Keyword: focusing
Paper Title Other Keywords Page
MOPWA037 Mirror Symmetric Chicane-Type Emittance Exchange Beamline with Two Deflecting Cavities quadrupole, emittance, cavity, dipole 190
 
  • V. Balandin, W. Decking, N. Golubeva
    DESY, Hamburg, Germany
 
  Among optical systems for transverse-to-longitudinal emittance exchange (EEX) chicane-type beamlines are of keen interest, because they do not alter the beam propagation direction. Several designs of such beamlines involving a single dipole-mode cavity (TDC) are known. In this paper we present a chicane-type EEX beamline utilizing two TDCs instead of one. The advantages of this beamline are that it is mirror symmetric and does not require an additional accelerating mode cavity for compensation of the so-called thick-lens effect, and, in the compact design, it allows better control of the beam focusing in the non-bending plane than known beamlines with one TDC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWA038 Sensitivity of Linac Optics to Focusing and Energy Errors optics, linac, operation, quadrupole 193
 
  • V. Balandin, W. Decking, N. Golubeva
    DESY, Hamburg, Germany
 
  The ability to control beam optics in the presence of such imperfections as focusing and energy gain errors is essential for a successful operation of high brightness electron linacs providing beams for free-electron lasers. We characterize the cumulative effect of these imperfections using the value of mismatch parameter calculated at the linac exit and show how it depends on the design of the focusing lattice.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE023 3D Computer Simulations of the Ultrarelativistic Beam Dynamics in Super Colliders simulation, collider, experiment, plasma 326
 
  • M.A. Boronina, V.A. Vshivkov
    ICM&MG SB RAS, Novosibirsk, Russia
  • G. Dudnikova
    ICT SB RAS, Novosibirsk, Russia
 
  Funding: The work is supported by RFBR Grants 14-01-31088, 14-01-00392, 14-07-00241.
The problem of numerical modeling of beam-beam interaction with high relativistic factor (~104) is considered. We present 3D a self-consistent simulation model based on particle-in-cell method. The mixed Euler-Lagrangian decomposition is used in parallel algorithm for achieving good load balancing and reducing communication cost. Stable regimes of beam dynamics, depending on the beams configuration (beta-function, emittance, energy, currents and relative offset) can be found on the base of the model. In the calculations we used 108 particles on the grid 100x100x100, the number of processors depends highly on the beam shape. The Lomonosov Super Computer and Siberian Supercomputer Centre cluster were used to perform the presented simulations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE023  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE043 Design and Optimization of Electrostatic Deflectors for ELENA vacuum, antiproton, alignment, simulation 382
 
  • D. Barna
    University of Tokyo, Tokyo, Japan
  • W. Bartmann, M.A. Fraser, R. Ostojić
    CERN, Geneva, Switzerland
 
  The ELENA ring will decelerate the antiprotons ejected from the Antiproton Decelerator (AD) at 5.3 MeV down to 100 keV kinetic energy. The slow antiprotons will be delivered to experiments using electrostatic beamlines, consisting of quadrupoles, correctors and deflectors. An extensive simulation study was carried out to find solutions to minimize the aberrations of the deflectors. These solutions will be presented together with the actual design of these devices.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE043  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE084 Particle-in-cell Simulations of a Plasma Lens at Daresbury Laboratory plasma, emittance, simulation, experiment 518
 
  • K. Hanahoe, O. Mete, G.X. Xia
    UMAN, Manchester, United Kingdom
  • D. Angal-Kalinin, J.K. Jones
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
 
  Feasibility of a focusing element using the transverse fields provided by a plasma cell was studied numerically. In this paper, an experimental set up is proposed for various beam parameters available from the VELA and CLARA beam lines at Daresbury Laboratory. 2D simulation results from VSim, and expected results from planned measurement stations are presented. Field properties and the advantages and disadvantages of such an instrument compared to conventional focusing elements are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE084  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA016 Coupler RF Kick in the Input 1.3 GHz Accelerating Cavity of the LCLS-II Linac cavity, HOM, accelerating-gradient, emittance 571
 
