Keyword: detector
Paper Title Other Keywords Page
MOPWA009 Channeling Radiation Experiment at Fermilab ASTA electron, photon, brilliance, experiment 95
 
  • D. Mihalcea, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • D.R. Edstrom, P. Piot, T. Sen
    Fermilab, Batavia, Illinois, USA
  • W.D. Rush
    KU, Lawrence, Kansas, USA
 
  Electron beams with moderate energy ranging from 4 to 50 MeV can be used to produce x-rays through the Channeling Radiation (CR) mechanism. Typically, the x-ray spectrum from these sources extends up to 140 keV and this range covers the demand for most practical applications. The parameters of the electron beam determine the spectral brilliance of the x-ray source. The electron beam produced at the Fermilab new facility Advanced Superconducting Test Accelerator (ASTA) meets the requirements to assemble an experimental high brilliance CR x-ray source. In the first stage of the experiment the energy of the beam is 20 MeV and due to the very low emittance (100 nm) at low bunch charge (20 pC) the expected average brilliance of the x-ray source is 0.8x107 photons/[s-(mm-mrad)2-0.1%BW]. In the second stage of the experiment the beam energy will be increased to 50 MeV and consequently the average brilliance will be 4.8x108 photons/[s-(mm-mrad)2-0.1%BW]. Also, the x-ray spectrum will be extended from about 30 keV to 140 keV.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWA049 Simulation of Crab Waist Collisions in DAΦNE with KLOE-2 Interaction Region simulation, luminosity, electron, betatron 229
 
  • M. Zobov, A. Drago, A. Gallo, C. Milardi
    INFN/LNF, Frascati (Roma), Italy
  • D.N. Shatilov
    BINP SB RAS, Novosibirsk, Russia
  • A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: Research supported by DOE via the US-LARP program and by EU FP7 HiLumi LHC - Grant Agreement 284404.
After the successful completion of the SIDDHARTA experiment run with crab waist collisions, the electron-positron collider DAΦNE has started routine operations for the KLOE-2 detector. The new interaction region also exploits the crab waist collision scheme, but features certain complications including the experimental detector solenoid, compensating anti-solenoids, and tilted quadrupole magnets. We have performed simulations of the beam-beam collisions in the collider taking into account the real DAΦNE nonlinear lattice. In particular, we have evaluated the effect of crab waist sextupoles and beam-beam interactions on the DAΦNE dynamical aperture and energy acceptance, and estimated the luminosity that can be potentially achieved with and without crab waist sextupoles in the present working conditions. A numerical analysis has been performed in order to propose possible steps for further luminosity increase in DAΦNE such as a better working point choice, crab sextupole strength optimization, correction of the phase advance between the sextupoles and the interaction region. The proposed change of the e- ring working point was implemented and resulted in a significant performance increase.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE037 Study and Comparison of Mode Damping Strategies for the UA9 Cherenkov Detector Tank damping, cavity, vacuum, resonance 366
 
  • A. Danisi, F. Caspers, R. Losito, A. Masi, B. Salvant, C. Vollinger
    CERN, Geneva, Switzerland
  • T. Demma, P. Lepercq
    LAL, Orsay, France
 
  In the framework of the UA9 experiment, the Cherenkov detector is useful to measure the amount of particles deflected by a bent crystal, proving the crystal collimation principle. The tank used to host this device is taken as a case study for an in-depth analysis of different damping strategies for electromagnetic modes which otherwise would give rise to important beam-coupling impedance contributions. Such strategies involve the use of ferrite, damping resistors and a mode-coupler, a solution which intercepts the modes inside the cavity but damps the related power outside the vacuum tank (potentially avoiding heating). Such solutions are discussed through experimental measurements and the relative quality factor is taken as a figure of merit.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE064 Beam Impedance Optimization of the TOTEM Roman Pots impedance, simulation, cavity, vacuum 452
 
  • N. Minafra
    CERN, Geneva, Switzerland
 
  The TOTEM experiment has been designed to measure the total proton-proton cross section and to study elastic and diffractive scattering at the LHC energy. The measurement requires detecting protons at distances as small as 1 mm from the beam center: TOTEM uses Roman Pots (RP), special beam pipe insertions, to move silicon detectors close to the beams to detect particles very near the beam axis. In the first period of running of the LHC no problems were detected with retracted Roman Pots and during insertions in special runs; however, during close insertions to highest intensity beam, impedance heating has been observed. After the LS1 the LHC beam current will increase and the equipment that can interact with the beam needed to be optimized. A new RP, optimized to minimize the beam coupling, has been designed with the help of CST Particle Studio; a prototype has been used to test the simulation results in the laboratory with wire and probe measurements. Furthermore, in both the old and the new RPs, new ferrites have been installed. The new ferrite material has a higher Curie temperature than the one used before LS1 and a thermal treatment at 1000°C has been applied to reduce the out-gassing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE064  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE070 Reduction of Electron Cloud in Particle Accelerator Beampipes Studied by RF Multipacting electron, injection, vacuum, network 472
 
  • R. Leber, F. Caspers, P. Costa Pinto, M. Taborelli
    CERN, Geneva, Switzerland
 
  For a given beam structure, chamber geometry and magnetic field configuration, the electron cloud (EC) intensity depends on the Secondary Electron Yield (SEY) of the beam pipe. The reduction of the EC density as a function of machine operation time (scrubbing) is attributed to the growth of a low SEY carbon film induced by electron bombardment. In this paper, we study the time evolution of the conditioning of stainless steel beam pipes in a laboratory setup. The EC or multipacting is induced by Radio-Frequency (RF) fields in a coaxial resonator under vacuum. Strip detectors are used to monitor the current of the EC. Induced pressure rise is simultaneously detected. The multipacting intensity shows a linear dependence on the positive DC bias voltage up to 1000 V, applied to the central electrode. An accelerated conditioning is observed for the applied bias voltage. The SEY of samples exposed to the EC is measured and the surface composition is monitored by X-ray Photoelectron Spectroscopy. The measured SEY, surface composition and multipacting behaviour are well correlated. The injection of acetylene and dodecane during multipacting proved to be ineffective in the conditioning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE071 New Electron Cloud Detectors for the CERN Proton Synchrotron photon, electron, proton, extraction 476
 
  • C. Yin Vallgren, P. Chiggiato, S.S. Gilardoni, H. Neupert, M. Taborelli
    CERN, Geneva, Switzerland
 
  Electron cloud (EC) has already been observed during normal operation of the PS using classical shielded button pick-up detectors in drift sections. In the context of the LHC Injector Upgrade (LIU project), similar measurements are also needed for the combined function magnets of the machine, where the access to the vacuum chamber is strongly limited by the presence of the yoke. Two new electron cloud detectors have been studied, developed, and installed during the Long Shutdown (LS1) in one of such magnets. The first is based on current measurement by using a shielded button-type pick-up with a special geometry to reach the bottom surface of the vacuum pipe embedded in the magnet. The second one relies on a newly developed measurement method based on detection of the photons, which are emitted by cathodoluminescence from the electron cloud impinging on the vacuum chamber walls. Part of the emitted photons is collected through a quartz window by a Micro-Channel Plate Photomultiplier Tube (MCP-PMT). First results obtained during machine development runs show the feasibility of the photon detection scheme. The results are discussed and compared with pick-up measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE071  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE082 Analytical Approach to the Beam-Beam Interaction with the Hourglass Effect luminosity, coupling, collider, framework 510
 
  • M.P. Crouch, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: STFC HL-LHC
The HL-LHC upgrade will allow higher luminosities to be reached in the LHC. To achieve higher luminosities the β-function at the IP is decreased, which in turn will result in the hourglass effect becoming more prominent as the transverse bunch sizes become comparable to the length of the bunch. This effect reduces the luminosity since not all particles in the bunch will collide at the minimum IP. The standard derivation of the electric and magnetic fields of the beam-beam interaction is that undertaken by Bassetti and Erskine. The derivation by Bassetti Erskine does not include a coupling between bunch planes. When the transverse bunch sizes are comparable to the length of the bunch the magnitude of the transverse kick will be dependent on the longitudinal position. Currently only numerical methods are available to evaluate this effect. Here a theoretical framework is outlined that provides an analytical approach to derive the electric field for the beam-beam interaction with a coupling between the transverse and longitudinal planes.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA003 Reconstruction of Electron Bunch Motion During CSR Bursts using Synchronised Diagnostics electron, synchrotron, radiation, storage-ring 529
 
  • I.P.S. Martin, R. Bartolini, C. Bloomer, L.M. Bobb, G. Rehm
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini, A. Finn
    JAI, Oxford, United Kingdom
 
