in a similar
manner:

⎛⎜
⎝

𝑏(𝑐𝑙,B1)
𝑗𝑘𝑙𝑚 𝑏(𝑐𝑟,B1)

𝑗𝑘𝑙𝑚
𝑏(𝑐𝑙,B2)

𝑗𝑘𝑙𝑚 𝑏(𝑐𝑟,B2)
𝑗𝑘𝑙𝑚

⎞⎟
⎠

(𝐾𝑛𝐿𝑐𝑙
𝐾𝑛𝐿𝑐𝑟

) = − ⎛⎜
⎝

𝐼(B1)
𝑗𝑘𝑙𝑚

𝐼(B2)
𝑗𝑘𝑙𝑚

⎞⎟
⎠

. (7)
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Feed-Down
The effect of feed-down occurs whenever a particle beam

is passing off-center through a magnet, due to either a trans-
verse misalignment of the magnet or an off-center closed
orbit of the beam itself. In these cases, the magnetic field
can be described via Taylor expansion as a composition of
magnetic field components with identical geometry as lower
order fields in addition to the current field of higher order.
These components therefore cause the same effects on the
beam as lower order sources would [23].

Feed-down to field order 𝑛 ≥ 2 from fields up to 𝑛 + 𝑄
can be included by:

𝐾𝑛 + 𝑖𝐽𝑛
w/ feeddown→

𝑄
∑
𝑞=0

(𝐾𝑛+𝑞 + 𝑖𝐽𝑛+𝑞) (Δ𝑥 + 𝑖Δ𝑦)𝑞

𝑞! . (8)

Not only can feed-down be used to calculate the influence
of field errors of orders ≥ 𝑛 on the RDT, i.e. by contributing
to 𝐼𝑗𝑘𝑙𝑚, but it can also be used to calculate the strengths
of correctors of orders 𝑛C > 𝑛 to counteract the RDT via
feed-down. The matrix elements of the corrector coefficients
in Eq. (4) will then contain the feed-down coefficient

𝑧𝑝 = (Δ𝑥 + 𝑖Δ𝑦)𝑝

𝑝! , with 𝑝 = 𝑛C − 𝑛. (9)

As 𝑧𝑝 ∈ ℂ, this makes the evaluation of the real part in
Eq. (3) - needed to separate the correctors as in Eq. (5) - less
straightforward and yields the equation system Eq. (10).

(ℜ [𝑧𝑝] ⋅ 𝑏(𝑐𝑙)
𝑗𝑘𝑙𝑚 ℜ [𝑧𝑝] ⋅ 𝑏(𝑐𝑟)

𝑗𝑘𝑙𝑚 −ℑ [𝑧𝑝] ⋅ 𝑏(𝑐𝑙)
𝑗𝑘𝑙𝑚 −ℑ [𝑧𝑝] ⋅ 𝑏(𝑐𝑟)

𝑗𝑘𝑙𝑚)
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐾𝑛+𝑝𝐿𝑐𝑙
𝐾𝑛+𝑝𝐿𝑐𝑟
𝐽𝑛+𝑝𝐿𝑐𝑙
𝐽𝑛+𝑝𝐿𝑐𝑟

⎞⎟⎟⎟⎟⎟⎟
⎠

= −𝐼𝑗𝑘𝑙𝑚 for even 𝑙 + 𝑚

(ℑ [𝑧𝑝] ⋅ 𝑏(𝑐𝑙)
𝑗𝑘𝑙𝑚 ℑ [𝑧𝑝] ⋅ 𝑏(𝑐𝑟)

𝑗𝑘𝑙𝑚 ℜ [𝑧𝑝] ⋅ 𝑏(𝑐𝑙)
𝑗𝑘𝑙𝑚 ℜ [𝑧𝑝] ⋅ 𝑏(𝑐𝑟)

𝑗𝑘𝑙𝑚)
⎛⎜⎜⎜⎜⎜⎜
⎝

𝐾𝑛+𝑝𝐿𝑐𝑙
𝐾𝑛+𝑝𝐿𝑐𝑟
𝐽𝑛+𝑝𝐿𝑐𝑙
𝐽𝑛+𝑝𝐿𝑐𝑟

⎞⎟⎟⎟⎟⎟⎟
⎠

= 𝑖𝐼𝑗𝑘𝑙𝑚 for odd 𝑙 + 𝑚

(10)

Full Equation System
The “extensions” to the linear equation systems Eqs. (5)

to (7) and (10) can be flexibly combined and the resulting
equation system will incorporate arbitrary RDTs, multiple
optics, correcting for and via feed-down and can therefore
also include correctors of various orders for a single RDT.
It can be solved or optimized for 𝐾𝑛𝐿𝑐𝑙,𝑐𝑟 or 𝐽𝑛𝐿𝑐𝑙,𝑐𝑟 by
standard algorithms.

IMPLEMENTATION
A correction based on the algorithm described in the pre-

vious section has been released as a python3 package irnl-
rdt-correction [18]. The implementation allows for ar-
bitrary RDTs as input, which can also be specified to be
corrected via feed-down from higher order correctors. In
addition, up to two beam optics can be given and corrected
for at the same time.

The implemented algorithm performs a multitude of san-
ity checks on the user input and separates the correctors,
to build independent equation systems when possible, i.e.
per IP and for RDTs that do not share correctors. The re-
sulting linear equation systems are solved via numpy’s [24]
linear least-squares algorithm, which allows to optimize
under-, well-, or over-determined equation systems. In case
of complex correction schemes, an iterative approach is also
possible. A detailed description of the implementation can
be found in [25].

CONCLUSION AND OUTLOOK
An improved algorithm to correct nonlinear errors by

locally compensating effective RDTs in the IRs has been
outlined, overcoming the rigidness of previous implementa-
tions and giving the user more control over the correction.
Its main features include the option to target arbitrary RDTs,
include more than one beam optics, and either include feed-
down into the RDTs to be corrected, or using the feed-down
from the corrector magnets themselves for compensation.

The new correction package has since been exten-
sively used for studies, investigating the influence of feed-
down [26], the correctability of asymmetric optics [21]
and the feasibility to correct systematic normal decapole
errors in the separation and recombination dipoles of the
HL-LHC [27, 28]. The ease of use and availability allows
to utilize the new package with little effort in future studies
of non-linear IR corrections.

The algorithm has been received with interest and addi-
tional features have been suggested. Among these is the
inclusion of the phase-advance between elements, to further
approach (and correct) the exact value of the RDT, instead
of the effective RDTs targeted in the current implementation.
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