  • A. Lunin, N. Solyak, A.I. Sukhanov, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Main and HOM couplers break the cavity axial symmetry, distort RF field and, thus, create a transverse kick, even for a particle moving along the cavity axes. Dependence of a kick on the RF phase causes a beam emittance dilution and degrade the FEL radiation quality. The transverse kick is most dangerous for a beam passing through the first accelerating structure of a linac, where particles energy and their relativistic mass are low. In the paper we analyze the coupler RF kick in the first accelerating structure of the LCSL-II linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA028 Chromaticity and Dispersion in Nonlinear Integrable Optics lattice, optics, dynamic-aperture, octupole 608
 
  • S.D. Webb, D.L. Bruhwiler
    RadiaSoft LLC, Boulder, Colorado, USA
  • V.V. Danilov
    ORNL, Oak Ridge, Tennessee, USA
  • S. Nagaitsev, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Funding: This material is based upon work sup- ported by the U.S. Department of Energy, Office of Sci- ence, Office of High Energy Physics under Award Num- ber DE-SC0011340.
Proton accumulator rings and other circular hadron accelerators are susceptible to intensity- driven parametric instabilities because the zero-current charged particle dynamics are characterized by a single tune. Landau damping can suppress these instabilities, which requires energy spread in the beam or introducing nonlinear magnets such as octupoles. However, this approach reduces dynamic aperture. Nonlinear integrable optics can suppress parametric instabilities independent of energy spread in the distribution, while preserving the dynamic aperture. This novel approach promises to reduce particle losses and enable order-of-magnitude increases in beam intensity. In this paper we present results, obtained using the Lie operator formalism, on how chromaticity and dispersion affect particle orbits in integrable optics. We conclude that chromaticity in general breaks the integrability, unless the vertical and horizontal chromaticities are equal. Because of this, the chromaticity correcting magnets can be weaker and fewer correcting magnet families are required, thus minimizing the impact on dynamic aperture.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA028  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA045 Conceptual Difficulties of a Thermodynamics Description of Charged-Particle Beams emittance, space-charge, simulation, beam-transport 649
 
  • S. Bernal
    UMD, College Park, Maryland, USA
 
  Funding: This work is funded by the US Dept. of Energy
We review the existing phenomenological theories of emittance growth with and without entropy terms and re-examine the condition for thermal equipartitioning in an unbunched charged-particle beam. The model incorporates linear space charge and a uniform-focusing lattice. Because of non-extensitivity of the transverse ("thermal") energy and the absence of a classical heat bath, we conclude that a rigorous classical thermodynamics treatment of charged-particle beams is not possible. In particular, the postulated relationships between the rms emittance and temperature and entropy must be qualified.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA047 Nonlinear Beam Dynamics Studies of the Next Generation Strong Focusing Cyclotrons as Compact High Brightness, Low Emittance Drivers cavity, cyclotron, proton, wakefield 656
 
  • S. Assadi, P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
  • N. Pogue
    PSI, Villigen, Villigen, Switzerland
 
  Funding: Work is partially supported by grants from the State of Texas (ASE) & the Michelle foundation.
The Strong Focusing Cyclotron development at Texas A&M University has evolved from stacks of cyclotrons to a single layer high brightness, low emittance to produce greater than 10 mA of proton beam to a desired target at 800 MeV. The latest design has a major geometric design optimization of strong focusing quadrupoles and a modified algorithm of high gradient cavities to address the small turn separation, and interaction of radially neighboring bunches and reduced the number of turns necessary to reach the desired final energy under control conditions. In this paper, we present the new design, physics of nonlinear synchrobetratron coupling, mνh+nνv=p causing beam blow-up in other form of cyclotrons and how we have resolved it. The cavity beam loading and space charge effects of multi turns at low energies to reduce losses are discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA049 Development of a Single-pass Amplifier for an Optical Stochastic Cooling Proof-of-principle Experiment at Fermilab's IOTA facility laser, undulator, experiment, radiation 659
 
  • M.B. Andorf, P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
  • V.A. Lebedev, P. Piot
    Fermilab, Batavia, Illinois, USA
 