  Above a certain threshold current, electron bunches become unstable and emit bursts of coherent synchrotron radiation (CSR). The character and periodicity of these bursts vary with bunch current, RF voltage and lattice momentum compaction. In this paper we describe recent measurements taken at Diamond of how the electron bunch longitudinal profile and energy vary during a burst, and correlate this with CSR emission at a range of wavelengths.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA005 Non-invasive Beam Profile Monitoring vacuum, operation, ion, proton 537
 
  • C.P. Welsch, T. Cybulski, A. Jeff, V. Tzoganis, H.D. Zhang
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • T. Cybulski, A. Jeff, V. Tzoganis, C.P. Welsch, H.D. Zhang
    The University of Liverpool, Liverpool, United Kingdom
  • A. Jeff
    CERN, Geneva, Switzerland
  • V. Tzoganis
    RIKEN, Saitama, Japan
 
  Funding: Work supported by the Helmholtz Association under contract VH-NG-328, the EU under contracts 215080 and 289485, as well as the STFC Cockcroft core grant No. ST/G008248/1.
State-of-the-art high energy and high intensity accelerators require new approaches to transverse beam profile monitoring as many established techniques will no longer work due to the high power stored in the beam. In addition, many accelerator applications such as ion beam cancer therapy or material irradiation would benefit significantly from the availability of non-invasive beam profile monitors. Research in the QUASAR Group has focused on this area over the past 5 years. Two different approaches were successfully developed: Firstly, a supersonic gas jet-based monitor was designed and commissioned. It enables the detection of the 2-dimensional transverse beam profile of essentially any charged particle beam with negligible disturbance of the primary beam and accelerator vacuum. Secondly, a monitor based on the Silicon strip VELO detector, originally developed for the LHCb experiment, was tested as an online beam monitor at the Clatterbridge Cancer Center in the UK. The design of both monitors is presented in this contribution. Results from measurements are discussed and complemented by numerical studies into the performance limits of either technique.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA031 Simulations of Diamond Detectors with Schottky Contacts electron, simulation, photon, scattering 617
 
  • G.I. Bell, J.R. Cary, D.A. Dimitrov, D. Meiser, D.N. Smithe, C.D. Zhou
    Tech-X, Boulder, Colorado, USA
  • M. Gaowei, E.M. Muller
    SBU, Stony Brook, New York, USA
  • J. Smedley
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the US DOE Office of Science, department of Basic Energy Sciences, grant numbers DE-SC0006246 and DE-SC0007577.
We present simulations of semiconductor devices using the code VSim (formerly Vorpal). The 3D simulations involve the movement and scattering of electrons and holes in the semiconductor, voltages which may be applied to external contacts, and self-consistent electrostatic fields inside the device. Particles may experience a Schottky barrier when moving between the semiconductor and a metal contact. Example devices include MOSFETs as well as a diamond X-ray detector. Our code VSim includes scattering models for GaAs and diamond, and runs in parallel on thousands of processors. We compare our simulation results with experimental results from a prototype diamond X-ray detector.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA055 MuSim, a Graphical User Interface for Multiple Simulation Programs simulation, interface, storage-ring, target 678
 
  • T.J. Roberts
    Muons, Inc, Illinois, USA
  • P.L. Gueye
    Hampton University, Hampton, Virginia, USA
 
  MuSim is a new user-friendly program designed to interface to many different particle simulation codes, regardless of their data formats or geometry descriptions. It presents the user with a compelling graphical user interface that includes a flexible 3-D view of the simulated world plus powerful editing and drag-and-drop capabilities. All aspects of the design can be parametrized so that parameter scans and optimizations are easy. It is simple to create plots and display events in the 3-D viewer (with a slider to vary the transparency of solids), allowing for an effortless comparison of different simulation codes. Simulation codes: G4beamline, MAD-X, and MCNP; more coming. Many accelerator design tools and beam optics codes were written long ago, with primitive user interfaces by today’s standards. MuSim is specifically designed to make it easy to interface to such codes, providing a common user experience for all, and permitting the construction and exploration of models with very little overhead. For today’s technology-driven students, graphical interfaces meet their expectations far better than text-based tools, and education in accelerator physics is one of our primary goals.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA007 Modeling/Measurement Comparison of Signal Collection in Diamond Sensors in Extreme Conditions electron, space-charge, simulation, scattering 787
 
  • V. Kubytskyi, P. Bambade, S. Liu
    LAL, Orsay, France
 
  Here we present a study of charge collection dynamics in a Diamond Sensor (DS) subjected to intensities from 1 to 108 Minimum Ionizing Particles (MIP). We developed a model based on the numerical solution of the 1D drift-diffusion equations, using the Scharfetter-Gummel discretization scheme. Inhomogeneity of the space-charge distribution together with the externally applied electric field are taken into account by analytically solving the Poisson equation at each time step. We identified two regimes of charge collection. The first corresponds to 1-105 MIPs, in this case the externally applied electric field is negligibly perturbed by space-charge effects during the separation of the electron/hole clouds. The second corresponds to intensities larger than 107 MIPs, where the space-charge effects significantly slow down the charge collection due to large concentrations of electron/hole pairs in the DS volume. The results of our modeling are in qualitative agreement with the experimental data acquired at the PHoto-Injector electron beam facility at LAL. Our model allows optimizing DS parameters to achieve desired charge collection times for different beam intensities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA009 Single-Shot Electro-Optic Sampling Combined With Photonic Time-Stretch: Detailed Results at SOLEIL laser, synchrotron, storage-ring, real-time 795
 
  • C. Szwaj, C. Evain, E. Roussel
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • S. Bielawski
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • J.B. Brubach, L. Cassinari, M.-E. Couprie, M. Labat, L. Manceron, J.P. Ricaud, P. Roy, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
  • M. Le Parquier
    CERLA, Villeneuve d'Ascq, France
 
  Funding: ANR (DYNACO project), FEDER, CEMPI LABEX.
Single-shot recording of pulses is possible with high repetition rates (more than 80 MHz), as was demonstrated in the framework of a PhLAM-SOLEIL collaboration * **. This can be achieved by a relatively simple upgrade of existing setups based on spectral encoding. The strategy consists to encode the sub-picosecond information into the time domain, but at a slower scale (nanoseconds), using dispersion in a long optical fiber. Then the information is recorded by a photodiode connected to an oscilloscope. In this poster, we present guidelines for the practical realization of the electro-optical setup, as well as a performance analysis. In particular, we analyze the temporal resolution and compare it to the classical electro-optical sampling setup.
* E. Roussel et al., Proceedings of IPAC2014, THOBA01.
** E. Roussel et al., arXiv:1410.7048
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA023 Observation of Coherent Pulses in the Sub-THz Range at DELTA electron, radiation, laser, synchrotron 823
 
  • C. Mai, F.H. Bahnsen, M. Bolsinger, S. Hilbrich, M. Huck, M. Höner, S. Khan, A. Meyer auf der Heide, R. Molo, H. Rast, G. Shayeganrad, P. Ungelenk
    DELTA, Dortmund, Germany
  • M. Brosi, B. Kehrer, A.-S. Müller, M.J. Nasse, P. Schönfeldt, P. Schütze, S. Walther
    KIT, Karlsruhe, Germany
  • H. Huck
    DESY Zeuthen, Zeuthen, Germany
 
  Funding: Work supported by the BMBF (05K13PEC).
Coherent ultrashort THz pulses induced by a laser-electron interaction are routinely produced and observed at DELTA, a 1.5-GeV synchrotron light source operated by the TU Dortmund University. The turn-by-turn evolution of the radiation spectrum is known to shift to the sub-THz regime after the initial laser-electron interaction. Recently, an ultrafast YBCO-based THz detector has been permanently installed and a Schottky diode has been tested at the THz beamline. Measurements with these detectors showing the temporal evolution of the coherent signals after several revolutions are presented. Furthermore, the concept of a recently designed Fourier-transform spectrometer optimized for the sub-THz region is shown.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA026 Present and Future Optical-to-Microwave Synchronization Systems at REGAE Facility for Electron Diffraction and Plasma Acceleration Experiments laser, electron, timing, plasma 833
 
