Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPWA029 | Investigations of the Space-Charge-Limited Emission in the L-Band E-Xfel Photoinjector at Desy-Pitz | simulation, space-charge, cathode, electron | 162 |
|
|||
Funding: work supported by DESY Hamburg and Zeuthen Sites This paper discusses the numerical modelling of electron bunch emission for an L-band normal conducting RF photogun. The main objective is clarifying the discrepancies between measurements and simulations performed for the European X-ray Free Electron Laser (E-XFEL) injector at DESY-PITZ. An iterative beam dynamics simulation procedure is proposed for the calculation of the total extracted bunch charge under the assumption that the emission source operates at the space-charge limit of the gun. This algorithm has been implemented in the three-dimensional full electromagnetic PIC Solver of the CST Particle Studio (CST-PS)*. Simulation results are in good agreements with measurements for a series of operation parameters. Further comparisons with a conventional Poisson-solver-based (PSB) tracking algorithm demonstrates the great significance of transient electromagnetic field effects for the beam dynamics in high brightness electron sources. * Computer Simulation Technology AG, http://www.cst.com/ |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA029 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPJE006 | Electron Gun Longitudinal Jitter: Simulation and Analysis | electron, timing, linac, simulation | 297 |
|
|||
The beam longitudinal jitter is fatal not only for the electron beam performance but also for the positron yield in routine operation of the Beijing Electron Positron Collider II (BEPCII) linear accelerator (Linac). Practically, longitudinal jitter has been observed many times which decreased the beam performance. We simulated the electron gun longitudinal jitter effect by PARMELA software in bunch capture process and analyzed its results about beam performance including average energy, energy spread, emittance and longitudinal phase of reference particle. We adjusted the electron gun trigger time during one cycle without changing other parameters. The percentage difference between maximum and minimum of average energy, energy spread, emittance and longitudinal phase of reference particle was 11.3%, 42%, 98% and 6.4%, respectively. It is observed and analyzed that gun trigger time longitudinal jitter is fatal for maintaining good beam performance. This analysis also gives a salutary lesson to any other longitudinal jitter which can affect the beam bunching in pre-injector . | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMA043 | Longitudinal Bunch Shaping at Picosecond Scales using Alpha-BBO Crystals at the Advanced Superconducting Test Accelerator | electron, laser, linac, space-charge | 643 |
|
|||
Funding: This works is supported by the University Research Association, Inc. Operated by the Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy The Integrable Optics Test Accelerator (IOTA) electron injector at Fermilab will enable a broad range of experiments at a national laboratory in order to study and develop solutions to the limitations that prevent the propagation of high intensity beams at picosecond lengths. One of the most significant complications towards increasing short-beam intensity is space-charge, especially in the vicinity of the gun. A few applications that require a longitudinally shaped electron beam at high intensities are for, the generation of THz waves and dielectric wakefields, each of which will encounter the effects of longitudinal space-charge. This paper investigates the effects of longitudinal space-charge on alpha-BBO UV laser shaped electron bunches in the vicinity of the 1½cell 1.3 GHz cylindrically symmetric RF photocathode gun. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA043 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA006 | A Slow RF-Laser Feedback for PHIL Photoinjector | laser, feedback, electron, controls | 784 |
|
|||
PHIL is an electron beam accelerator at LAL. It produces low energy (E<5 MeV) and high current (1 nC/bunch) electrons bunch at a repetition frequency of 5Hz. The stability of the beam charge at PHIL is a key issue for the succeful operation of the physic experiences that use the machine. At PHIL, the beam charge is quite stable, but we often note a slow charge drift on long duration experiences. Two ICTs, and a back-end electronics are used to monitor the stability of the beam charge, with an accuracy of about 1pC. Several types of jitter can impact the stability of the beam charge. The fluctuations of the RF power or the RF-laser relative phase drift could have significant influence, due to temperature variations that produce cables dilataion, and electronic components overheating. To correct the phase drift, we describe a method based on a slow analog-digital feedback loop between the RF wave in the gun (3 GHz) and the synchronisation signal of the laser (75MHz). It allows to maintain the jitter between the laser pulse and the RF wave stable at a very low value. As a result, the electron beam charge is maintained at a stable level, to meet the requirements of the users. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA006 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA028 | Operation of Normal Conducting RF Guns with MicroTCA.4 | LLRF, cavity, feedback, operation | 841 |
|
|||
During the last half year, the MicroTCA.4 based single cavity LLRF control system was installed and commissioned at several normal conducting facilities at DESY (FLASH RF gun, REGAE, PITZ RF gun, and XFEL RF gun). First tests during the last year show promising results in optimizing the system for high speed digital LLRF feedbacks, i.e. reducing system latency, increasing the internal controller processing speed, testing new control schemes, and optimizing controller parameters. In this contribution we will present results and gained experience from the commissioning phase and the first time period of real operation. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA033 | Physical Parameter Identification of Cross-Coupled Gun and Buncher Cavity at REGAE | resonance, cavity, coupling, higher-order-mode | 857 |
|
|||
A reasonable description of the system dynamics is one of the key elements to achieve high performance control for accelerating modules. This paper depicts the system identification of a cross-coupled pair of cavities for the Relativistic Electron Gun for Atomic Exploration - REGAE. Two normal conducting copper cavities driven by a single RF source accelerate and compress a low charge electron bunch with sub 10 fs length at a repetition rate up to 50 Hz. It is shown how the model parameters of the cavities and the attached radio frequency subsystem are identified from data generated at the REGAE facility. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTY002 | Bunch Length Measurement of Femtosecond Electron Beam by Monitoring Coherent Transition Radiation | electron, detector, radiation, linac | 940 |
|
|||
Ultrashort electron bunches with durations of femtoseconds and attoseconds are essential for time-resolved measurements, including pulse radiolysis and ultrafast electron microscopy. However, generation of the ultrashort electron bunches is commonly difficult because of bunch length growth due to space charge effect, nonlinear momentum dispersion and so on. Several bunch length measurement methods for the ultrashort electron beams have also been considered so far, which have not been established yet. In this study, the femtosecond electron beams were generated using a laser photocathode radio-frequency gun linac and a magnetic bunch compressor. The bunch length measurement was carried out using a Michelson interferometer based on monitoring coherent transition radiation (CTR), which is characterized by square modulus of the Fourier transform of the longitudinal bunch distribution. Analyzing the experimentally obtained interferograms of CTR, the electron beams with the average duration of 5 fs were generated and measured successfully at the condition of bunch charge of 1 pC. Consideration of the longitudinal bunch shapes was also carried out using the Kramers-Kronig relation. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY002 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTY015 | Beam Compression Dynamics and Associated Measurement Methods in Superconducting THz Source | controls, simulation, space-charge, electron | 969 |
|
|||
To ensure the quality of high brightness electron beams needed by the terahertz FEL facility at China academy of engineering physics(CAEP), which aims to obtain 100 to 300 terahertz light, a feed-back control system is required to monitor the amplitude and phase jittering by measuring beam arrival time as well as bunch length at the site of the beam position monitor(BPM). In this paper, we make an idealized model of injector section and deduce analytic expressions of bunch arrival time and bunch length. In consideration of the space charge effect on bunch lengthening, bunch arrival time and bunch length as a function of DC gun voltage, buncher field amplitude and buncher phase is carefully calibrated by means of particle in cell (PIC) simulation. With the time and space resolution of the BPM, the control accuracy of phase is estimated to be 0.01 degree, while the amplitude is 0.04%. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTY023 | Beam Diagnostic of the LINAC for the Compact High-Performance THz-FEL | linac, FEL, emittance, target | 987 |
|
|||
With the aim to obtain short-pulse bunches with high peak current for a terahertz radiation source, an FEL-based LINAC is employed in HUST THz-FEL, and the LINAC consists of an EC-ITC RF gun, a disk-loaed waveguide structure with a constant gradient and collinear absorbing loads with focusing coils surrounded and so on. To achieve a balance between compactness and high performance, beam diagnostic system should be simple and high-precision. So that a cost-effective measurement scheme for the high-brightness beam extracted by the LINAC is needed. This paper will describe the beam line and beam diagnostic system of the LINAC in the HUST THz-FEL in detail and give corresponding assembly scheme. In addition, online monitor system is introduced. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY023 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPWI005 | Emittance and Optics Measurements on the Versatile Electron Linear Accelerator at Daresbury Laboratory | space-charge, quadrupole, emittance, coupling | 1153 |