  Optical stochastic cooling (OSC) is a method of beam cooling which is expected to provide cooling rates orders of magnitude larger than ordinary stochastic cooling. Light from an undulator (the pickup) is amplified and fed back onto the particle beam via another undulator (the kicker). Fermilab is currently exploring a possible proof-of-principle experiment of the OSC at the integrable-optics test accelerator (IOTA) ring. To implement effective OSC a good correction of phase distortions in the entire band of the optical amplifier is required. In this contribution we present progress in experimental characterization of phase distortions associated to a Titanium Sapphire crystal laser-gain medium (a possible candidate gain medium for the OSC experiment to be performed at IOTA). We also discuss a possible option for a mid-IR amplifier.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA058 Effect of Spherical Aberration on Beam Emittance Growth emittance, space-charge, proton, simulation 688
 
  • Y.K. Batygin
    LANL, Los Alamos, New Mexico, USA
 
  Funding: Work supported by the United States Department of Energy, National Nuclear Security Agency, under contract DE-AC52-06NA25396
Spherical aberration in axial-symmetric magnetic focusing lenses results in S-shape figure of beam emittance. Filamentation of beam emittance in phase space is a fundamental property of a beam affected by aberrations. Analytical expression for effective beam emittance growth due to spherical aberration as a function of lens aberraion coefficient, initial beam emittance, beam radius, and focal lens of the focusing lens is obtained. Analysis is extended for beam space charge aberrations. Analytical results are confirmed by numerical calculations.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA004 Oide Limit Mitigation Studies radiation, quadrupole, luminosity, octupole 781
 
  • O.R. Blanco-García, P. Bambade
    LAL, Orsay, France
  • R. Tomás
    CERN, Geneva, Switzerland
 
  Particle radiation when traversing a focusing quadrupole limits the minimum achievable beam size, known as the Oide limit. This effect may be compensated by a pair of multipoles which reduce the impact of the energy loss in the vertical beam size. Simulations in PLACET using the CLIC 3 TeV QD0 and L⃰ show a reduction of (4.3 ± 0.2)% in the vertical beam size.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUYC3 Scaling Down Synchronous Acceleration: Recent Results, Current Status, and Future Plans of a Subrelativistic Dielectric Laser Acceleration Project electron, laser, acceleration, experiment 1325
 
  • J.C. McNeur, P. Hommelhoff, M. Kozak, A. Li, N. Schönenberger, A.D. Tafel
    University of Erlangen-Nuremberg, Erlangen, Germany
 
  This talk will describe the latest results using laser powered dielectric accelerators. Recent experiments in the US (SLAC) and Europe (MPQ) have fabricated dielectric accelerators powered with optical lasers and used them to accelerate electrons with gradients between 25 and 300 MeV/m. The latest results will be reviewed and prospects and applications for the future will be discussed.  
slides icon Slides TUYC3 [21.295 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUYC3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWA009 50 MeV Electron Linac with a RF Gun and a Thermoionic Cathode gun, linac, cavity, cathode 1413
 
  • A.S. Setty, A.S. Chauchat, D. Fasse, D. Jousse, P. Sirot
    Thales Communications & Security (TCS), Gennevilliers Cedex, France
 
  The low energy part of our pre injectors is made up of a 90 kV DC themoionic trioode gun, followed by a 500 MHz sub harmonic prebuncher and a 3 GHz prebuncher. We propose a new design for a 50 MeV linac with a RF gun *. this study will compare the beam dynamics simulations for the new design and for our previous pre injectors.
* A. Setty et al. "Study of a RF gun with a Thermoionic Cathode", Proceeding IPAC 2014, Germany, Dresden, June 2014.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE044 Local Orbit Response Matrix Measurement at SLS quadrupole, optics, storage-ring, feedback 1713
 
  • M. Aiba, M. Böge
    PSI, Villigen PSI, Switzerland
 
  The experimental determination of linear optics is essential to achieve a high performance ring accelerator. One of the methods, linear optics from closed orbits (LOCO), is widely employed to correct linear optics. Due to the ring nature, a quadrupole error at a location of the ring affects the entire orbit response measurement data. The orbit response, however, can be localised to a certain range of the ring when an orbit feedback (or correction) is applied to the rest of the ring. The quadrupole errors located in the range, where the feedback is acting, then have no impact, and the ring optics can be locally examined. An application of this technique to Swiss light source is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPHA013 Skew-Quad Parametric-Resonance Ionization Cooling: Theory and Modeling coupling, resonance, betatron, emittance 1993
 
