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Abstract

The problem of errors, arising due to finite BPM reso-
lution, in the difference orbit parameters, which are found
as a least squares fit to the BPM data, is one of the stan-
dard problems of the accelerator physics. In this article we
present a “dynamical point of view” on this problem, which
allows us to describe properties of the BPM measurement
system in terms of the usual accelerator physics concepts
of emittance and betatron functions.

INTRODUCTION

The determination of variations in the transverse beam
position and in the beam energy using readings of beam
position monitors (BPMs) is one of the standard and impor-
tant problems of accelerator physics. If the optical model
of the beam line and BPM resolutions are known, the typ-
ical choice is to let jitter parameters be a solution of the
weighted linear least squares problem. Even so for the case
of transversely uncoupled motion this least squares prob-
lem can be solved “by hand” (see, for example [1, 2]), the
direct usage of obtained analytical solution as a tool for de-
signing of a “good measurement system” does not look to
be fairly straightforward. It seems that a better understand-
ing of the nature of the problem is still desirable.

A step in this direction was made in the papers [3, 4],
where dynamic was introduced into this problem which in
the beginning seemed to be static. When one changes the
position of the reconstruction point, the estimate of the jit-
ter parameters propagates along the beam line exactly as a
particle trajectory and it becomes possible (for every fixed
jitter values) to consider a virtual beam consisting from vir-
tual particles obtained as a result of application of least
squares reconstruction procedure to “all possible values” of
BPM reading errors. The dynamics of the centroid of this
beam coincides with the dynamics of the true difference
orbit and the covariance matrix of the jitter reconstruction
errors can be treated as the matrix of the second central
moments of this virtual beam distribution.

In accelerator physics a beam is characterized by its
emittances, energy spread, dispersions, betatron functions
and etc. All these values immediately become the prop-
erties of the BPM measurement system. In this way one
can compare two BPM systems comparing their error emit-
tances and error energy spreads, or, for a given measure-
ment system, one can achieve needed balance between co-
ordinate and momentum reconstruction errors by matching
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the error betatron functions in the point of interest to the
desired values. In this article we illustrate this dynamical
point of view on the BPM measurement system considering
the case of transversely uncoupled nondispersive beam mo-
tion (inclusion of the energy degree of freedom and multi-
ple examples can be found in cited above papers [3, 4]). As
application, we formulate requirements on the BPM mea-
surement system of the high-energy intra-bunch-train feed-
back system (IBFB) of the European X-Ray Free-Electron
Laser (XFEL) Facility in terms of introduced concepts of
error emittance and error Twiss parameters [5, 6].

STANDARD LEAST SQUARES SOLUTION

We will assume that the transverse particle motion is un-
coupled in linear approximation and will use the variables
�z = (x, px)� for the description of the horizontal beam
oscillations. As orbit parameters we will understand val-
ues of x and px given in some predefined point in the
beam line (reconstruction point with longitudinal position
s = r ) and as transverse jitter in this point we will mean the
difference δ�z(r) = (x(r) − x̄(r), px(r) − p̄x(r))� be-
tween parameters of the instantaneous orbit and parameters
of some predetermined “golden trajectory” (x̄, p̄x)�.

Let us assume that we have n BPMs in our beam line
placed at positions s1, . . . , sn and they deliver readings
�bc = (bc

1, . . . , b
c
n)� for the current trajectory with pre-

viously recorded observations for the golden orbit being
�bg = (bg

1, . . . , b
g
n)�. Suppose that the difference between

these readings can be represented in the form

δ�bς
def= �bc − �bg =

⎛
⎜⎝

x(s1) − x̄(s1)
...

x(sn) − x̄(sn)

⎞
⎟⎠ + �ς, (1)

where the random vector �ς = (ς1, . . . , ςn)� has zero mean
and positive definite covariance matrix Vς .