  • M. Titberidze, F.J. Grüner, A.R. Maier, B. Zeitler
    CFEL, Hamburg, Germany
  • S.W. Epp
    MPSD, Hamburg, Germany
  • M. Felber, K. Flöttmann, T. Lamb, U. Mavrič, J.M. Müller, H. Schlarb, C. Sydlo
    DESY, Hamburg, Germany
  • F.J. Grüner, A.R. Maier, M. Titberidze
    Uni HH, Hamburg, Germany
  • E. Janas
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  Relativistic Electron Gun for Atomic Explorations (REGAE) is a Radio Frequency (RF) driven linear accelerator. It uses frequency tripled short photon pulses (~ 35 fs) from the Titanium Sapphire (Ti:Sa.) Laser system in order to generate electron bunches from the photo-cathode. The electron bunches are accelerated up to ~ 5 MeV kinetic energy and compressed down to sub-10 fs using the so called ballistic bunching technique. REGAE currently is used for electron diffraction experiments (by Prof. R.J.D. Miller's Group). In near future within the collaboration of Laboratory for Laser- and beam-driven plasma Acceleration (LAOLA), REGAE will also be employed to externally inject electron bunches into laser driven linear plasma waves. Both experiments require very precise synchronization (sub-50 fs) of the photo-injector laser and RF reference. In this paper we present experimental results of the current and new optical to microwave synchronization systems in comparison. We also address some of the issues related to the current system and give an upper limit in terms of its long-term performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA027 Transverse Emittance Measurement at REGAE emittance, electron, background, solenoid 837
 
  • M. Hachmann, K. Flöttmann
    DESY, Hamburg, Germany
 
  The linear accelerator REGAE at DESY produces short and low charged electron bunches, on the one hand to resolve the excitation transitions of atoms temporally by pump probe electron diffraction experiments and on the other hand to investigate principal mechanisms of laser plasma acceleration. For both cases a high quality electron beam is required which can be identified with a small beam emittance. A standard magnet scan is used for the emittance measurement which is in case of a low charged bunch most sensitive to the beam size determination (2nd central moment of a distribution). Therefore the diagnostic and a routine to calculate proper central moments of an arbitrary distribution will be introduced and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA037 Visible Light Diagnostics at the ANKA Storage Ring synchrotron, photon, diagnostics, radiation 866
 
  • B. Kehrer, A. Borysenko, E. Hertle, N. Hiller, M. Holz, A.-S. Müller, P. Schönfeldt, P. Schütze
    KIT, Karlsruhe, Germany
 
  Synchrotron radiation in the visible light range is a versatile diagnostics tool for accelerator studies. At the ANKA storage ring of the Karlsruhe Institute of Technology (KIT), we have a dedicated visible light diagnostics beamline and two additional beam ports close to the radiation's source point. The visible light diagnostics beamline hosts a time-correlated single-photon-counting unit to measure the bunch filling pattern and a streak camera for longitudinal diagnostics. Recently, the beamline has been extended with a fast-gated intensified camera to study transverse instabilities. The synchrotron light monitor ports were previously used for direct source imaging. Due to the diffraction limit the vertical beam size could not be resolved. One of the two ports has recently been equipped with a double-slit to allow for interferometric measurements of the vertical beam size. In this paper we give an overview of the different setup modifications and present first results.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA040 First Results of Energy Measurements with a Compact Compton Backscattering Setup at ANKA laser, electron, photon, storage-ring 876
 
  • C. Chang, E. Bründermann, E. Hertle, N. Hiller, E. Huttel, A.-S. Müller, M.J. Nasse, M. Schuh, J.L. Steinmann
    KIT, Karlsruhe, Germany
  • H.-W. Hübers, H. Richter
    DLR, Berlin, Germany
 
  Funding: This work is funded by the European Union under contract PITN-GA-2011-289191
An electron energy measurement setup based on the detection of Compton backscattered photons, generated by laser light scattered off the relativistic electron beam, has been proposed and developed for operation at the ANKA storage ring of the Karlsruhe Institute of Technology (KIT). In contrast to conventional methods based on head-on collisions, the setup at ANKA is, for the first time, realized in a transverse configuration where the laser beam hits the electron beam at an angle of ~90°. This makes it possible to achieve a relatively low-cost and very compact setup since it only requires a small side-port instead of a straight section. This development could benefit storage rings with restricted space or where no straight sections are available, for example due to interferences with existing beamlines. The setup and the first measurement results are presented in the paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA043 Properties of Transition- and Synchrotron Radiation at FLUTE radiation, synchrotron, synchrotron-radiation, electron 885
 
  • M. Schwarz, A.-S. Müller
    KIT, Karlsruhe, Germany
  • M.T. Schmelling
    MPI-K, Heidelberg, Germany
 
  FLUTE (Ferninfrarot Linac Und Test Experiment) is a 41 MeV linear accelerator currently under construction at KIT. It is aimed at accelerator physics and THz radiation research. For this reason the machine will cover a wide range of bunch charges (1 pC up to 3 nC) and lengths (1 fs to 300 fs). One aim of FLUTE is the study of different mechanisms for the generation of intense THz pulses, such as transition- (TR) or synchrotron radiation (SR). In this contribution, we calculate and compare various pulse properties, such as spectra, and electric fields, for both TR and SR.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA048 Beam Optimization of the DAΦNE Beam Test Facility diagnostics, linac, software, electron 901
 
  • L.G. Foggetta, B. Buonomo
    INFN/LNF, Frascati (Roma), Italy
  • P. Valente
    INFN-Roma, Roma, Italy
 
  The DAΦNE Beam Test Facility delivers electron and positron beam with a wide spread of parameters in charge, energy, transverse dimensions and time width. Thanks to the recent improvements of the diagnostics, all the beam parameters have been measured and optimized. In particular we report here some results on beam transverse size, divergence, and position stability for different energy and intensity configurations. After the upgrade of the electronic gun of the DAΦNE LINAC, the pulse time width and charge distribution have been also characterized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA049 Evolution of Diagnostics and Services of the DAΦNE Beam Test Facility vacuum, linac, controls, diagnostics 904
 
  • L.G. Foggetta, B. Buonomo
    INFN/LNF, Frascati (Roma), Italy
  • P. Valente
    INFN-Roma, Roma, Italy
 
  The DAΦNE Beam Test Facility (BTF) is operational in Frascati since 2003. In the last years the beam diagnostics tools have been completely renewed and the services for users have been largely improved. We describe here the new transverse beam diagnostics based on new GEM TPC detectors and Timepix/FitPix, the new BTF network layout, the renewed DAQ system including the BCM detectors, the data caching system based on MEMCached and the integration of the new sub-systems in the new data-logging. All other services, such as the environmental monitoring system, vacuum system, payload remote handling, and gas distribution have been also improved.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA051 Scintillating Fibers used as Profile Monitors for the CNAO HEBT Lines proton, ion, extraction, vacuum 910
 
  • E. Rojatti
    UniPV, Pavia, Italy
  • J. Bosser, M. Haguenauer, P. Poilleux
    CERN, Geneva, Switzerland
  • J. Bosser, G.M.A. Calvi, L. Lanzavecchia, A. Parravicini, M. Pullia, C. Viviani
    CNAO Foundation, Milan, Italy
  • M. Caldara
    University of Bergamo, Bergamo, Italy
 
  The CNAO (Centro Nazionale di Adroterapia Oncologica) Foundation is the first Italian center for deep hadrontherapy with Protons and Carbon Ions. Several beam monitors exploiting the scintillation process have been designed to check the beam quality in the extraction lines, in order to guarantee patients safety. The SFH (Scintillating Fibers Harp), the QPM (Qualification Profile Monitor), and the SFP (Scintillating Fibers plus Photodiodes) are made up by two orthogonal scintillating fibers harps with not dead area for the horizontal and the vertical beam profiles measurement. The QPM and the SFH are both installed on the beam line and they use a CCD camera for the signal acquisition. The SFP is a SFH upgrade project aimed to replace the camera with two Photodiodes arrays coupled to the fibers in vacuum. The WD (Watch Dog) detector, not already installed, has been designed to check the beam position through the intensity of the beam tails. It uses two couples of scintillating fibers displaced transversally to the beam direction, coupled to four APDs (Avalanche Photodiodes). This work describes the beam detectors, their achieved performances and the most recent beam measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA053 Radiation Measurements of a Medical Particle Accelerator Through a Passive Resonant Cavity cavity, linac, coupling, radiation 917
 
  • A. Leggieri, F. Di Paolo, D. Passi
    Università degli Studi di Roma "Tor Vergata", Roma, Italy
  • A. Ciccotelli, S. De Stefano, G. Felici, F. Marangoni
    S.I.T., Aprilia, Italy
 
  Beam monitoring system are required by technical standards for the real time measurement of the dose delivered to the target while the beam is crossing them * **. Traditional beam current monitoring systems are based on ionization chambers and requires high voltage biases *** ****. This study investigates on the measurements of the electron beam current emitted by a medical electron linear accelerator using the power exchange of the beam current with a passive resonant cavity ***** placed at the output interface of the accelerator. The cavity is magnetically coupled with a coaxial transmission line loaded on a microwave envelope detector and its output signal has been documented while receiving several electron currents. This paper shows the complete equivalency, in terms of global performance, of the current revelation performed by exploiting the cavity-beam interaction principle with the classical technology, based on ionization chambers, however without need of high voltage. The most important point is that the resonant cavity system, by measuring the beam current, gives a direct measurement of a physical observable quantity directly related with the dose deposed by the beam.
* EN 60601-2-1, 2009.
** A.P. Turner, 1979.
*** V.L. Uvarov, 1997.
**** M. Ruf∗, 2014.
***** J.B. Rosenzweig, 2003
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY002 Bunch Length Measurement of Femtosecond Electron Beam by Monitoring Coherent Transition Radiation electron, radiation, gun, linac 940
 