  • A. Afanasev
    GWU, Washington, USA
  • Y.S. Derbenev, V.S. Morozov, A.V. Sy
    JLab, Newport News, Virginia, USA
  • R.P. Johnson
    Muons, Inc, Illinois, USA
 
  Funding: This work was supported in part by U.S. DOE STTR Grants DE-SC0005589 and DE-SC0007634.
Muon beam ionization cooling is a key component for the next generation of high-luminosity muon colliders. To reach adequately high luminosity without excessively large muon intensities, it was proposed previously to combine ionization cooling with techniques using a parametric resonance (PIC). Practical implementation of PIC proposal is a subject of this report. We show that an addition of skew quadrupoles to a planar PIC channel gives enough flexibility in the design to avoid unwanted resonances, while meeting the requirements of radially-periodic beam focusing at ionization-cooling plates, large dynamic aperture and an oscillating dispersion needed for aberration corrections. Theoretical arguments are corroborated with models and a detailed numerical analysis, providing step-by-step guidance for the design of Skew-quad PIC (SPIC) beamline.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPWI044 Final Muon Emittance Exchange in Vacuum for a Collider quadrupole, emittance, collider, betatron 2346
 
  • D.J. Summers, J.G. Acosta, L.M. Cremaldi, T.L. Hart, S.J. Oliveros, L.P. Perera, W. Wu
    UMiss, University, Mississippi, USA
  • D.V. Neuffer
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work supported by NSF Award 0969770
We outline a plan for final muon ionization cooling with quadrupole doublets focusing onto short absorbers followed by emittance exchange in vacuum to achieve the small transverse beam sizes needed by a muon collider. A flat muon beam with a series of quadrupole doublet half cells appears to provide the strong focusing required for final cooling. Each quadrupole doublet has a low beta region occupied by a dense, low Z absorber. After final cooling, normalized xyz emittances of (0.071, 0.141, 2.4) mm-rad are exchanged into (0.025, 0.025, 70) mm-rad. Thin electrostatic septa efficiently slice the bunch into 17 parts. The 17 bunches are interleaved into a 3.7 meter long train with RF deflector cavities. Snap bunch coalescence combines the muon bunch train longitudinally in a 21 GeV ring in 55 microseconds, one quarter of a synchrotron oscillation period. A linear long wavelength RF bucket gives each bunch a different energy causing the bunches to drift until they merge into one bunch and can be captured in a short wavelength RF bucket with a 13% muon decay loss and a packing fraction as high as 87%.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI044  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPJE015 Muon Tracking Studies in a Skew Parametric Resonance Ionization Cooling Channel resonance, coupling, quadrupole, betatron 2705
 
  • A.V. Sy, Y.S. Derbenev, V.S. Morozov
    JLab, Newport News, Virginia, USA
  • A. Afanasev
    GWU, Washington, USA
  • R.P. Johnson
    Muons, Inc, Illinois, USA
 
  Funding: This work was supported in part by U.S. DOE STTR Grant DE-SC0005589. This manuscript has been authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Skew Parametric-resonance Ionization Cooling (SPIC) is an extension of the Parametric-resonance Ionization Cooling (PIC) framework that has previously been explored as the final 6D cooling stage of a high-luminosity muon collider. The addition of skew quadrupoles to the PIC magnetic focusing channel induces coupled dynamic behavior of the beam that is radially periodic. The periodicity of the radial motion allows for the avoidance of unwanted resonances in the horizontal and vertical transverse planes, while still providing periodic locations at which ionization cooling components can be implemented. A first practical implementation of the magnetic field components required in the SPIC channel is modeled in MADX. Dynamic features of the coupled correlated optics with and without induced parametric resonance are presented and discussed.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA038 Compact In-vacuum Quadrupoles for a Beam Transport System at a Laser Wakefield Accelerator vacuum, quadrupole, operation, laser 2845
 
  • A. Bernhard, V. Afonso Rodríguez, A.-S. Müller, J. Senger, W. Werner, C. Widmann
    KIT, Karlsruhe, Germany
 