|
|||
The Versatile Electron Linear Accelerator (VELA) is a facility designed to provide a high quality electron beam for accelerator systems development, as well as industrial and scientific applications. Currently, the RF gun can deliver short (of order a few ps) bunches with charge in excess of 250 pC at up to 5.0 MeV/c beam momentum. Measurement of the beam emittance and optics in the section immediately following the gun is a key step in tuning both the gun and the downstream beamlines for optimum beam quality. We report the results of measurements (taking account of coupling and space charge) indicating normalised emittances of order 0.5 μm at low bunch charge. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI005 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPWI028 | Initial Experimental Results of a Machine Learning-Based Temperature Control System for an RF Gun | controls, cavity, monitoring, network | 1217 |
|
|||
Colorado State University (CSU) and Fermi National Accelerator Laboratory (Fermilab) have been developing a control system to regulate the resonant frequency of an RF electron gun. As part of this effort, we present experimental results for a benchmark temperature controller that combines a machine learning-based model and a predictive control algorithm for improved settling time, overshoot, and disturbance rejection relative to conventional techniques. Such improvements have implications for machine up-time and management of reflected power. This work is part of an on-going effort to develop adaptive, machine learning-based tools specifically to address control challenges found in particle accelerator systems. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPWI032 | Analysis of Primary Stripper Foils at SNS by an Electron Beam Foil Test Stand | electron, proton, operation, experiment | 1230 |
|
|||
Funding: ORNL/SNS is managed by UT-Battelle, LLC, for the U.S. Department of Energy under contract DE-AC05-00OR22725. Diamond foils are used at the Spallation Neutron Source (SNS) as the primary strippers of hydride ions. A nanocrystalline diamond film, typically 17x45 mm with an aerial density of 0.35 mg/cm2, is deposited on a corrugated silicon substrate by plasma-assisted chemical vapor deposition. After growth, 30 mm of the silicon substrate is etched away, leaving a freestanding diamond foil with a silicon handle that can be inserted into SNS for operation. An electron beam test facility was constructed to study stripper foil degradation and impact on foil lifetime. The electron beam capabilities include: current up to 5 mA, focused spot size of 0.30 mm2, and rastering in the x- and y-directions. A 30 keV and 1.6 mA/mm2 electron beam deposits the same power density on a diamond foil as a 1.4 MW beam on SNS target. Rastering of the electron beam can expose a similar area of the foil as SNS beams. Experiments were conducted using the foil test stand to study: foil flutter and lifetime; effects of corrugation patterns, aerial densities, crystal size (micro vs. nano), and boron doping; temperature distributions and film emissivity; and conversion rate of nanocrystalline diamond into graphite. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUYB1 | Progress of SuperKEKB | emittance, positron, electron, linac | 1291 |
|
|||
This presentation will cover the status of the installation and the injector commissioning status of SuperKEKB. The IR optics and design with very low β* of less than 1 mm will be discussed. | |||
![]() |
Slides TUYB1 [6.588 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUYB1 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUAD3 | LLRF Commissioning of the European XFEL RF Gun and Its First Linac RF Station | LLRF, linac, cryomodule, electronics | 1377 |
|
|||
The European X-ray free electron laser (XFEL) at the Deutsches Elektronen-Synchrotron (DESY), Hamburg Germany is in its construction phase. Approximately a third of the super-conductive cryomodules have been produced and tested. The RF gun is installed since 2013; periods of commissioning are regularly scheduled between installation phases of the rest of the injector. The first linac, L1, consisting of 4 cryomodules powered by one 10 MW klystron is installed and being commissioned. This contribution reports on the installation and preparation work of the low-level radio frequency system (LLRF) to perform the commissioning of the XFEL first components. The commissioning plans, schedule and first results are presented. | |||
![]() |
Slides TUAD3 [14.016 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUAD3 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA009 | 50 MeV Electron Linac with a RF Gun and a Thermoionic Cathode | linac, cavity, focusing, cathode | 1413 |
|
|||
The low energy part of our pre injectors is made up of a 90 kV DC themoionic trioode gun, followed by a 500 MHz sub harmonic prebuncher and a 3 GHz prebuncher. We propose a new design for a 50 MeV linac with a RF gun *. this study will compare the beam dynamics simulations for the new design and for our previous pre injectors.
* A. Setty et al. "Study of a RF gun with a Thermoionic Cathode", Proceeding IPAC 2014, Germany, Dresden, June 2014. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA018 | Progress Report of the Berlin Energy Recovery Project BERLinPro | SRF, booster, cavity, electron | 1438 |
|
|||
Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association The Helmholtz Zentrum Berlin is constructing the Energy Recovery Linac Project BERLinPro on its site in Berlin Adlershof. The project is intended to expand the required accelerator physics and technology knowledge mandatory for the design, construction and operation of future synchrotron light sources. The project goal is the generation of a high current (100 mA), high brilliance (norm. emittance below 1 mm mrad) cw electron beamat 2~ps rms bunch duration or below. The planning phase of the project is completed and the design phase of most of the components is finished. Many of them have already been ordered. After some delay the construction of the building has started in February 2015. The status of the various subprojects as well as a summary of current and future activities will be given. Major project milestones and details of the project time line will be finally introduced. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA023 | A Step Closer to the CW High Brilliant Beam with the ELBE SRF-Gun-II | SRF, cavity, cathode, electron | 1456 |
|
|||
In order to achieve the CW electron beam with a high average current up to 1 mA and a very low emittance of 1 μm, an improved superconducting photo-injector (ELBE SRF-Gun-II) has been installed and commissioned at HZDR since 2014. This new gun replaces the first 3.5-cell SRF gun (SRF-Gun-I) at the SC Linac ELBE. The RF performance of the niobium cavity has been evaluated, the beam parameters for low charge bunches have been measured, and the first beam has been guided into the ELBE beam line. The results agree with the simulation very well. The photocathode transfer system has been installed for the first high current beam test planned in 2015. However, the unexpected strong degradation on the cavity and also on the photocathode was found soon after the first photocathode exchange. In this contribution the results of the SRF-Gun-II commissioning and the latest experiment will be presented in detail. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA023 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA028 | Simulation Results of the Beam Transport of Ultra-Short Electron Bunches in Existing Beam Transfer Lines to Sinbad | linac, optics, electron, synchrotron | 1466 |
|
|||
SINBAD, the upcoming accelerator R&D facility at DESY, will host multiple independent experiments on the production and acceleration of ultra-short bunches including plasma wakefield experiments. As a possible later upgrade the option to transport higher energy electrons (up to 800 MeV) or positrons (up to 400 MeV) from the existing DESY Linac 2 to the facility is studied. Though existing a possible connection using e.g. a part of the DESY synchrotron as a transfer line and other currently unused transfer-line, these machines were not designed for the desired longitudinal bunch compression and high peak current required by e.g. beam driven plasma wake-field experiments. Simulation results illustrate the modifications to the current layout that would have to be implemented and the corresponding achievable beam parameters are given. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA028 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA032 | Progress in the Injector Upgrade of the LINAC II at DESY | electron, linac, simulation, solenoid | 1479 |
|
|||
A new injection system is under development for the LINAC II at DESY to improve the reliability of the machine and mitigate the radiological problem due to electron losses at energy of hundreds of MeV. It consists of a 100 kV triode DC gun, a 2.998 GHz pre-buncher, a novel 2.998 GHz hybrid buncher, and the dedicated beam transport and diagnostic elements. As the key components, the pre-buncher and the hybrid buncher realize a two-stage velocity bunching process including the ballistic bunching and the phase space rotation. Therefore, they produce a certain number of well-bunched 5 MeV micro-bunches from the input 2 ns-50 ns electron pulse for the downstream LINAC II. The overall upgrade plan, developments of the critical components, as well as the latest beam test results will be reported. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA032 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA042 | Status of the Accelerator Physics Test Facility FLUTE | electron, linac, diagnostics, laser | 1506 |