  • I. Nozawa, M. Gohdo, K. Kan, T. Kondoh, A. Ogata, J. Yang, Y. Yoshida
    ISIR, Osaka, Japan
 
  Ultrashort electron bunches with durations of femtoseconds and attoseconds are essential for time-resolved measurements, including pulse radiolysis and ultrafast electron microscopy. However, generation of the ultrashort electron bunches is commonly difficult because of bunch length growth due to space charge effect, nonlinear momentum dispersion and so on. Several bunch length measurement methods for the ultrashort electron beams have also been considered so far, which have not been established yet. In this study, the femtosecond electron beams were generated using a laser photocathode radio-frequency gun linac and a magnetic bunch compressor. The bunch length measurement was carried out using a Michelson interferometer based on monitoring coherent transition radiation (CTR), which is characterized by square modulus of the Fourier transform of the longitudinal bunch distribution. Analyzing the experimentally obtained interferograms of CTR, the electron beams with the average duration of 5 fs were generated and measured successfully at the condition of bunch charge of 1 pC. Consideration of the longitudinal bunch shapes was also carried out using the Kramers-Kronig relation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY011 Operation Experience of p-Carbon Polarimeter in RHIC target, polarization, vacuum, operation 956
 
  • H. Huang, E.C. Aschenauer, G. Atoian, A. Bazilevsky, O. Eyser, D. Kalinkin, J. Kewisch, Y. Makdisi, S. Nemesure, A. Poblaguev, W.B. Schmidke, D. Smirnov, D. Steski, K. Yip, A. Zelenski
    BNL, Upton, Long Island, New York, USA
  • I.G. Alekseev, D. Svirida
    ITEP, Moscow, Russia
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The spin physics program in Relativistic Heavy Ion Collider (RHIC) requires fast polarimeter to monitor the polarization evolution on the ramp and during stores. Over past decade, the polarimeter has evolved greatly to improve its performance. These include dual chamber design, monitoring camera, Si detector selection (and orientation), target quality control, and target frame modification. The preamp boards have been modified to deal with the high rate problem, too. The ultra thin carbon target lifetime is a concern. Simulations have been carried out on the target interaction with beam. Modification has also been done on the frame design. Extra caution has been put on RF shielding to deal with the pickup noises from the nearby stochastic cooling kickers. This paper summarizes the recent operation performance of this delicate device.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY016 Study of Diamond Detector Application at the Front End of a High Intensity Hadron Accelerator radiation, cavity, hadron, proton 972
 
  • G. Ren, D.H. He, W. Li, Y. Li
    USTC/NSRL, Hefei, Anhui, People's Republic of China
  • M. Zeng
    Tsinghua University, Beijing, People's Republic of China
 
  Diamond detectors function as beam loss or luminosity monitors for high energy accelerators, such as LHC, Babar, etc. Because of regular detectors‘ insufficient protection of the front end, diamond detectors owning significant characteristics, like time resolution in the nanosecond range, radiation hardness and negligible temperature dependence. Thus, diamond detectors have been becoming promising candidates for detecting BLMs of fully super-conducting hadron accelerator, such as C-ADS, FRIB. In this paper, the sensitivity of diamond detectors was simulated by Monte Carlo program FLUKA and GEAN4. Meanwhile, we tested the performance of a new prototype of CVD diamond detector, and compared it with Si-PIN and Bergoz detectors at the storage ring of the HLS II. The results of the diamond detector were consistent with other two detectors well. More evaluation of diamond detectors in low energy radiation field are ongoing.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY041 Prototype Results with a Complete Beam Loss Monitor System Optimized for Synchrotron Light Sources electron, injection, electronics, impedance 1019
 
  • P. Leban
    I-Tech, Solkan, Slovenia
  • K.B. Scheidt
    ESRF, Grenoble, France
 
  Beam loss monitors in synchrotron light sources are finding an increasing utility in particular with the trend of numerous light sources pushing to lower emittances and thus higher intra-beam scattering, while operating in top-up injection modes and employing in-vacuum undulators in their rings. The development of an optimized electron BeamLoss Monitor aims at fulfilling, in one single system, all possible functionalities and applications like both the measurement of fast-time-resolved losses at injection and the possibility of ultra-sensitive detection of low & slow electron loss level variations. This optimized beam loss monitor system comprises both the acquisition electronics and up to four sensor head per unit. The sensor heads themselves, that can be configured for different sizes or volumes, are based on the detection of the electromagnetic shower resulting from an electron loss through the use of either Cherenkov radiator or gamma scintillator and a photomultiplier tube, all assembled in a single compact housing ready for installation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY047 ESS Cold LINAC BLM Locations Determination simulation, linac, quadrupole, proton 1039
 
  • M. Jarosz, A. Jansson, J.C. Kazantzidis, T.J. Shea, L. Tchelidze
    ESS, Lund, Sweden
 
  Funding: This project (oPAC) is funded by the European Union under contract PITN-GA-2011-289485.
The linear accelerator of ESS will produce a 5 MW proton beam. Beam of this power must be strictly monitored by a specialized Beam Loss Monitoring (BLM) System to detect any abnormal losses and to ensure that operational losses do not lead to excessive activation. A long series of beam loss simulations was performed using MARS Monte Carlo code system in order to optimize the number and setting mounting locations of the detectors for best coverage, distinguishability and sensitivity. Simulations anticipated multiple possible beam loss scenarios resulting in different loss patterns. The results of energy deposition in air in the linac tunnel in multiple locations were analysed in several different ways. Incorporated methods varied from simple brute force approach to more sophisticated singular value decomposition based algorithms, all resulting in detector layout proposals. Locations selected for BLMs were evaluated for all methods.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY055 Beam Loss Monitoring for Run 2 of the LHC monitoring, injection, database, beam-losses 1057
 
  • M.K. Kalliokoski, B. Auchmann, B. Dehning, F.S. Domingues Sousa, E. Effinger, J. Emery, V. Grishin, E.B. Holzer, S. Jackson, B. Kolad, E. Nebot Del Busto, O. Picha, C. Roderick, M. Sapinski, M. Sobieszek, C. Zamantzas
    CERN, Geneva, Switzerland
 
  The Beam Loss Monitoring (BLM) system of the LHC consists of over 3600 ionization chambers. The main task of the system is to prevent the superconducting magnets from quenching and protect the machine components from damage, as a result of critical beam losses. The BLM system therefore requests a beam abort when the measured dose in the chambers exceeds a threshold value. During Long Shutdown 1 (LS1) a series of modifications were made to the system. Based on the experience from Run 1 and from improved simulation models, all the threshold settings were revised, and modified where required. This was done to improve the machine safety at 7 TeV, and to reduce beam abort requests when neither a magnet quench or damage to machine components is expected. In addition to the updates of the threshold values, about 800 monitors were relocated. This improves the response to unforeseen beam losses in the millisecond time scale due to micron size dust particles present in the vacuum chamber. This contribution will discuss all the changes made to the BLM system, with the reasoning behind them.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY057 Feasibility Study of Monitoring the Population of the CERN-LHC Abort Gap with Diamond Based Particle Detectors beam-losses, monitoring, kicker, simulation 1065
 
  • O. Stein, F. Burkart, B. Dehning, R. Schmidt, C.B. Sørensen, D. Wollmann
    CERN, Geneva, Switzerland
 
  At the end of a physics fill and in case of a failure, the LHC beams must be extracted and transferred through a 750m long line to the beam dump block. During the rise of the extraction kickers to their full strength a particle-free abort gap, with a length of 3 us in the LHC filling pattern, is required to prevent beam losses that could lead to substantial quenching of magnets, with a risk of damage. Therefore the particle population in the abort gap, which is mainly due to un-bunched beam, is monitored. Above a certain threshold an active cleaning by excitation of betatron oscillations with the transverse feedback system is initiated. This paper describes a novel method of monitoring the abort gap population using diamond particle detectors for detecting the interactions of beam in the abort gap with neon gas, injected in the beam pipe. Two different layouts of the system and the expected interaction and detection rates are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY058 Response of Polycrystalline Diamond Particle Detectors Measured with a High Intensity Electron Beam electron, experiment, radiation, beam-losses 1069
 
  • O. Stein, F. Burkart, B. Dehning, R. Schmidt, C.B. Sørensen, D. Wollmann
    CERN, Geneva, Switzerland
  • E. Griesmayer
    CIVIDEC Instrumentation, Wien, Austria
 