  Funding: This work is partially funded by the German Federal Ministry for Education and Research under contract no. 05K10VK2 and 05K10SJ2.
For the transport and matching of electrons generated by a Laser Wakefield Accelerator (LWFA) a beam transport system with strong focusing magnets and a compact design is required. For the realization of such a beam transport system at the LWFA in Jena, Germany, two small series of inexpensive, modular quadrupoles were designed and built. The quadrupoles are iron-dominated electromagnets in order to keep the transport system adaptable to different energies and target parameters. To achieve the required field strength it was necessary to choose a small magnetic aperture. Therefore the magnets were designed for in-vacuum use with water-cooled coils. In this contribution the design, the realization and first field measurements of these quadrupoles are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA038  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN057 Calculation and Design of a RF Cavity for a Novel Compact Superconducting Cyclotron for Radioisotope Production cavity, cyclotron, simulation, ion 3055
 
  • D. Gavela, J. Calero, L. García-Tabarés, A. Guirao, D. Obradors-Campos, C. Oliver, J.M. Pérez Morales, I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
 
  Funding: Work partially funded by CDTI and the Spanish Ministry of Economy and Competitiveness, under the subprogram CENIT, project AMIT, reference CEN-20101014
The AMIT cyclotron will be a 8.5 MeV, 10 microAmp, CW, H accelerator for the purpose of radioisotope production. It includes a superconducting, weak focusing, 4 T magnet, which allows for a low extraction radius and a compact design. The RF cavity design has to deal with challenging requirements: high electric fields created by the required accelerating voltage (60 kV – 70 kV) on a small gap, a small aperture of the magnet leading to high capacitances and thermal losses, and a requirement for a low overall size of the cavity. A quarter wave resonator with one dee (two acceleration gaps) design was chosen. Calculations with HFSS have been performed to compute the resonant frequency, tuners sensitivity, S-parameters, power losses and geometry for input coupler and pickup. A structural Ansys model has been used to analyze the stresses and the deformations of the cavity. A thermal Ansys model was used for the design of the cooling circuits and the calculation of the temperature distribution. Finally, the fluid dynamics of the cooling circuits have been carefully studied. The results of these calculations and the consequent design decisions are presented in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN057  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF047 New Series of RFQ Vane Shapes acceleration, multipole, quadrupole, rfq 3808
 
  • Y. Iwashita, Y. Fuwa
    Kyoto ICR, Uji, Kyoto, Japan
 
  New series of RFQ vane shapes are under investigation by introducing more terms in addition to the two term potential. Because they can incorporate with the feature of the trapezoidal shape modulation with less multipole components, higher acceleration efficiency is expected. The simulation study will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF060 The Simulation Study of Space Charge Effects for CSNS Linac emittance, space-charge, DTL, simulation 3833
 
  • Y. Yuan, L. Huang, J. Peng, S. Wang
    IHEP, Beijing, People's Republic of China
 
  China Spallation Neutron Source (CSNS) is a high intensity accelerator based facility. Its accelerator consists of an H injector and a proton Rapid Cycling Synchrotron. The injector includes the front end and linac. The RFQ accelerates the beam to 3MeV, and then DTL accelerates it to 80MeV. The space charge effect is the most important cause of emittance growth and beam loss due to the low beam energy and the high peak current. The paper performed simulation studies on the space charge effects at the LINAC by using three-dimensional code IMPACT-Z. The emittance evolution is studied in the point of view of the singe-particle dynamics and multi-particle dynamics with different peak beam current. The effect of mismatch is studied by simulation, and the emittance growth with different mismatch factor are given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF060  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF078 Effect of the Field Maps on the Beam Dynamics of the ESS Drift Tube Linac emittance, DTL, klystron, linac 3864
 
  • R. De Prisco, M. Eshraqi, Y.I. Levinsen, R. Miyamoto, E. Sargsyan
    ESS, Lund, Sweden
  • A.R. Karlsson
    Lund University, Lund, Sweden
 