|
|||
A new compact versatile linear accelerator named FLUTE (Ferninfrarot Linac Und Test Experiment) is currently under construction at the Karlsruhe Institute of Technology (KIT). It will serve as an accelerator test facility and allow conducting a variety of accelerator physics studies. In addition, it will be used to generate intense, ultra-short THz pulses for photon science experiments. FLUTE consists of a ~7 MeV photo-injector gun, a ~41 MeV S-band linac and a D-shaped chicane to compress bunches to a few femtoseconds. This contribution presents an overview of the project status and the accompanying simulation studies. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA046 | Facility Upgrade at PITZ and First Operation Results | laser, plasma, operation, electron | 1518 |
|
|||
The Photo Injector Test facility at DESY, Zeuthen site (PITZ), develops, optimizes and characterizes high brightness electron sources for free electron lasers like FLASH and the European XFEL. In the last year, the facility was significantly upgraded by the installation of a new normal conducting radio- frequency (RF) gun cavity with its new waveguide system for the RF feed, which should allow stable and reliable gun operation, as required for the European XFEL. Other relevant additions include beamline modifications for improving the electron beam transport through the PITZ accelerator, extending the beam-based measurement capabilities, and preparing the installation of a plasma cell. Furthermore, the laser hutch was re-arranged in order to be able to house an additional, new photo cathode drive laser system which should be able to produce 3D ellipsoidal laser pulses to further improve the electron beam quality. This paper describes in detail the aforementioned facility upgrades and reports on the first operation experience with the new gun setup. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA046 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA056 | New Gun Implementation and Performance of the DAΦNE LINAC | linac, cathode, electron, operation | 1546 |
|
|||
A new electron gun system has been developed for DAΦNE LINAC, and put into operation since January 2014. Several elements of the system were upgraded, including a new grid pulser, an improved bias voltage system and a renewed cathode socket. The new LINAC gun has now a wider range of parameters, i.e. the emission pulse length spans from 1.4ns up to 40ns, while the better control of the grid and bias voltage allows a maximum peak current of 5A with a pulse repetition rate of 50 Hz. This paper describes the details of the pulser, the power supply, the socket, all the service components of the upgraded gun and its integration in the main LINAC control system. A report on the performance of the LINAC with the new gun will follow. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA058 | Study of a C-band Harmonic RF System to Optimize the RF Bunch Compression Process of the SPARC Beam | cavity, linac, experiment, emittance | 1552 |
|
|||
The SPARC linac at the INFN Frascati Labs is a high brilliance electron source with a wide scientific program including production of THz and Thomson backscattering radiation, FEL studies and plasma wave acceleration experiments. The linac is based on S-band RF and consists in an RF Gun followed by 3 accelerating structures, while an energy upgrade based on 2 C-band accelerating structures is ready to be implemented. Short bunches are ordinarily produced by using the linear RF bunch compression concept. A harmonic RF structure interposed between the Gun and the 1st accelerating structure can be used to optimize the RF compression by a longitudinal phase space pre-correction, allowing to reach shorter bunches, a much more uniform current distribution and in general to control better the whole compression process. Here we report the results of numerical studies on the SPARC bunch compression optimization through the use of a harmonic cavity, and the design of a C-band RF system to implement it. The proposed system consists in a multi-cell SW cavity powered by a moderate portion of the total RF power spilled from the C-band power plant already installed for the linac energy upgrade. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA058 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA065 | Generation of Multi-bunch Beam with Beam Loading Compensation by Using RF Amplitude Modulation in Laser Undulator Compact X-ray (LUCX) | cavity, electron, laser, booster | 1576 |
|
|||
We have developed a compact X-ray source based on inverse Compton scattering between an electron beam and a laser pulse stacked in an optical cavity at Laser Undulator Compact X-ray (LUCX) accelerator in KEK. The accelerator consists of a 3.6 cell photo-cathode rf-gun, a 12cell standing wave accelerating structure and a 4-mirror planar optical cavity. Our aim is to obtain a clear X-ray image in a shorter period of times and the target flux of X-ray is 1.7x107 photons/pulse with 10% bandwidth at present. To achieve this target, it is necessary to increase the intensity of an electron beam to 500nC/pulse with 1000 bunches at 30 MeV. Presently, we have achieved the generation of 24MeV beam with total charge of 600nC in 1000bunches with beam-loading compensation by using the delta T method and the amplitude modulation of RF pulse. The bunch-by-bunch energy difference is within 1.3% peak to peak. We will report the results of the multi-bunch beam generation and acceleration in this accelerator.
This work was supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA065 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA068 | Simulation Study of Beam Halo and Loss for KEK Compact ERL | simulation, cavity, laser, electron | 1587 |
|
|||
At the KEK Compact ERL (cERL) designed to operate at high-brilliance and high-current electron beams, the maximum averaged current was recorded at 6.5 muA for the beam energy of 20 MeV on March 2014 and should be increased up to 10 mA in a step-by-step manner in a few years. In order to increase the beam current by reducing the beam loss, we need to know the mechanism of the beam loss. For this purpose we investigate beam halo originated from characteristics and imperfections of an electron gun system, using the tracking code GPT (General Particle Tracer). The beam halo can be lost by the beam-pipe apertures and the collimators in the cERL beam line. In this paper, we will present the simulation results including the beam halo formation and the beam loss distribution along the beam line. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA068 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWA071 | Improvements of the Laser System for RF-Gun at SuperKEKB Injector | laser, electron, operation, cryogenics | 1598 |
|
|||
For realizing higher charge and low emittance electron and positron beams in SuperKEKB, we have been making improvements in laser system for RF-gun. The difficulty in controlling thermomechanical distortions has been one of the most important factors for preserving high laser conversion efficiency of infrared-to-ultraviolet and operating at higher repetition rate. We demonstrated that efficient removal of waste heat can be realized by adopting Yb:YAG and copper bonding composite via Au-Sn solder. On the other hand, we proposed the novel design of the cascade laser configuration. Base on this, we can improve the quantum efficiency by utilizing other Yb ions doped crystals as active medium which are pumped by 1035 nm Yb:YAG laser. Excellent thermal management and high charge beams have been achieved by improvements of these two aspects. Additionally, in order to employ high duty ratio pump system and realize laser operation at high repetition rate, we investigated the laser operation in cryogenic environment. A perspective towards the next step experiment is also presented in this paper. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWA071 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE003 | Quasi-Traveling Wave RF Gun and Beam Commissioning for SuperKEKB | laser, cathode, emittance, cavity | 1610 |
|
|||
We are developing a new RF gun for SuperKEKB. High charge low emittance electron and positron beams are required for SuperKEKB. We will generate 7.0 GeV electron beam at 5 nC 20 mm-mrad by J-linac. In this linac, a photo cathode S-band RF gun will be used as the electron beam source. For this reason, we are developing an advanced RF gun which has two side coupled standing wave field. We call it quasi-traveling wave side couple RF gun. This gun has a strong focusing field at the cathode and the acceleration field distribution also has a focusing effect. This RF gun has been installed in the KEK J-linac. Beam commissioning with the RF gun is in progress. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE009 | Study on Frequency Multiplier of a Pulsed Laser Repetition using an Optical Cavity | laser, cavity, electron, cathode | 1629 |
|
|||
We have been studying a compact electron accelerator based on an S-band Cs-Te photo-cathode rf gun at Waseda University. The system is using S-band rf of 2856MHz. When a repetition of the electron bunch is integral multiple of rf, it enables a lot of electron bunch acceleration for the rf gun. The repetition of the electron bunch generated by a photo-cathode rf gun depends on the oscillating frequency of the pulsed mode-locked laser. We have been developing a mode-locked Yb-doped fiber laser based on Non-Linear Polarization Rotation (NLPR). However, its repetition is limited by the fiber length to produce NLPR. Therefore, we have started to develop the external optical cavity which is multiplier of a pulsed laser repetition. It would enable the rf gun to generate high-dose electron beam in a very short time. In this conference, we will report design of the external optical cavity to multiply the pulsed laser repetition, the experimental results of the frequency multiplying of a mode-locked Yb-doped fiber laser, and the future prospects.