  Comprehensive understanding of beam losses in the LHC is required to ensure full machine protection and efficient operation. The existing BLM system using ionization chambers is not adequate to resolve losses with a time resolution below some 10 us. Ionization chambers are also not adequate to measure very large transient losses, e.g. beam impacting on collimators. Diamond particle detectors with bunch-by-bunch resolution have therefore been used in LHC to measure fast particle losses with a time resolution down to a level of single bunches. Diamond detectors have also successfully been used for material damage studies in other facilities, e.g. HiRadMat at the CERN-SPS. To fully understand their potential, such detectors were characterized with an electron beam at the BTF in LNF INFN Italy, with bunch intensities from 103 to 109 electrons. The detector response and efficiency has been measured with a 50 Ω and a 1 Ω read-out system. This paper describes the experimental setup and the results of the experiment. In particular, the responses of three samples of 100 um single-crystalline diamond detectors and two samples of 500 um polycrystalline diamond detectors are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY080 A Multi-band Single Shot Spectrometer for Observation of mm-Wave Bursts at Diamond Light Source storage-ring, synchrotron, radiation, synchrotron-radiation 1126
 
  • A. Finn, P. Karataev
    JAI, Egham, Surrey, United Kingdom
  • G. Rehm
    DLS, Oxfordshire, United Kingdom
 
  Micro-bunch instabilities (MBI) have been detected at many light sources across the world. The radiation bursts produced as a result of this instability occur in the millimetre wavelength regime. In order to understand more about the mechanism of MBI and improve the accuracy of simulations, more information is needed about the dynamics and spectral content of the radiation. A single shot spectrometer has therefore been developed to investigate this instability at Diamond Light Source. Due to their low noise, ultra-fast response and excellent sensitivity, Schottky detector diodes are employed. Currently, seven Schottky detectors are in place covering a range of 33-750 GHz. Unlike previous measurements at Diamond, each of the Schottky detectors has been characterised thus allowing the results obtained to be more easily compared to simulations. In this paper, we present the calibration of each Schottky detector in the spectrometer, the first results of tests with beam, as well as future plans for the spectrometer.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI003 Laserwire Emittance Scanner at CERN Linac 4 laser, linac, emittance, ion 1146
 
  • K.O. Kruchinin, G.E. Boorman, A. Bosco, S.M. Gibson, P. Karataev
    Royal Holloway, University of London, Surrey, United Kingdom
  • E. Bravin, T. Hofmann, U. Raich, F. Roncarolo, F. Zocca
    CERN, Geneva, Switzerland
  • A.P. Letchford
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J.K. Pozimski
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  Linac 4 presently under construction at CERN is designed to replace the existing 50 MeV Linac 2 in the LHC injector chain and will accelerate the beam of high current negative hydrogen ions to 160 MeV. During the commissioning a laserwire emittance scanner has been installed allowing noninvasive measuring of the emittance at 3 MeV and 12 MeV setups. A low power infrared fibre coupled laser was focused in the interaction region down to ~150 um and collided with the ion beam neutralising negative ions. At each transverse laser position with respect to the ion beam the angular distribution of the neutral particle beamlets was recorded by scanning a diamond detector across the beamlet at a certain distance from the IP while the main beam of the H ions was deflected using dipole magnet installed upstream the detector. Measuring the profile of the beamlet by scanning the laser across the beam allows to directly measure the transverse phase-space distribution and reconstruct the transverse beam emittance. In this report we will describe the analysis of the data collected during the 3 MeV and 12 MeV operation of the Linac 4. We will discuss the hardware status and future plans.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI010 Design and Development of a Beam Stablity Mechanical Motion System Diagnostic for the APS MBA Upgrade vacuum, insertion, insertion-device, ground-motion 1164
 
  • R.M. Lill, G. Decker, N. Sereno, B.X. Yang
    ANL, Argonne, Ilinois, USA
 
  Funding: Results shown in this report result from work performed at Argonne National Laboratory operated by UChicago Argonne, LLC, for the U.S. Department of Energy under contract DE-AC02-06CH11357.
The Advanced Photon Source (APS) is currently in the conceptual design phase for the MBA lattice upgrade. In order to achieve long-term beam stability goals, a Mechanical Motion System (MMS) has been designed to monitor critical in-tunnel beam position monitoring devices. The mechanical motion generated from changes in chamber cooling water temperature, tunnel air temperature, beam current and undulator gap positon causes erroneous changes in beam position measurements causing drift in the X-ray beam position. The MMS has been prototyped and presently provides critical information on the vacuum chamber and BPM support systems. We report on first results of the prototype system installed in the APS storage ring.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI017 Beam Extinction Monitoring in the Mu2e Experiment proton, target, experiment, shielding 1185
 
  • E. Prebys, A. Gaponenko, P.H. Kasper
    Fermilab, Batavia, Illinois, USA
  • L.M. Bartoszek
    Bartoszek Engineering, Aurora, Illinois, USA
 
  Funding: This work is supported by the US Department of Energy under contract No. De-AC02-07CH11359.
The Mu2e Experiment at Fermilab will search for the conversion of a muon to an electron in the field of an atomic nucleus with unprecedented sensitivity. The experiment requires a beam consisting of proton bunches approximately 200ns FW long, separated by 1.7 microseconds, with no out-of-time protons at the 10-10 fractional level. The verification of this level of extinction is very challenging. The proposed technique uses a special purpose spectrometer which will observe particles scattered from the production target of the experiment. The acceptance will be limited such that there will be no saturation effects from the in-time beam. The precise level and profile of the out-of-time beam can then be built up statistically, by integrating over many bunches.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI029 Electron Bombardment of ZnTe EO Bunch Charge Detector for Signal Lifetime Studies in Radiation Environment electron, lattice, laser, radiation 1220
 
  • J.E. Williams, S. Biedron, S.V. Milton
    CSU, Fort Collins, Colorado, USA
  • S.V. Benson, S. Zhang
    JLab, Newport News, Virginia, USA
 
  Electro-optic detection of bunch charge distribution utilizing the nonlinear Pockel's and Kerr effect of materials has been implemented at various facilities as a method of passive detection for beam preservation throughout characterization. Most commonly, the inorganic II-VI material ZnTe is employed due to it's strong Pockel's EO effect and relatively high temporal resolution (~90 fs). Despite early exploration of radiation damage on ZnTe in exploration of semi-conductor materials in the 1970's, full characterization of EO response over radiation lifetime has yet to be performed. The following poster presents a method for ZnTe crystal characterization studies throughout radiation exposure at various energies and dosages by analyzing the changes in index of refraction including bulk uniformity, and THz signal response changes.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI029  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI036 Investigation of Continuous Scan Methods for Rapid Data Acquisition data-acquisition, software, experiment, hardware 1243
 
  • C.L. Li
    East China University of Science and Technology, Shanghai, People's Republic of China
  • A.M. Kiss
    SLAC, Menlo Park, California, USA
  • W.J. Zhang
    University of Saskatchewan, Saskatoon, Canada
 
  It is common practice to perform spatially resolved X ray data acquisition by automatically moving components to discrete locations and then measuring beam intensity with the system at rest. While effective, scanning in this manner can be time consuming, with motors needing to accelerate, move and decelerate at each location before recording data. Information between data points may be missed unless fine grid scans are performed, which accounts for a further increase of scan time. Recent advances in commercial hardware and software enables a continuous scan capability for a wide range of applications, which saves the start and end of step motors. To compare scanning performance, both step and continuous scan modes were examined using the SPEC command language with both commercial and in-house hardware. The advantages and limitations of each are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI052 Responsivity Study of Diamond X-ray Monitors with nUNCD Contact photon, synchrotron, plasma, database 1273
 
  • M. Gaowei, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • E.M. Muller, T. Zhou
    SBU, Stony Brook, New York, USA
  • A.V. Sumant
    Argonne National Laboratory, Center for Nanoscale Materials, Argonne, USA
 
  Nitrogen doped ultrananocrystalline diamond (nUNCD) grown on the surface of a CVD single crystal diamond is tested at various beamlines covering an x-ray photon energy range of 200eV to 28 keV. The nUNCD has much lower x-ray absorption than metal contacts and is designed to improve the performance of our device. The responsivity of nUNCD diamond x-ray detector is compared with the conventional platinum coated diamond x-ray beam position monitor and the results are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAC3 Optimization of Beam Loss Monitor Network for Fault Modes cavity, network, simulation, lattice 1356
 