  In the beam dynamic design and modelling of the European Spallation Source (ESS) Drift Tube Linac (DTL) simplified models have been used for the focusing and accelerating structures. Since the high current requires precise control of the beam to minimise the losses it is useful to analyse the beam dynamics by using accurate field maps of the focusing and accelerating structures. In this paper the effects of the 3D-field maps on the beam dynamics of the ESS DTL are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF078  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF081 On the Suitability of a Solenoid Horn for the ESS Neutrino Superbeam solenoid, target, linac, detector 3873
 
  • M. Olvegård, T.J.C. Ekelöf, R.J.M.Y. Ruber, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
  • J.-P. Koutchouk
    CERN, Geneva, Switzerland
 
  The European Spallation Source (ESS), now under construction in Lund, Sweden, offers unique opportunities for experimental physics, not only in neutron science but potentially in particle physics. The ESS neutrino superbeam project plans to use a 5 MW proton beam from the ESS linac to generate a high intensity neutrino superbeam, with the final goal of detecting leptonic CP-violation in an underground megaton Cherenkov water detector. The neutrino production requires a second target station and a complex focusing system for the pions emerging from the target. The normal-conducting magnetic horns that are normally used for these applications cannot accept the 2.86 ms long proton pulses of the ESS linac, which means that pulse shortening in an accumulator ring would be required. That, in turn, requires H operation in the linac to accommodate the high intensity. As an attractive alternative, we investigate the possibility of using superconducting solenoids for the pion focusing. This solenoid horn system needs to also separate positive and negative pion charge as completely as possible, in order to generate separately neutrino and anti-neutrino beams. We present here progress in the study of such a solenoid horn.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF135 Optimization of Orbits, SRF Acceleration, and Focusing Lattice for a Strong-Focusing Cyclotron cavity, cyclotron, dipole, SRF 4038
 
  • K.E. Melconian, S. Assadi, J. Gerity, J.N. Kellams, P.M. McIntyre, A. Sattarov
    Texas A&M University, College Station, Texas, USA
  • N. Pogue
    PSI, Villigen, Villigen, Switzerland
 
  The strong-focusing cyclotron is a high-current proton/ion accelerator in which superconducting rf cavities are used to provide enough energy gain per turn to fully separate orbits, and arc-shaped beam transport channels are located in the sector dipole aperture to provide strong focusing of all orbits. An optimization method has been devised by which the orbit separations can be adjusted to provide sufficient separation while maintaining isochronicity on all orbits. The transport optics of the FD lattice is also optimized to provide stable transport and to lock the betatron tunes to a favorable value over the full range of acceleration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF135  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF139 Nonlinear Optics of Solenoid Magnets solenoid, lattice, optics, factory 4048
 
  • S.M. Lund
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 and the National Science Foundation under Grant No. PHY-1102511.
Solenoid magnets are often employed for focusing in low energy beam transport lattices in the front-end of a machine. We derive a relatively simple analytic formula for the nonlinear angular focusing kick imparted to particles traversing the solenoid. Few approximations are made. The formula suggests that for beam transport, little can be done to reduce nonlinearities in solenoid-type magnets other than take a simple design without abrupt changes as a function of axial coordinate and appropriately choose the aspect ratio (characteristic bore radius over axial length) of the magnet system and the beam filling factor within the aperture to limit nonlinear effects. Illustrative applications of the formula characterize nonlinear focusing effects in iron-free and iron type solenoid magnets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF139  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF140 Unique Accelerator Integration Features of the Heavy Ion CW Driver Linac at FRIB linac, proton, beam-loading, solenoid 4051
 
  • Y. Yamazaki, N.K. Bultman, A. Facco, M. Ikegami, F. Marti, G. Pozdeyev, J. Wei, Y. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661
The FRIB driver linac is a front runner for the future high power hadron linacs, making a full use of CW, superconducting acceleration from very low β. Accelerator Driven Nuclear Waste Transmutation System (ADS), International Fusion Material Irradiation Facility (IFMIF), Project-X type proton accelerators for high energy physics and others may utilize the technologies developed for the design, construction, commissioning and power ramp up of the FRIB linac. Although each technology has been already well developed individually (except for charge stripper), their integration is another challenge. In addition, extremely high Bragg peak of uranium beams (several thousand times as high as that of proton beams) gives rise to one of the biggest challenges in many aspects. This report summarizes these challenges and their mitigations, emphasizing the commonly overlooked features.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)