Work supported by Photon and Quantum Basic Research Coordinated Development Program from the Ministry of Education, Culture, Sports, Science and Technology, Japan. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE009 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE010 | Study of Cs-Te Photocathode for RF Electron Gun | electron, vacuum, radiation, scattering | 1632 |
|
|||
At Waseda University, we have been studying high quality electron beam with an rf electron gun. In recent accelerator study and application researches, high quality electron beam are strongly required. Photocathode is a key component to generate higher quality electron beam. Cs-Te photocathode shows high quantum efficiency (Q.E.) (~10%) and has long life time (~several months). From 2013, we built a photocathode evaporation chamber and started photocathode study. In this study, our purpose is to clarify their property and to establish an ideal evaporation recipe. We succeeded in producing high quality Cs-Te photocathode, and electron beam generated by our Cs-Te photocathode shows high charge (4.6nC/bunch) and high Q.E. (1.74%) in our rf electron gun. Furthermore, we found a Q.E. recovery after Cs deposition process and it causes higher Q.E. than usual due to, we believe, Cs deposition quantity or Cs deposition speed. Thus we are now surveying the optimum Cs evaporation parameters. In this conference, we will report a detail of our photocathode development system, the latest progress of optimization study of Cs-Te photocathode and future plans.
Work supported by Cooperative and Supporting Program for Researches and Educations in Universities and NEDO(New Energy and Industrial Technology Development Organization. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE014 | An X-Band Linac with Tunable Beam Energy | linac, electron, simulation, software | 1644 |
|
|||
The low-energy X-band linac has a wide application in medical imaging. In this paper, an X-band linac is designed to produce beam energy between 0.5MeV and 1.5MeV, and the output beam energy is continuously adjustable within this range. Two sections of linacs are combined and powered by a single microwave source. During the experiment, we can tune the RF phase and amplitude of the second section of the linac, the electron beam can see either acceleration or deceleration, which tunes the output energy. This paper presented the production of the whole linac system, as well as the measurement of the continuously-adjustable beam energy. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE014 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE017 | The Generation of Highly Intense THz Radiation based on Smith-Purcell Radiation | radiation, electron, factory, cathode | 1654 |
|
|||
A photocathode RF gun can generate trains of THz subpicosecond electron bunches by illuminating the cathode with trains of laser pulses. Let this electron bunches passes close to the surface of a lamellar grating, THz radiation will be emitted, which is the so-called Smith-Purcell Radiation (SPR). If the lamellar grating has a narrow groove, this radiation will be narrow-band. By choosing suitable parameter, the SPR frequency can be resonant with the electron bunches frequency, and then generate high intense, narrow band THz radiation. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE039 | Recent Results on the Performance of Cs3Sb Photocathodes in the PHIN RF-Gun | cathode, laser, vacuum, operation | 1699 |
|
|||
For the CLIC drive beam a photoinjector option is under study at CERN as an alternative to the thermionic electron gun in the CLIC baseline design. The CLIC drive beam requires a high bunch charge of 8.4 nC and 0.14 ms long trains with 2 ns bunch spacing, which is challenging for a photoinjector. In particular the required long and high intensity laser pulses cause a degradation of the beam quality during the frequency conversion process, which generates the ultra-violet laser beam needed for standard Cs2Te photocathodes. To overcome this issue Cs3Sb cathodes sensitive to green light have been studied at the high-charge PHIN photoinjector since a few years. In this paper recent measurements of fundamental properties of Cs3Sb photocathodes such as quantum efficiency, cathode lifetime and dark current from summer 2014 will be presented, and compared with previous measurements and with the performance of Cs2Te photocathodes. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE039 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE040 | Surface Characterization at CERN of Photocathodes for Photoinjector Applications | cathode, laser, electron, operation | 1703 |
|
|||
R&D on photocathodes takes place at CERN within the CLIC (Compact Linear Collider) project. Photocathodes are produced as thin films on Oxygen Free copper substrate using a co-deposition technique, and characterized in a dedicated laboratory with a DC photo-electron gun. A new UHV carrier vessel compatible with CERN’s XPS (X-ray Photoelectron Spectroscopy) analysis equipment has been commissioned and is used to transport photocathodes from the production laboratory to perform a systematic study of different compounds used as photoemissive materials. In this paper photocathodes used in a RF photoinjector will be characterized and the correlation of their surface properties with their performance will be investigated. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE040 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE041 | Progress on a Compact Accelerator Design for a Compton Light Source | dipole, linac, space-charge, solenoid | 1706 |
|
|||
A compact Compton light source using an electron linear accelerator is in design at the Center for Accelerator Science at Old Dominion University and Jefferson Lab. We report on the current design, including beam properties through the entire system based on a full end-to-end simulation, compare current specifications to design goals, and target areas for improvement. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE041 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE052 | Bunch Compression in the Driver Linac for the Proposed NSRRC VUV FEL | electron, linac, optics, FEL | 1738 |
|
|||
A bunch compressor is designed for the S-band driver linac system of the proposed NSRRC VUV free electron laser (FEL). Instead of using a more conventional rf harmonic linearizer, one main feature of this compressor is to use electron linearization optics to correct the nonlinearity in the energy-time correlation of the electron bunch longitudinal phase space. The strategy of compressor design will be discussed by an analytical calculation and particle tracking simulation. The beam dynamics which include the collective instabilities such as the space charge effects, the wake fields and the coherent synchrotron radiation (CSR) effects are discussed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE052 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE056 | VELA Machine Development and Beam Characterisation | cavity, cathode, electron, klystron | 1752 |
|
|||
Recent developments on the VELA (Versatile Electron Linear Accelerator) RF photo-injector at Daresbury Laboratory are presented. These are three-fold; commissioning/installation, characterising and providing beam to users. Measurements for characterising the dark current (DC), 4-D transverse emittance, lattice functions and photoinjector stability are presented. User beam set ups to provide beam for electron diffraction and Cavity Beam Position Monitor development are summarised. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPJE058 | Preparation of Polycrystalline and Thin Film Metal Photocathodes for Normal Conducting RF Guns | cathode, electron, experiment, cavity | 1759 |
|
|||
A comparison of quantum efficiency (QE) and work function (wf) measurements of polycrystalline and thin film metal photocathodes for use in NCRF guns, similar to the S-band gun under development for CLARA project at Daresbury, are reported. Cu and Nb thin films were grown onto a Si substrate by magnetron sputtering and subsequently were prepared by annealing and Ar ion sputtering. To determine the surface chemistry, x-ray photoelectron spectroscopy was employed. QE measurements were enabled using a UV laser source giving 266 nm light. Wf measurements were carried out using a kelvin probe and ultraviolet photoelectron spectroscopy. Annealing the Cu thin film to 250°C yielded a QE of 1.2E-4; one order of magnitude higher than the QE for sputter cleaned and post annealed polycrystalline Cu. The optimum QE measurement for Nb thin film was 2.6·10-4, which was found to be comparable to the results obtained for cleaned bulk Nb. Analysis of XPS data of these metals suggest surface composition and surface chemistry are main contributing factors to the QE and WF. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE058 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMA010 | Development of a Field-Emission Type S-band RF-Gun System for High Brightness Electron Source Applications | cathode, electron, emittance, vacuum | 1856 |
|
|||
Electron beams emitted from a cold cathode are thermally stable and mono-energetic with a small phase-space volume*. We have been developing a field-emission type RF-gun system for high brightness electron source applications, including electron scattering/diffraction and tunable coherent X-ray/THz generation. The system consists of a single-gap gun-cavity and an S-band klystron/modulator capable of powering the gun with up to 5.5 MW peak (PRR = 1 Hz, duration = 2.5 μs). The designed gun built with the symmetrised side-couplers has surface field on the cathode ranging 50 – 100 MV/m with 1.3 – 1.7 MW klystron-power and 1.2 field ratio (HFSS). ASTRA simulations also indicate that the gun produces the beam with transverse emittances of less than 1 mm-mrad with 10 – 20 pC bunch charge at 500 keV beam energy. Under the gun operating condition, particle tracking/PIC simulations (CST) show that a single-tip CNT field-emitter** produces short pulsed bunches (~ 1/10 RF-cycle) with small emittance ( 0.01 mm-mrad) and high peak current density ( 10,000 kA/cm2). After the gun is fully installed and commissioned, a CNT-tip cathode will be tested with RF-field emission.