Let Am(r) be a symplectic transfer matrix from loca-
tion of the reconstruction point to the m-th BPM location

Am(r) =
(

am(r) cm(r)
em(r) dm(r)

)
(2)

and let us assume that the Cholesky factorization Vς =
R�

ς Rς of the covariance matrix Vς is known. As usual,
we will find an estimate δ�zς(r) for the difference orbit pa-
rameters in the presence of BPM reading errors by solving
the following weighted linear least squares problem

min
δ�zς

∥∥R−�
ς

(
M · δ�zς − δ�bς

)∥∥2

2
, (3)
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where

M =

⎛
⎜⎝

a1(r) c1(r)
...

...
an(r) cn(r)

⎞
⎟⎠ . (4)

If the phase advance between at least two BPMs is not mul-
tiple of 180◦, then the solution of the problem (3) is unique
and is given by the well known formula

δ�zς(r) =
(
M�(r)V −1

ς M(r)
)−1

M�(r)V −1
ς · δ�bς . (5)

The calculation of the covariance matrix of the errors is
also standard and gives the following result

Vz(r)
def= V ( δ�zς(r) ) =

(
M�(r)V −1

ς M(r)
)−1

. (6)

BEAM DYNAMICAL
PARAMETRIZATION OF COVARIANCE

MATRIX OF RECONSTRUCTION
ERRORS

Let A(r1, r2) be a matrix which transports particle
coordinates from the point with the longitudinal position
s = r1 to the point with the position s = r2 . It is not
difficult to show that for any given value of �ς the estimate
of the difference orbit parameters δ�zς propagates along the
beam line exactly as particle trajectory

δ�zς(r2) = A(r1, r2) · δ�zς(r1), (7)

as one changes the position of the reconstruction point. So
we can consider a virtual beam consisting from virtual par-
ticles obtained as a result of application of formula (5) to
“all possible values” of the error vector �ς. The dynamics
of the centroid of this virtual beam δ�z0(r) =

〈
δ�zς(r)

〉
co-

incides with the dynamics of the true difference orbit δ�z(r)
and the error covariance matrix (6) can be treated as the
matrix of the second central moments of this virtual beam
distribution and satisfies the usual transport equation

Vz(r2) = A(r1, r2)Vz(r1)A�(r1, r2). (8)

Consequently, for the description of the propagation of
the reconstruction errors along the beam line, one can use
the accelerator physics notations and represent the error co-
variance matrix in the familiar form

Vz(r) = ες

(
βς(r) −ας(r)

−ας(r) γς(r)

)
, (9)

where βς(r) and ας(r) are the error Twiss parameters and

ες =
√

detVz(r) (10)

is the invariant error emittance.
What is interesting about the error Twiss parameters is

the fact that they are not simply one of many betatron func-
tions which could propagate through our beam line, they

are by themselves solutions of some minimization problem.
For simplicity of formulations let us consider the case when
readings of different BPMs are uncorrelated, i.e. when

Vς = diag
(
σ2

1 , σ2
2 , . . . , σ2

n

)
. (11)

Then, under the assumption that the phase advance be-
tween at least two BPMs is not a multiple of 180◦, the error
Twiss parameters are unique solutions to the problem

min
β(r), α(r)

n∑
m=1

β(sm)
σ2

m

(12)

and this minimum is equal to 2/ες . Besides that, the error
betatron functions (and only they) satisfy

n∑
m=1

βς(sm)
σ2

m

·
(

cos (2μς(r, sm))
sin (2μς(r, sm))

)
= 0, (13)

where μς(r, sm) is the phase advance calculated from the
point s = r to the point s = sm .

COURANT-SNYDER INVARIANT AS
ERROR ESTIMATOR

Beam dynamical point of view on the BPM measure-
ment system leads us, almost unavoidably, to the introduc-
tion of the Courant-Snyder quadratic form as error estima-
tor. Let β0, α0, γ0 be the design Twiss parameters and

Ix(r, �z ) = γ0(r)x2 + 2α0(r)xpx + β0(r) p2
x (14)

the corresponding Courant-Snyder quadratic form. Using
this quadratic form we introduce the random variable

Iς
x = Ix(r, δ�zς(r) − δ�z0(r)). (15)