  • Z. Liu, Z.Q. He, S.M. Lidia, D. Liu, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
Beam Loss Monitoring (BLM) System is an essential part to protect accelerator from machine faults. Compared with the empirical or uniform BLM arrangement in most accelerators, our new optimization approach proposes a “minimum spatial distribution” for BLM network. In this distribution, BLMs shall be placed at a small set of “critical positions” that can detect all failure / FPS trigger-able events of each fault mode. In additional, to implement a more advanced function of fault diagnosis, BLM should also be placed at “discrimination points” for fault-induced loss pattern recognition. With examples of FRIB failure event simulations, the author demonstrates the proof of concept to locate these “critical positions” and “discrimination points” for the minimum spatial distribution of BLMs.
 
slides icon Slides TUAC3 [2.341 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUAC3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA016 Modeling of beam losses at ESRF vacuum, scattering, simulation, electron 1430
 
  • R. Versteegen, P. Berkvens, N. Carmignani, J. Chavanne, L. Farvacque, S.M. Liuzzo, B. Nash, T.P. Perron, P. Raimondi, K.B. Scheidt, S.M. White
    ESRF, Grenoble, France
 
  As the ESRF enters the second phase of its upgrade towards ultra low emittance, the knowledge of the beam loss pattern around the storage ring is needed for radiation safety calculations and for the new machine design optimization. A model has been developed to simulate the Touschek scattering and the scattering of electrons on residual gas nuclei in view of producing a detailed loss map of the machine. Results of simulation for the ESRF are presented and compared with real beam measurements.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA066 Development of a High Average Power Laser for High Brightness X-ray Source and Imaging at cERL laser, cavity, electron, photon 1579
 
  • A. Kosuge, T. Akagi, S. Araki, Y. Honda, N. Terunuma, J. Urakawa
    KEK, Ibaraki, Japan
  • R. Hajima, M. Mori, T. Shizuma
    JAEA, Ibaraki-ken, Japan
  • R. Nagai
    JAEA/ERL, Ibaraki, Japan
 
  Funding: This study is supported by Photon and Quantum Basic Research Coordinated Development Program of MEXT, Japan.
High brightness X-rays via laser-Compton scattering (LCS) of laser photons stored in an optical cavity by a relativistic electron beam is useful for many scientific and industrial applications such as X-ray imaging. The construction of compact Energy Recovery Linac (cERL) is now in progress at KEK to generate low-emittance and high-current electron beams. In order to demonstrate the generation of high brightness LCS X-rays, it is necessary to develop a high average power injection laser and an optical four-mirror ring cavity with two concave mirrors which is used to produce a small spot laser beam inside the cavity. In this presentation, we will show the result of the development of the high average laser system, the LCS X-rays generation, and the X-ray imaging.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA066  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE012 Preliminary Result of Photon Counting Acquisition Scheme for Laser Pump/X-ray Probe Experiments laser, synchrotron, experiment, timing 1638
 
  • J. He, J.S. Cao, G. Gao, Y.F. Sui, Y. Tao, J.H. Yue, Z. Zhang, Y.F. Zhou
    IHEP, Beijing, People's Republic of China
 
  Funding: This work is supported by the NSFC under grant No.11305186
R&D project has been initiated for a proposed ultralow emittance (~50pm.rad) synchrotron light source built in Beijing. The R&D includes the development of high repetition rate laser pump/X-ray probe for ultrafast dynamics detection in future source. In a typical laser pump/X-ray probe measurement, the X-ray pulse follows a laser pulse in adjustable delay. We are interested in the difference between laser on and laser off at different delay, which will snapshot dynamic process. To capture this trivial difference, it requires the acquisition system to single out the signal from this special X-ray pulse at adequate S/N ratio. For the R&D of high repetition rate pump-probe, we have set up a prototype counting acquisition system based on NIM modular electronics, which was tested in Beijing Synchrotron Radiation Facility (BSRF). The laser will be synchronized with a camshaft bunch at 124 kHz, a tenth of the revolution frequency. Avalanche Photo Diode (APD) was used to detect the X-ray pulse from this camshaft bunch due to its nanosecond response. Before the laser is delivered, we mimic the 124 kHz laser- on signal. The signals from APD are separated by power dividers into two Constant Fraction Discriminator (CFD) input channels. The signal in laser-on/off channel is gated out at 1.24MHz using the 1.24MHz timing signal divided from 499.8 MHz RF signal, while the mimic laser-on signal gated out at 124 kHz. Multiplied by ten times, the mimic laser-on signal counts should be consistent with the laser-on+off counts, if our counting modular works well. We carried out this test at 1W1B wiggler beam line to measure the Fe fluorescence signal. The performance of our system is demonstrated in the good consistency between mimic laser on and laser on+off signals.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE055 The Evolution of the Transverse Energy Distribution of Electrons from a GaAs Photocathode as a Function of its Degradation State electron, cathode, brightness, vacuum 1748
 
  • L.B. Jones, B.L. Militsyn, T.C.Q. Noakes
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • H.E. Scheibler, A.S. Terekhov
    ISP, Novosibirsk, Russia
 
  The brightness of a photoelectron injector is fundamentally limited by the mean longitudinal and transverse energy distributions of the photoelectrons emitted from its photocathode, and is increased significantly if the mean values of these quantities are reduced. To address this, ASTeC constructed a Transverse Energy Spread Spectrometer (TESS)* – an experimental facility designed to measure these transverse and longitudinal energy distributions which can be used for III-V semiconductor, alkali antimonide/telluride and metal photocathode research. We present measurements showing evolution of the transverse energy distribution of electrons from GaAs photocathodes as a function of their degradation state. Photocathodes were activated to negative electron affinity in our photocathode preparation facility (PPF)** with quantum efficiency around 10.5%. They were then transferred to TESS under XHV conditions, and progressively degraded through controlled exposure to oxygen. Data has been collected under photocathode illumination at 635 nm, and demonstrates a constant relationship between energy distribution and the level of electron affinity.
* Proc. FEL ’13, TUPPS033, 290-293
** Proc. IPAC '10, TUPE095, 2347-2349, Proc. IPAC ’11, THPC129, 3185-3187
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA008 Numerical Study of Three Dimensional Effects in Longitudinal Space-Charge Impedance impedance, space-charge, simulation, radiation 1853
 
  • A. Halavanau, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Longitudinal space-charge (LSC) effects are generally considered as detrimental in free-electron lasers as they can seed instabilities. Such "microbunching instabilities" were recently shown to be potentially useful to support the generation of broadband coherent radiation pulses. Therefore there has been an increasing interest in devising accelerator beamlines capable of sustaining this LSC instability as a mechanism to produce a coherent light source. To date most of these studies have been carried out with a one-dimensional impedance model for the LSC. In this paper we use a N-body "Barnes-Hut" algorithm * to simulate the 3D space charge force in the beam combined with Elegant ** and explore the limitation of the 1D model often used.
* Barnes, J. & Hut, P., Nature 324, 446-449, 1986.
** Borland, M., Advanced Photon Source LS-287, 2000.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA017 Pulsed-wire Measurements for Insertion Devices undulator, electron, FEL, laser 1869
 
  • A. D'Audney, S. Biedron, S.V. Milton, S.A. Stellingwerff
    CSU, Fort Collins, Colorado, USA
 
  The performance of a Free Electron Laser (FELs) depends in part on the integrity of the magnetic field in the undulator. The magnetic field on the axis of the undulator is transverse and sinusoidally varying due to the periodic sequence of dipoles. The ideal trajectory of a relativistic electron bunch, inserted along the axis, is sinusoidal in the plane of oscillation. Phase errors are produced when the path of the electron is not the ideal sinusoidal trajectory, due to imperfections in the magnetic field. The result of such phase errors is a reduction of laser gain impacting overall FEL performance. A pulsed-wire method can be used to determine the profile of the magnetic field. This is achieved by sending a square current pulse through the wire, which will induce an interaction with the magnetic field. Measurement of the displacement in the wire over time using a motion detector yields the first or second integrals of the magnetic field. Dispersion in the wire can be corrected using algorithms resulting in higher accuracy. Once the fields are known, magnetic shims are placed where any corrections are needed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA036 First e-/Photon Commissioning Results for the GlueX Experiment/Hall D at CEBAF photon, radiation, acceleration, target 1916
 
  • M.D. McCaughan, J. F. Benesch, Y. Roblin, T. Satogata
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Experimental Hall D, with flagship experiment GlueX, was constructed as part of the 12 GeV CEBAF upgrade. A new magnetically extracted electron beam line was installed to support this hall. Bremsstrahlung photons from retractable radiators, are delivered to the experiment through a series of collimators following a long drift to allow for beam convergence. Coherent Bremsstrahlung generated by interaction with a diamond radiator will achieve a nominal 40% linear polarization and photon energies between 8.5 and 9 GeV from 12.1 GeV electrons, which are then tagged or diverted to a medium power 60kW electron dump. The expected photon flux is 107-108 Hz. This paper discusses the experimental line design, commissioning experience gained since first beam in spring 2014, and the present results of beam commissioning by the experiment.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY004 Tracking Simulation for Beam Loss Studies with Application to FCC simulation, lattice, scattering, collider 2004
 