* N. De Jonge, J.-M. Bonard, Phil. Trans. R. Soc. Lond. A 362, 2239 (2004) ** G. S. Bocharov, and A. V. Eletskii, Nanomaterials 3, 393 (2013) |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMA018 | An Improved Analytic Model of Electron Back-Bombardment in Thermionic Cathode RF Guns | simulation, electron, cathode, cavity | 1872 |
|
|||
This paper describes work done at Colorado State University to improve upon the recent theory developed to predict the back-bombardment power in single-cell thermionic-cathode electron guns. The previous theory used a square-wave approximation of the time varying field to solve for the total kinetic energy deposited on the cathode due to the back-bombarded electrons. In addition the transit time factor was added as a correction to compensate for the non-sinusoidal field. By solving for the back-bombardment power using a sinusoidal field, the transit time factor can be removed and therefore a better overall model is produced. These alterations continue to accurately predict how back-bombardment varies as a function of the gun parameters and provides improvement when compared to the existing theory. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMA025 | X-Band RF Photoinjector for Laser Compton X-Ray and Gamma-Ray Sources | laser, electron, emittance, dipole | 1891 |
|
|||
Funding: This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. Extremely bright narrow bandwidth gamma-ray sources are expanding the application of accelerator technology and light sources in new directions. An X-band test station has been commissioned at LLNL to develop multi-bunch electron beams. This multi-bunch mode will have stringent requirements for the electron bunch properties including low emittance and energy spread, but across multiple bunches. The test station is a unique facility featuring a 200 MV/m 5.59 cell X-band photogun powered by a SLAC XL4 klystron driven by a Scandinova solid-state modulator. This paper focuses on its current status including the generation and initial characterization of first electron beam. Design and installation of the inverse-Compton scattering interaction region and upgrade paths will be discussed along with future applications. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMA047 | Multipacting-free Quarter-wavelength Choke Joint Design for BNL SRF | cathode, SRF, cavity, electron | 1935 |
|
|||
The BNL SRF gun cavity was operated well at CW mode up to 2 MV. However, the performance suffered due to multipacting in the quarter-wavelength choke-joint. A new multipacting-free cathode stalk was designed and will be conditioned. This paper will describes RF and thermal design of new cathode stalk and conditioning results.
This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA047 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMA048 | Experimental and Simulational Result of Multipactors in 112 MHz QWR Injector | electron, cavity, cathode, simulation | 1938 |
|
|||
Funding: This work was carried out at Brookhaven Science Associates, LLC under Contracts No. DE-AC02-98CH10886 and at Stony Brook University under grant DE-SC0005713 with the U.S. DOE. The first RF commissioning of 112 MHz QWR superconducting electron gun was done in late 2014. The coaxial Fundamental Power Coupler (FPC) and Cathode Stalk (stalk) were install and tested for the first time. During this experiment, we observed several multipacting barriers at varied gun voltage levels. The simulation work was done within the same range. The comparison between the experimental observation and the simulation results are presented in this paper. The observations during the test are consisted with the simulation predictions. We were able to overcome most of the multipacting barriers and reach 1.7 MV gun voltage under pulsed mode after several round of conditioning processes. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPMA049 | First Beam Commissioning at BNL ERL SRF Gun | cathode, SRF, electron, cavity | 1941 |
|
|||
Funding: This work is supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. DOE. The 704 MHz superconducting RF gun successfully generated the first photoemission beam on Nov. 17 2014. This paper will report the latest results of SRF beam commissioning, including the SRF cavity performance, cathode QE measurements, and beam parameter measurements. The beam commissioning setup is described in the paper as well. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA049 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPHA003 | Sputter Growth of Alkali Antimonide Photocathodes: An in Operando Materials Analysis | cathode, target, emittance, radiation | 1965 |
|
|||
Funding: Work supported by U.S. DoE, under KC0407-ALSJNT-I0013 and SBIR grant # DE-SC0009540. NSLS was supported by DOE DE-AC02-98CH10886, CHESS is supported by NSF & NIH/NIGMS via NSF DMR-1332208 Alkali antimonide photocathodes are a strong contender for the cathode of choice for next-generation photon sources such as LCLS II or the XFEL. These materials have already found extensive use in photodetectors and image intensifiers. However, only recently have modern synchrotron techniques enabled a systematic study of the formation chemistry of these materials. Such analysis has led to the understanding that these materials are inherently rough when grown through traditional sequential deposition; this roughness has a detrimental impact on the intrinsic emittance of the emitted beam. Sputter deposition may provide a path to achieving a far smoother photocathode, while maintaining adequate quantum efficiency. We report on the creation and vacuum transport of a K2CsSb sputter target, and its use to create an ultra-smooth (sub nm roughness) cathode with a 2% quantum efficiency at 532 nm. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPHA003 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPTY083 | Conceptual MEIC Electron Ring Injection Scheme using CEBAF as a Full Energy Injector | injection, electron, linac, operation | 2232 |
|
|||
Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177 The Medium-energy Electron-Ion Collider (MEIC) proposed by Jefferson Lab is planning to use the newly upgraded 12 GeV CEBAF 1497 MHz SRF CW recirculating linac as a full-energy injector for the electron collider ring. The electron collider ring is proposed to reuse the 476MHz PEP-II RF system to achieve high installed voltage and high beam power. The MEIC electron injection requires 3-10 (or 12) GeV beam in 3-4μs long bunch trains with low duty factor and high peak current, resulting in strong transient beam loading for the CEBAF. In this paper, we propose an injection scheme that can match the two systems’ frequencies with acceptable injection time, and also address the transient beam loading issue in CEBAF. The scheme is compatible with future upgrade to 952.6 MHz SRF system in the electron ring. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPTY083 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWI008 | RF Gun Based Ultrafast Electron Microscopy | electron, emittance, cavity, cathode | 2259 |
|
|||
Ultrafast electron microscopy (UEM) would be a powerful tool for the direct visualization of structural dynamic processes in matter. The resolutions of the observation on femtosecond time scales over sub-nanometer (even atomic) spatial dimensions have long been a goal in science. To achieve such resolutions, we have designed and constructed a femtosecond time-resolved relativistic-energy electron microscopy using a photocathode radio-frequency (RF) electron gun (RF based UEM). The RF gun has successfully generated a high-brightness electron beam with bunch length of 100 fs and emittance of 0.2 mm-mrad, which are essential beam parameters for the achievement of nm-fs space-time resolution in the microscopy. Both the static measurements of both relativistic-energy electron diffraction and image have been succeeded. In this presentation, the activities on RF based UEM are introduced. The requirements and limitations of the beam parameters are reviewed. The concept and design of RF based UEM are reported. Finally, some demonstrations of the relativistic-energy UEM images are reported. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI008 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWI010 | Development of a Pulse Radiolysis System by Ultra-fast Super Continuum Probe at Waseda University | laser, polarization, electron, cathode | 2265 |
|
|||
We have been studying the pulse radiolysis using photo-cathode rf gun at Waseda Univ. Pulse radiolysis is one of the powerful methods to trace early chemical reactions by ionizing radiation. In pulse radiolysis, the probe light absorption, which produced by active species formed by electron beam of rf gun, is measured at each wavelength and made possible to trace reactions. Therefore, we have used the super continuum (SC) light for the probe light. The SC light has a broad spectrum and is generated by nonlinear optical effect caused by injecting picosecond laser to photonic crystal fiber. However, the resulting SC light was unstable because its peak intensity was not enough. We need to use a femtosecond pulsed laser which is expected to be stronger peak intensity than a picosecond laser. We have developed a mode-locked Yb-doped fiber laser based on Non-Linear Polarization Rotation as a femtosecond pulsed laser and the chirped pulse amplification system which will be able to amplify the femtosecond pulse. In this conference, we will report the performance of the SC light using this fiber laser system, recent results of pulse radiolysis experiments and the future plans.
Work supported by NEDO(New Energy and Industrial Technology Development Organization). |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWI017 | Single-shot Multi-MeV Ultrafast Electron Diffraction on VELA at Daresbury Laboratory | electron, FEL, scattering, experiment | 2278 |
|
|||
Funding: This work was funded by STFC Accelerator based Ultrafast Electron Diffraction (UED) is a technique for obtaining static structures and for studying sub-100 fs dynamic structural changes on the atomic scale. In this paper we present the first electron diffraction results obtained from the VELA accelerator in 2014. The accelerator was operated to provide typically 4MeV/c electron bunches. Diffraction patterns were observed with <<1 pC transported to the detection screen. Single shot and multi-shot accumulated diffraction data are presented from single crystal and polycrystalline samples, including Au, Al, Pt and C. Contamination of the diffraction pattern with dark current contributions is an issue. A variable size aperture directly in front of the sample offers some mitigation, but at the expense of reduced charge contributing to the diffraction pattern. We discuss future developments for electron diffraction on VELA including further beam optimization, measurement of bunch length with a newly installed Transverse Deflecting Cavity, and the planned developments for pump-probe studies. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
TUPWI042 | Initial Results from Streaked Low-energy Ultra-fast Electron Diffraction System | electron, simulation, diagnostics, experiment | 2339 |
|
|||
RadiaBeam, in collaboration with UCLA, is developing an inexpensive, low-energy, ultra-fast, streaked electron diffraction (S-UED) system which allows one to reconstruct a single ultrafast event with a single pulse of electrons using and RF deflector. The high-frequency (GHz), high voltage, phase-locked RF field in the deflector enables temporal resolution of atomic events as fine as sub-100 fs. In this paper, we present an overview of the system being developed and the initial experimental results. We also discuss the challenges based on our design of a UED system that incorporates a novel, high-resolution dielectric-loaded RF deflector and a solid-state X-band amplifier. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPWI042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEYC1 | Technical Challenges of the LCLS-II | undulator, linac, electron, cavity | 2434 |
|
|||
The LCLS-II will be a CW X-ray FEL upgrade to the existing LCLS X-ray FEL at the SLAC National Accelerator Laboratory (SLAC). This paper describes the overall layout and the technical challenges that the upgrade project faces. | |||
![]() |
Slides WEYC1 [4.446 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEYC1 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEBB1 | Plans for Deployment of Hollow Electron Lenses at the LHC for Enhanced Beam Collimation | electron, collimation, solenoid, operation | 2462 |
|
|||
Hollow electron lenses are considered as a possible mean to improve the LHC beam collimation system, providing an active control of halo diffusion rates and suppressing the population of transverse halos. After a very successful experience at the Tevatron, a conceptual design of a hollow e-lens optimized for the LHC was produced. Recent further studies have led to a mature preliminary technical design. In this paper, possible scenarios for the deployment of this technology at the LHC are elaborated in the context of the scheduled LHC long shutdowns until the full implementation of the HL-LHC upgrade in 2023. Possible setups of electron beam test stands at CERN and synergies with other relevant electron beam programmes outside CERN are also discussed. | |||
![]() |
Slides WEBB1 [3.216 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEBB1 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEAD2 | Experimental Results of Carbon NanoTube Cathodes inside RF Environment | cathode, electron, emittance, laser | 2475 |
|
|||
Funding: Work supported by US DOE SBIR grant # DE-SC0004459 Carbon Nano Tubes (CNT’s) as field-emitters have been investigated for more than two decades and can produce relatively low emittance electron beams for a given cathode size. Unlike thermionic cathodes, CNT cathodes are able to produce electrons at room temperature and relatively low electric field (a few MV/m). In collaboration with FermiLab, we have recently tested CNT cathodes both with DC and RF fields. We observed a beam current close to 1A with a ~1cm2 CNT cathode inside an L-band RF gun. Steady operation was obtained up to 650 mA and the measured current vs. surface field plot showed perfect agreement with the Fowler-Nordheim distribution. |
|||
![]() |
Slides WEAD2 [10.445 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEAD2 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEAD3 | Quantum Efficiency Improvement of Polarized Electron Source using Strain Compensated Super Lattice Photocathode | electron, laser, polarization, collider | 2479 |
|
|||
Polarized electron beam is essential for future electron-positron colliders and electron-ion colliders. Improving the quantum efficiency is an important subject to realize those proposed applications. Recently we have developed the strain compensated superlattice (SL) photocathode. In the strain compensated SLs, the equivalent compressive and tensile strains introduced in the well and barrier SL layers so that strain relaxation is effectively suppressed with increasing the SL layer thickness and high crystal quality can be expected. In this study, we fabricated the GaAs/GaAsP strain compensated SLs with the thickness up to 90-pair SL layers. Up to now, the electron spin polarization of 92 % and the quantum efficiency of 1.6 % were simultaneously achieved from 24-pair sample. In the presentation, we show the effect of the superlattice thickness on the photocathode performances and discuss the photocathode physics. | |||
![]() |
Slides WEAD3 [3.064 MB] | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEAD3 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWA014 | Low Temperature Properties of 20 K Cooled Test Cavity for C-band 2.6-cell Photocathode RF Gun | cavity, experiment, cryogenics, resonance | 2519 |
|
|||
Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT). A cryogenic C-band 2.6-cell photocathode RF gun, which operates at 20 K, is under development at Nihon University for future possibility of use in a compact linac-driven X-ray source. The cavity material is 6N8 high purity copper, the RRR of which being expected to be higher than 3000. A 2.6-cell pi-mode test cavity was fabricated for investigation of the properties under low temperature of 20 K*. Ultraprecision machining and diffusion bonding of the cavity were carried out in KEK. The operating frequency of the RF gun cavity is 5712 MHz. The machining dimensions of the test cavity were determined by taking into account the contraction of copper from room temperature to 20 K by approximately 0.33 %. The resonant frequency observed at around 21 K was 5711.761 MHz, which is 185 kHz higher than the expected value that was deduced from the resonant frequency obtained at 23.5 degree C in vacuum and the linear expansion coefficient data for OFC copper by NIST**. The unloaded Q-value of 64500 obtained at 21 K is in agreement with the SUPERFISH calculation when the surface resistance of the RRR=3000 copper was specified with taking the anomalous skin effect into account. * T. Tanaka et al., Proceedings of IPAC2014, 658-660, http://accelconf.web.cern.ch/AccelConf /IPAC2014/papers/mopri030.pdf ** http://cryogenics.nist.gov/MPropsMAY/OFHC%20Copper/OFHCCopperrev.htm |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA014 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWA015 | RF Input Coupler for 20 K Cooled C-band 2.6-cell Photocathode RF Gun | cavity, simulation, resonance, network | 2522 |
|
|||
Funding: Work supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT). For future use in a compact linac-driven X-ray source, a cryo-cooled C-band photocathode RF gun is under development. The RF experiment on the basic 2.6-cell test cavity has shown that the unloaded Q-value of the cavity at 20 K can be explained by the surface resistance based on the anomalous skin effect. Since the cavity was intended for preliminary experiments of the low temperature RF properties*, a new test cavity with an RF input coupler has been designed. The basic structure of the accelerating cells has not been changed from the previous cavity. Avoiding an element with a low cooling efficiency such as the inner electrode in a coaxial coupler, a simpler cylindrical input coupler has been designed. The coupler consists of a cylindrical TM01 mode waveguide and a mode converter from a rectangular TE10 mode, with both elements placed on the accelerating axis. The structure and the dimensions of the coupler have been determined using the 3-D simulation code CST Studio so that the resonant frequency of the whole system and the coupling coefficient of the coupler meet the specifications of the RF gun. The new test cavity will be completed early in 2015 at KEK. * T. Tanaka et al., Proceedings of IPAC2014, 658-660, http://accelconf.web.cern.ch/AccelConf /IPAC2014/papers/mopri030.pdf |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWA024 | Development of a C-band RF Gun with a Coniferous-tree-type Carbon Nanostructure Field Emission Cathode | cavity, cathode, electron, radiation | 2545 |
|
|||
A C-band RF gun for compact radiation sources such as a high energy x-ray and a terahertz radiation is developed at AIST, which is designed to work at the frequency of 5.3 GHz*. A coniferous-tree-type carbon nanostructure (CCNS) is used for a field emission cathode in the C-band RF gun. A graphene sheet composed of carbon has a coniferous form, and the tip has a nanometer-size tubular structure that becomes thicker on the substrate side**. Owing to this configuration, the CCNS has a large field enhancement factor, and is considered to be more stable in high electric fields than Carbon nanotubes. We have fabricated the C-band RF gun of the single cell cavity. Emission current depending on the electric field strength on the CCNS cathode surface was measured. When the electric field strength was 30 MV/m, the total charge per a macro pulse was 30 nC. After applying a stronger electric field, a decline of the field enhancement factor was observed. We will present the experimental result of the field emission measurement of the CCNS and the simulation result of a beam trajectory using a C-band RF gun of a multi cell cavity.