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
  • H. Burkhardt
    CERN, Geneva, Switzerland
 
  We present an implementation of a tracking simulation tool used to evaluate the main particle loss effects for Flavor Factories with the aim of applying these studies also to FCC. We describe the interface of the Monte Carlo tracking code with MAD-X, showing first simulations of the Touschek effect for the FCC-ee at the Z. We plan to use this approach also for multi-turn simulations of particles scattered by radiative Bhabha, beam-gas and eventually Beamstrahlung effects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY011 A Preliminary Design of the CEPC Interaction Region interaction-region, dynamic-aperture, quadrupole, luminosity 2019
 
  • Y. Wang, S. Bai, T.J. Bian, X. Cui, J. Gao, H. Geng, D. Wang, Y.S. Zhu
    IHEP, Beijing, People's Republic of China
 
  CEPC (Circular Electron and Positron Collider) is a circular Higgs Factory with optimized energy 240 GeV. In order to achieve luminosity as high as 2×1034/cm2/s, CEPC calls for a small vertical beta function at IP (betay∗=1.2 mm) which was provided by the final focus of the interaction region. In this paper, a preliminary design of the CEPC interaction region was presented. The optimization of dynamic aperture with interaction region insertion and the machine detector interface was discussed as well.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY016 Study of Background and MDI Design for CEPC background, scattering, photon, simulation 2028
 
  • Y. Yue, Q. Qin
    IHEP, Beijing, People's Republic of China
 
  CEPC is a project designed to obtain a large number of Higgs events by keeping e+e collisions at the center-of-mass energy of 240 GeV and deliver peak luminosity above 1034 cm-2 s-1 for each interaction point. The super high energy and the pretty high luminosity will bring some special background problems, which will exert difficulty on the MDI design and the detectors protection. In this article, I will show the simulation result of the main background sources at CEPC and give some suggestions on the MDI design and detectors protection.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY017 Ion Polarization Control in the MPD and SPD Detectors of the NICA Collider polarization, solenoid, collider, proton 2031
 
  • A.D. Kovalenko, A.V. Butenko, V.D. Kekelidze, V.A. Mikhaylov
    JINR, Dubna, Moscow Region, Russia
  • Y. Filatov
    MIPT, Dolgoprudniy, Moscow Region, Russia
  • A.M. Kondratenko, M.A. Kondratenko
    Science and Technique Laboratory Zaryad, Novosibirsk, Russia
 
  Two solenoid Siberian snakes are placed in the opposite collider’s straight sections are used to control deuteron’s and proton’s polarization in the NICA collider. Solenoid snakes substantially reconstruct beam’s orbital motion. The change of the polarization direction in the vertical plane of MPD and SPD detectors occurs due to insertion of polarization control (PC) solenoids in the magnetic lattice of the collider. The solenoids rotating particle’s spin by small angels practically do not influence on the beam’s orbital motion parameters. The dynamic of the polarization vector as function of the orbit length for cases of longitudinal and vertical polarization in the MPD and SPD detectors are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY031 Tools for Flexible Optimisation of IR Designs with Application to FCC radiation, synchrotron, synchrotron-radiation, simulation 2072
 
  • H. Burkhardt
    CERN, Geneva, Switzerland
  • M. Boscolo
    INFN/LNF, Frascati (Roma), Italy
 
  The interaction regions of future high-luminosity colliders require well balanced designs, which provide both for a very high luminosity and at the same time keep backgrounds and radiation at tolerable levels. We describe a set of flexible tools, targeted at providing a first evaluation of losses in the interaction region as part of the design studies, and their application to FCC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPTY070 Strong-Strong Simulations of Beta star Levelling for Flat and Round Beams luminosity, emittance, simulation, resonance 2192
 
  • M.P. Crouch, R.B. Appleby
    UMAN, Manchester, United Kingdom
  • B.D. Muratori
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Funding: STFC HL-LHC
The HL-LHC project aims to reach larger peak luminosities, however this can lead to a high pile up in the detectors. To control the pile up, luminosity levelling has been suggested. One proposed method is β*-luminosity levelling, in which beams collide at a larger than nominal β*. The β* is then reduced in steps as the beam intensity decays. This allows the luminosity to be kept constant over part of a physics fill. The use of round or flat optics will change the beam-beam effect of the head on collisions as well as the long range interactions. Here simulations of β* levelling are presented for the case of flat and round beam optics and the difference in terms of the beam-beam effect is highlighted.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI009 Development of Un-destructive Inspection System for Large Concrete Infrastructure by using Accelerator Based Compact Neutron Source neutron, target, proton, photon 2262
 
  • A. Taketani, H. Baba, T. Hashiguchi, G. Hu, Y. Ikeda, Q. Jia, H. Ota, Y. Otake, Y. Seki, S. Wang, Y. Yamagata, S. Yanagimachi
    RIKEN, Saitama, Japan
  • K. Hirota
    Nagoya University, Nagoya, Japan
  • K. Kino
    Hokkaido University, Sapporo, Japan
  • S. Tanaka
    KEK, Tsukuba, Japan
 
  Aged large concrete structure, such as highway, bridges and so on, need to be inspected in order to maintain with less cost by un-destructive method. We have been developing un-destructive inspection system by using fast neutron which can penetrate thick concrete. The system will be consisted of (1) Transportable Accelerator based Neutron Source, (2) Fast neutron imaging detector, and (3) Image processing for getting 3D image. RIKEN Accelerator based compact Neutron Source (RANS), which consists of 7MeV proton LINAC and target station, has been operating since 2013. RANS can generate thermal (~25meV) and fast (~2MeV) neutron. Fast neutron detector are developed with plastic scintillator and semiconductor photon sensors. It can see 10mm thick steel rod with 2mm accuracy through 300mm thick concrete.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI019 Neutron Shielding Optimization Studies neutron, shielding, target, proton 2282
 
  • A. Bungau, R.J. Barlow
    University of Huddersfield, Huddersfield, United Kingdom
  • J.R. Alonso, L.M. Bartoszek, J.M. Conrad
    MIT, Cambridge, Massachusetts, USA
  • M. Shaevitz
    Columbia University, New York, USA
 
  The IsoDAR sterile-neutrino search calls for a high neutron flux from a 60 MeV proton beam striking a beryllium target, that flood a sleeve of highly-enriched 7Li, the beta-decay of the resulting 8Li giving the desired neutrinos for the very-short-baseline experiment. The target is placed very close to an existing large neutrino detector; all such existing or planned detectors are deep underground, in low-background environments. It is necessary to design a shielding enclosure to prevent neutrons from causing unacceptable activation of the environment. GEANT4 is being used to study neutron attenuation, and optimizing the layers of shielding material to minimize thickness. Materials being studied include iron and two new types of concrete developed by Jefferson Laboratory, one very light with shredded plastic aggregate, the other with high quantities of boron. Initial studies indicate that a total shielding thickness of 1.5 meters produces the required attenuation factor, further studies may allow decrease in thickness. Minimizing it will reduce the amount of cavity excavation needed to house the target system in confined underground spaces.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI048 Experimental Demonstration of an Interaction Region Beam Waist Position Knob for Luminosity Leveling luminosity, optics, controls, experiment 2357
 
  • Y. Hao, Y. Luo, A. Marusic, G. Robert-Demolaize, X. Shen
    BNL, Upton, Long Island, New York, USA
  • M. Bai
    FZJ, Jülich, Germany
  • Z. Duan
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
In this paper, we report on the experimental implementation of the model-dependent control of the interaction region beam waist position (s* knob) at the Relativistic Heavy Ion Collider (RHIC). The s* adjustment provides an alternative way of controlling the luminosity and is the only known method to control the luminosity and to reduce the pinch effect of the future eRHIC. We first demonstrate the effectiveness of the s* knob in luminosity controlling and its application in the future electron ion collider, eRHIC, followed by details of the experimental demonstration of such knob in RHIC.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA032 CsK2Sb Growth Studies: Towards High Quantum Efficiency and Smooth Surfaces cathode, simulation, emittance, experiment 2566
 
  • S.G. Schubert, M. Gaowei, J. Sinsheimer, J. Smedley
    BNL, Upton, Long Island, New York, USA
  • Z. Ding, E.M. Muller
    SBU, Stony Brook, New York, USA
  • J. Kühn
    HZB, Berlin, Germany
  • H.A. Padmore, J.J. Wong
    LBNL, Berkeley, California, USA
  • J. Xie
    ANL, Argonne, Illinois, USA
 