* Y. Taira et al., Nucl. Instr. and Meth. Phys. Res. B 331 (2014) 27. ** R. Suzuki, Synthesiology 2 (3) (2009) 221. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA024 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWA052 | RF Conditioning of the Photo-Cathode RF Gun at the Advanced Photon Source - NWA RF Measurements | detector, cathode, linac, vacuum | 2621 |
|
|||
Funding: Work supported by U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357 A new S-band photo-cathode (PC) gun was recently installed and RF conditioned at the Advanced Photon Source (APS) Injector Test-stand (ITS) at Argonne National Lab (ANL). The APS PC gun is a LCLS type gun fabricated at SLAC [1]. The PC gun was delivered to the APS in October 2013 and installed in the APS ITS in December 2013. At ANL, we developed a new method of fast detection and mitigation of the gun’s internal arcs during the RF conditioning process to protect the gun from arc damage and to RF condition more efficiently. Here, we report the results of RF measurements for the PC gun and an Auto-Restart method for high power RF conditioning. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA052 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWA070 | Considerations for an Efficient Terahertz-driven Electron Gun | electron, acceleration, laser, controls | 2664 |
|
|||
We investigate a dispersion-controlled-acceleration scheme of low-energy electrons to mitigate phase slipping using a tapered dielectric lined waveguide (DLW). Our approach matches the velocity of an electron being accelerated in a slab-symmetric structure in a constant electric field. We also present first experimental results of a THz pulse propagating in a slab-symmetric DLW. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA070 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPJE019 | Simulations of Field-Emission Electron Beams from CNT Cathodes in RF Photoinjectors | cathode, electron, simulation, emittance | 2711 |
|
|||
Average field emission currents of up to 700 mA were produced by Carbon Nano Tube (CNT) cathodes in a 1.3 GHz RF gun at Fermilab High Brightness Electron Source Lab. (HBESL). The CNT cathodes were manufactured at Xintek and tested under DC conditions at RadiaBeam. The electron beam intensity as well as the other beam properties are directly related to the time-dependent electric field at the cathode and the geometry of the RF gun. This report focuses on simulations of the electron beam generated through field-emission and the results are compared with experimental measurements. These simulations were performed with the time-dependent Particle In Cell (PIC) code WARP. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE019 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPJE023 | Cathode Performance during Two Beam Operation of the High Current High Polarization Electron Gun for eRHIC | cathode, electron, vacuum, operation | 2720 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Two electron beams from two activated bulk GaAs photocathodes were successfully combined during the recent beam test of the High Current High Polarization Electron gun for eRHIC. The beam test took place at Stangenes Industries in Palo Alto, CA, where the cathodes were placed in radially opposite locations inside the high voltage shroud. No significant cross talking between the cathodes were found for the pertinent vacuum and low average current operation, which is very promising towards combining multiple beams for higher average current. This paper describes the cathode preparation, transport and cathode performance in the gun for the combining test, including the QE and lifetimes of the photocathodes at various steps of the experiment. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE023 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPJE033 | The Progress of Funnelling Gun High Voltage Condition and Beam Test | cathode, electron, high-voltage, radiation | 2735 |
|
|||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A prototype of a high average current polarized electron funneling gun as an eRHIC injector has been built at BNL. The gun was assembled and tested at Stangenes Incorporated. Two beams were generated from GaAs photocathodes and combined by a switched combiner field. We observed the combined beams on a YAG crystal and measured the photocurrent by a Faraday cup. The gun has been shipped to Stony Brook University and is being tested there. In this paper we will describe the major components of the gun and recent beam test results. High voltage conditioning is discussed as well. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPJE033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMA011 | First Horizontal Test Results of the HZB SRF Photoinjector for BERLinPro | cavity, SRF, operation, cryomodule | 2768 |
|
|||
The BERLinPro project, a small superconducting RF (SRF) c.w. energy recovery linac (ERL) is being built at Helmholtz-Zentrum Berlin in order to develop the technology required for operation of a high current, 100 mA, 50 MeV ERL. The electron source for the accelerator is a 1.4 cell SRF photoinjector fitted with a multi-alkali photocathode. As part of the HZB photoinjector development program three different SRF photoinjectors will be fabricated and tested. The photoinjector described herein is the second cavity that has been fabricated, and the first photoinjector designed for use with a multi-alkali photocathode. The photoinjector has been built and tested at JLab and subsequently shipped to HZB for testing in the horizontal test cryostat HoBiCaT prior to installation in the photoinjector cryomodule. This cryomodule will be used to measure the photocathode operation in a dedicated experiment called GunLab, the precursor to installation in the BERLinPro hall. This paper will report on the final results of the cavity installed in the helium vessel in the vertical testing dewar at Jefferson Lab as well as the first horizontal test in HoBiCaT | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA011 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMA031 | Timing Jitter Studies for sub-fs Electron Bunch Generation at SINBAD | laser, electron, simulation, acceleration | 2826 |
|
|||
Generation of ultra-short electron bunches with a few femtoseconds arrival-time jitter is the major challenge in plasma acceleration with external injection. Meanwhile, peak current stability is also one of the crucial factors for user experiments when the electron bunch is used for free-electron laser (FEL) generation. ARES (Accelerator Research Experiment at SINBAD) will consist of a compact S-band normal-conducting photo-injector providing ultra-short electron bunches of 100 MeV. We present bunch arrival-time jitter studies for two different compression schemes, velocity bunching and magnetic compression with a slit, at ARES with start-to-end simulations. Contributions from various jitter sources are quantified. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA031 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMA036 | Double-Cell Notch Filter for SRF Gun Investigations | cathode, SRF, cavity, simulation | 2838 |
|
|||
Some projects of SRF guns apply the design where the cathode can be easily and quickly removed. One of the disadvantages of this design is the RF power leakage from the accelerating gun cavity cells to the cathode housing that results in the excessive cathode heating. To minimize the RF power leak different kinds of choke filters are used to protect the cathode structure. These choke filters represent resonant circuits with a zero input impedance and installed at the entrance of the cathode structure that shunt the cathode housing. Still, since the choke filter frequency shift under working conditions is bigger than its bandwidth a filter tuning during assembly only in the warm stage seems insufficient and requires also fine-tuning during operation. To eliminate the problems of the choke filter fine-tuning and hence ensure its stability during operation, a combination of the resonance choke elements can be implemented. In the paper we demonstrate advantages of the double-cell notch filter using BERLinPro SRF gun cavity as an example with its simple design modifications. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA036 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMA044 | 25 Hz, Sub-mJ Ytterbium Laser Source of RF Gun for SuperKEKB Linac | laser, cavity, polarization, electron | 2862 |
|
|||
For injector linac of SuperKEKB project, the 5 nC electron beams with double-bunch is expected to be generated in the photocathode RF gun. For the repetition rate of electrum beam, the optional of 2 Hz, 5 Hz, 25 Hz and 50 Hz are requested. Although, more than 5 nC electron with single-bunch has been generated in the 2 Hz and 5 Hz, when the repetition rate increases to 25 Hz, the condition of the laser amplifier system such as the thermal lens effect is changed seriously. To correspond to 25 Hz repetition rate, the ytterbium-doped laser system was reformed. An AuSu (80:20) heat-dissipating solder is employed to reduce the thermal lens effect. Because of the damage threshold limitation of the thin-disk crystal and optical mirrors, Some improvement were performed to increase the quality of the pulses rather than the amplify power, which cause the SHG conversion efficiency is up to 60% and 30% with 2ω and 4ω respectively. More than 3 nC electron beam is obtained with 25 Hz. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMN012 | Cathode Stalk Optimization for a 325 MHz Superconducting QWR Electron Gun | cathode, cavity, electron, impedance | 2940 |
|
|||
Funding: Work supported by National Basic Research Project (No. 2011CB808302) The structure of cathode stalk is very important for the performance of a superconducting QWR (Quarter Wave Resonator) gun. With improper design, RF power dissipation on the surface of cathode stalk and its surrounding tube can lead to a serious decrease of quality factor for superconducting QWR injector. We present here an optimized design of the cathode stalk for the 325 MHz superconducting QWR gun and special considerations are taken to minimize the power dissipation. The details of microwave simulation, beam dynamic simulation of the cavity with cathode stalks in different length, diameter and position are presented in this paper. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN012 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMN015 | Dark Current Imaging Experiment in an L-band RF Gun | cathode, solenoid, electron, experiment | 2952 |
|
|||
The localized high electric field enhancement or low work function is the trigger for strong field emission, which however has yet been well experimentally studied. Using an L-band photocathode gun test stand at Argonne Wakefield Accelerator Facility (AWA), we’ve constructed an imaging beam line to observe field emission current from predefined emitters on cathode. Preliminary experiment results are present. Future plan is discussed. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN015 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMN016 | Observation of Dark Current Dependence on Stored Energy in an L-Band RF Gun | cathode, solenoid, experiment, simulation | 2956 |
|
|||
A pin cathode has been installed into an L-band photocathode gun to study the influence of stored energy on field emission. The stored energy was varied by tuning the recess of the cathode in order to have the same E-field on the cathode tip. We have observed 5 times difference of dark current level at the same E-field, while by varying the stored energy by three fold. Dynamics study reveals the difference is not caused by transmission, but by emission process itself. We'll present experiment results and discuss possible mechanisms about the phenomena. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN016 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMN018 | Measurement of Cell-Cell Coupling Coefficient in Photocathode RF Gun | coupling, simulation, laser, cathode | 2963 |
|
|||
A photocathode RF gun is under cold rest in Tsinghua University. We measured the single cavity frequency and the cell-cell coupling coefficient by the detuning method with high accuracy. We use a simplified model to illustrate the whole process of the measurement. The data obtained in the cold test seem to accord with that from the model very well. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN018 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMN021 | Design and Research of Secondary Electron Emission Test Equipment with Low Electron Energy | electron, vacuum, ion, accumulation | 2970 |
|
|||
In particle accelerators, the secondary electrons resulting from the interaction between particles and vacuum chamber have a great impact on beam quality. Especially for positron, proton and heavy ion accelerators, massive electrons lead to electron cloud, which affects the stability, energy, emittance and beam life adversely. We have studied the secondary electron emission (SEE) of metal used for accelerators. A secondary electron emission measurement system with low electron energy has been designed and used to measure the SEE yield of metal and non-evaporable getter materials. With the equipment, we have obtained the characteristic of the SEE yield of stainless steel and oxygen free copper (OFC). | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN021 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMN034 | Electron Emission from Surface Roughness on Cavity in Low Temperature | electron, radiation, cavity, vacuum | 3003 |
|
|||
Electron emission phenomenon from surface roughness on cavity is investigated. The distribution of the electric field from the surface roughness can be obtained on cavity surface. The field emission is calculated from the electric field distribution. The generalized electron emission from electric field and temperature effect is also calculated on the surface roughness of the cavity. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN034 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPTY013 | Cs2Te Photocathode Performance in the AWA High-charge High-gradient Drive Gun | laser, cathode, wakefield, space-charge | 3283 |
|
|||
Funding: U.S. Dept of Energy Office of Science under contract number DE-AC02-06CH11357 The unique high-charge L-band, 1.3 GHz, 1.5 cell gun for the new 75 MeV drive beam is in operation at the Argonne Wakefield Accelerator (AWA) facility (see M.E. Conde, this proceedings.) The high-field (> 80 MV/m) photoinjector has a large area, high QE Cesium telluride photocathode (diameter > 30 mm). The photocathode, a crucial component of the upgraded facility, is fabricated on-site. The photoinjector generates high-charge, short pulse, single bunches (Q > 100 nC) and long bunch-trains (Q > 600 nC) for wakefield experiments. The performance of the photocathode for the AWA drive gun is detailed. Quantum efficiency (QE) measurements indicate long, stable photocathode lifetime under demanding conditions. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY013 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPTY025 | LBNF Hadron Absorber: Mechanical Design and Analysis for 2.4MW Operation | operation, hadron, shielding, target | 3318 |
|
|||
Fermilab’s Long-Baseline Neutrino Facility (LBNF) requires an absorber, essentially a large beam dump consisting of actively cooled aluminum and steel blocks, at the end of the decay pipe to stop leftover beam particles and provide radiation protection to people and groundwater. At LBNF’s final beam power of 2.4 MW and assuming the worst case condition of a 204 m long helium filled decay pipe, the absorber is required to handle a heat load of about 750 kW. This results in significant thermal management challenges which have been mitigated by the addition of an aluminum ‘spoiler’ and ‘sculpting’ the central portion of the aluminum core blocks. These thermal effects induce structural stresses which can lead to fatigue and creep considerations. Various accident conditions are considered and safety systems are planned to monitor operation and any accident pulses. Results from these thermal and structural analyses will be presented as well as the mechanical design of the absorber. The design allows each of the core blocks to be remotely removed and replaced if necessary. A shielded remote handling structure is incorporated to hold the hadron monitor when it is removed from the beam. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY025 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPTY056 | Novel High Power Sources for the Physics of Ionospheric Modification | cathode, simulation, electron, impedance | 3398 |
|
|||
Funding: This work is supported by the Air Force Office of Scientific Research under grant FA95501410019. The ionosphere plays a controlling role in the performance of critical civilian and DoD systems including the ELF-ULF communications. The objective of Ionospheric Modification is to control triggered processes to improve the performance of trans-ionospheric C3I systems and develop new applications that take advantage of the ionosphere as an active plasma medium. A key instrument is the Ionospheric Heater, a powerful HF transmitter that modifies the properties of the ionospheric plasma by modulating the electron temperature at preselected altitudes. A major reason for the development of a mobile source is that it would allow investigators to conduct the needed research at different latitudes without building permanent installations. As part of a MURI, UMD will develop a powerful RF source utilizing IOT technology in class-D amplifier mode. This technology was chosen because it has the potential to operate at very high efficiency. Some of the technical challenges presented in this paper will include a gun design that minimizes intercepted current, a compact tunable cavity, an efficient modulator system capable of modulating a high power beam and output couplers to feed the antennas. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWI024 | Vacuum Characterization and Improvement for the Jefferson Lab Polarized Electron Source | ion, electron, vacuum, background | 3540 |
|
|||
Operating the JLab polarized electron source with high reliability and long lifetime requires vacuum near the XHV level (<=1x10-12 Torr). This paper describes ongoing vacuum research at Jefferson Lab including characterization of outgassing rates for surface coatings and heat treatments, ultimate pressure measurements, investigation of pumping including an XHV cryopump, and characterization of ionization gauges in this pressure regime. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI024 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWI033 | Effects of Plasma Processing on Secondary Electron Yield of Niobium Samples | electron, plasma, cavity, vacuum | 3558 |
|
|||
Impurities deposited on the surface of Nb during both the forming and welding of accelerator cavities add to the imperfections of the sheet metal, which then affects the overall performance of the cavities. This leads to a drop in the Q factor and limits the maximum acceleration gradient achievable per unit length of the cavities. The performance can be improved either by adjusting the fabrication and preparation parameters, or by mitigating the effects of fabrication and preparation techniques used. We have developed the experimental setup to determine Secondary Electron Yield (SEY) from the surface of Nb samples. Our aim is to show the effect of plasma processing on the SEY of Nb. The setup measures the secondary electron energy distribution at various incident angles as measured between the electron beam and the surface of the sample. The goal is to determine the SEY on non-treated and plasma treated surface of electron beam welded samples. Here we describe the experimental setup, plasma treatment device, and fabrication and processing of the Nb samples. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI033 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWI049 | Commissioning of the 112 MHz SRF Gun and 500 MHz Bunching Cavities for the CeC PoP Linac | SRF, bunching, experiment, electron | 3597 |
|
|||
Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. The Coherent electron Cooling Proof-of-Principle (CeC PoP) experiment at BNL includes a short electron linac. During Phase I a 112 MHz superconducting RF photoemission gun and two 500 MHz normal conducting bunching cavities were installed and commissioned. The paper describes the Phase I linac layout and presents commissioning results for the cavities and associated RF, cryogenic and other sub-systems. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI049 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWI050 | SRF and RF Systems for LEReC Linac | cavity, SRF, electron, booster | 3600 |
|
|||
Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE. The Low Energy RHIC electron Cooling (LEReC) is under development at BNL to improve RHIC luminosity at low energies. It will consist of a short electron linac and two cooling sections, one for blue and one for yellow beams. For the first stage of the project, LEReC-1, we will to install a 704 MHz superconducting RF cavity and two normal conducting cavities operating at 704 MHz and 2.1 GHz. The SRF cavity will boost the electron beam energy up to 2 MeV. The warm cavities will be used to correct the energy spread introduced in the SRF cavity. The paper describes layouts of the SRF and RF systems, their parameters and status. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI050 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||