  Funding: This work was supported by the US DOE, under Contracts DE-AC02-05CH11231, DE-AC02-98CH10886, KC0407-ALSJNT-I0013, DE-FG02-12ER41837 and the German BMBF, Helmholtz-Association and Land Berlin.
The properties of CsK2Sb, make this material an ideal candidate as photocathode for electron injector use. Producing photocathodes with quantum efficiencies with 7% and greater at 532 nm poses no challenge, nevertheless the traditional growth mechanisms, which are based on a sequential deposition of Antimony, Potassium and Cesium at a temperature gradient yield a rough surface with a rms roughness in the range of 25 nm. Surface roughness’s in this region impacts the emittance. At an accelerating field of 3 MV/m an rms surface roughness of 25 nm is the dominant effect on emittance and will limit injector performance. Studies are performed to optimize roughness. Various growth procedures are exploited and the surface roughness compared.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA032  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA043 Progress on the Design of the Racetrack FFAG Decay Ring for nuSTORM lattice, factory, closed-orbit, resonance 2594
 
  • J.-B. Lagrange, J. Pasternak
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • R.B. Appleby, J.M. Garland, H.L. Owen, S.C. Tygier
    UMAN, Manchester, United Kingdom
  • R.B. Appleby
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • Y. Mori
    Kyoto University, Research Reactor Institute, Osaka, Japan
 
  The neutrino beam produced from muons decaying in a storage ring would be an ideal tool for precise neutrino cross section measurements and search for sterile neutrinos due to its precisely known flavour content and spectrum. In the proposed nuSTORM facility pions would be directly injected into a storage ring, where circulating muon beam would be captured. The racetrack FFAG (Fixed Field Alternating Gradient) option for nuSTORM decay ring offers a very good performance due to a large dynamic and momentum acceptance. Machine parameters, linear optics design, beam dynamics and injection system for nuSTORM FFAG ring are discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA044 The Alignment of the MICE Tracker Detectors alignment, emittance, experiment, scattering 2597
 
  • M.A. Uchida
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
 
  The Muon Ionization Cooling experiment (MICE) has been designed to demonstrate the reduction of the phase-space volume (cooling) occupied by a muon beam using the ionization-cooling technique. This demonstration will be an important step in establishing the feasibility of muon accelerators for particle physics. The emittance of the beam will be measured before and after the cooling cell using a solenoidal spectrometer. Each spectrometer will be instrumented with a high-precision scintillating-fibre tracking detector (Tracker). The Trackers will be immersed in a uniform magnetic field of 4T and will measure the normalised emittance reduction with a precision of 0.1%. A thorough knowledge of the alignment of the Trackers is essential for this accuracy to be achieved. The Trackers are aligned: mechanically inside the spectrometer solenoids, with respect to the MICE experimental hall, to one another, and to the magnetic and beam axes. These methods are described here.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWA052 RF Conditioning of the Photo-Cathode RF Gun at the Advanced Photon Source - NWA RF Measurements gun, cathode, linac, vacuum 2621
 
  • T.L. Smith, N.P. DiMonte, A. Nassiri, Y.-E. Sun, A. Zholents
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357
A new S-band photo-cathode (PC) gun was recently installed and RF conditioned at the Advanced Photon Source (APS) Injector Test-stand (ITS) at Argonne National Lab (ANL). The APS PC gun is a LCLS type gun fabricated at SLAC [1]. The PC gun was delivered to the APS in October 2013 and installed in the APS ITS in December 2013. At ANL, we developed a new method of fast detection and mitigation of the gun’s internal arcs during the RF conditioning process to protect the gun from arc damage and to RF condition more efficiently. Here, we report the results of RF measurements for the PC gun and an Auto-Restart method for high power RF conditioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA045 Design and Construction of the RF Electronic System at Taiwan Photon Source cavity, booster, controls, LLRF 3215
 
  • F.-T. Chung, L.-H. Chang, M.H. Chang, L.J. Chen, PY. Chen, M.-C. Lin, Z.K. Liu, C.H. Lo, C.L. Tsai, M.H. Tsai, Ch. Wang, M.-S. Yeh, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  The RF electronic system at NSRRC was made fully in house by the RF group from design through construction to completion. The first RF electronic system includes an analogue LLRF system, a step motor, and an ARC module of a Petra cavity. It was successfully integrated with a 100-kW RF transmitter, high-power RF transfer system, and a cooling system and applied to the booster of TPS. Two duplicated RF electronic system were then applied to the storage ring but integrated with the 300-KW transmitters. With these RF systems, the TPS storage ring achieved beam current 100 mA on 2015 March 26.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY040 Quench Performance of the First Twin-aperture 11 T Dipole for LHC upgrades dipole, magnet-design, status, collimation 3361
 
  • A.V. Zlobin, N. Andreev, G. Apollinari, E.Z. Barzi, G. Chlachidze, A. Nobrega, I. Novitski, S. Stoynev, D. Turrioni
    Fermilab, Batavia, Illinois, USA
  • B. Auchmann, S. Izquierdo Bermudez, M. Karppinen, L. Rossi, F. Savary, D. Smekens
    CERN, Geneva, Switzerland
 
  Funding: *Work is supported by Fermi Research Alliance, LLC, under contract No. DE-AC02-07CH11359 with the U.S. Department of Energy and European Commission under FP7 project HiLumi LHC, GA no.284404
The LHC luminosity upgrade plan foresees installation of additional collimators in Dispersion Suppressor areas around point 7 and interaction regions 1, 2 and 5. The required space for these collimators could be provided by replacing some 15-m long 8.33 T NbTi LHC main dipoles (MB) with shorter 11 T Nb3Sn dipoles (MBH) compatible with the LHC lattice and main systems. FNAL and CERN magnet groups are developing a 5.5-m long twin-aperture dipole prototype with the nominal field of 11 T at the LHC nominal current of 11.85 kA suitable for installation in the LHC. Two of these magnets with a collimator in between will replace one MB dipole. The single-aperture 2-m long dipole demonstrator and two 1-m long dipole models have been assembled and tested at FNAL in 2012-2014. The 1 m long collared coils were then assembled into the first twin-aperture Nb3Sn demonstrator dipole and tested. This paper reports test results of the first twin-aperture Nb3Sn dipole model focusing on magnet training, ramp rate sensitivity and temperature dependence of the magnet quench current. The twin-aperture dipole quench performance is compared with the data for the single-aperture models.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY040  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF081 On the Suitability of a Solenoid Horn for the ESS Neutrino Superbeam solenoid, target, focusing, linac 3873
 
  • M. Olvegård, T.J.C. Ekelöf, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • J.-P. Koutchouk
    CERN, Geneva, Switzerland
 
  The European Spallation Source (ESS), now under construction in Lund, Sweden, offers unique opportunities for experimental physics, not only in neutron science but potentially in particle physics. The ESS neutrino superbeam project plans to use a 5 MW proton beam from the ESS linac to generate a high intensity neutrino superbeam, with the final goal of detecting leptonic CP-violation in an underground megaton Cherenkov water detector. The neutrino production requires a second target station and a complex focusing system for the pions emerging from the target. The normal-conducting magnetic horns that are normally used for these applications cannot accept the 2.86 ms long proton pulses of the ESS linac, which means that pulse shortening in an accumulator ring would be required. That, in turn, requires H operation in the linac to accommodate the high intensity. As an attractive alternative, we investigate the possibility of using superconducting solenoids for the pion focusing. This solenoid horn system needs to also separate positive and negative pion charge as completely as possible, in order to generate separately neutrino and anti-neutrino beams. We present here progress in the study of such a solenoid horn.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF122 The Status of MICE Step IV solenoid, emittance, experiment, collider 4000
 
  • D. Rajaram
    Fermilab, Batavia, Illinois, USA
  • V.C. Palladino
    INFN-Napoli, Napoli, Italy
 
  Funding: SFTC, DOE, NSF, INFN, CHIPP and more
Muon (μ) beams of low emittance provide the basis for the intense, well-characterised neutrino beams of the Neutrino Factory and for lepton-antilepton collisions at energies of up to several TeV at the Muon Collider. The International Muon Ionization Cooling Experiment (MICE) will demonstrate ionization cooling; the technique by which it is proposed to reduce the μ phase-space volume. In a cooling channel, the μ beam traverses a material (the absorber) in which it looses energy, then replaced longitudinally by RF cavities. The net effect is to reduce transverse emittance(transverse cooling). MICE is being constructed in a series of Steps. At Step IV, MICE will study the properties of liquid hydrogen and lithium hydride that affect cooling. A solenoidal spectrometer will measure emittance up and downstream of the absorber vessel, where a focusing coil will focus muons. The construction of Step IV at RAL is well advanced towards scheduled completion early in 2015. Its status will be described together with a summary of the performance of the principal components. Plans for the commissioning and operation and the Step IV measurement programme will be described.

 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)