The mean value of this random variable is equal
〈
Iς
x

〉
= 2 ες mp, (16)

where mp = mp(βς , β0) is the mismatch between the er-
ror and the design betatron functions. The right hand side
in (16), as it could be expected, does not depend on the po-
sition of the reconstruction point, but it depends not only
on the error emittance but also on the the design and the
error betatron functions. So if one will use Courant-Snyder
quadratic form for the estimation of the properties of the
BPM measurement system, then the figure of merit for the
quality of this system will be not the error emittance alone,
but the product of the error emittance and the mismatch
between the error and the design Twiss parameters. Large
mismatch can spoil the properties of the measurement sys-
tem even for the case when the error emittance is small.

If we will assume that the random vector �ς has a multi-
variate normal distribution, then it becomes possible to find
not only higher order moments of the random variable I ς

x ,
but also its probability density. This density p(t) is equal
to zero for negative values of its argument, and for t ≥ 0

p(t) =
1

2ες
I0

(√
m2

p − 1
t

2ες

)
exp

(
−mp

t

2ες

)
, (17)

where I0 is the modified Bessel function of zero order.
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STUDIES OF THE BPM RESOLUTION
REQUIRED FOR THE IBFB SYSTEM OF

THE EUROPEAN XFEL

The typical requirement for the transverse (horizontal)
beam stability at the entrance of the SASE undulator is
usually formulated in the terms of beam sigmas and can
be written in the form

Ix(r, δ�z0(r)) ≤ n2
σ εx, (18)

where εx is non-normalized rms emittance, nσ is some pre-
defined number of beam sigmas, and δ�z0 is the difference
between parameters of the instantaneous and the golden
trajectories. In order to satisfy inequality (18) with small
transverse emittances required for the SASE FEL process
and with typical limitation on nσ to be not larger than 0.1,
the active beam stabilization system (transverse feedback)
is planned to be used at the European XFEL Facility [5, 6].

The purpose of this section is to get first idea about BPM
resolution needed for such feedback system. Because ac-
tual feedback performance will strongly depend not only
on BPM resolutions but also on the interplay between the
properties of the real beam jitter and the feedback algo-
rithm used, let us, for the first guess, consider very sim-
plified idealized feedback system which could act without
delay on the same bunch which was measured and whose
kickers do not introduce own correction errors. In this sit-
uation the only problem left is that δ�z0 remains unknown
for us and instead feedback BPM’s deliver us an estimate
δ�zς , which includes the effect of the BPM reading errors.
Let us write

Ix(r, δ�z0(r)) = Ix(r, [δ�zς(r) − δ�z0(r)] − [δ�zς(r)]) (19)

and assume that, according to the above discussions, δ�z ς

can be perfectly corrected by feedback kickers to zero.
Then the criteria (18) can be reformulated in the form

Pr
(
Iς
x ≤ n2

σ εx

) ≥ p0, (20)

where p0 is some predetermined probability of correction
success. Let t = t(p0, mp, ες) be solution of the equation

Pr (Iς
x ≤ t) = p0. (21)

Then it can be represented in the form t = 2ε ς a(p0, mp),
where the function a(p0, mp) can be found from

a(p0,mp)∫

0

I0

(√
m2

p − 1 τ
)

exp(−mp τ) dτ = p0. (22)

Comparing (20) and (21) one obtains the requirement

2εςa(p0, mp) ≤ n2
σεx. (23)

For two uncorrelated BPMs with equal resolutions the error
emittance is ες = σ2

bpm/|r12| and this together with (23)
gives
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Figure 1: Maximal allowed resolution of two feedback
BPM’s as a function of their positioning in the beam line.

σbpm ≤ nσ

√
(εx|r12|)/(2a(p0, mp)). (24)

In the framework of the model considered, the right hand
side of the inequality (24) gives maximal allowed BPM
resolution for the case when two BPM’s will be used for
the measurement of the horizontal beam jitter. If one will
use the same BPM’s for measuring jitters in both transverse
planes simultaneously, then as maximal allowed resolution
one has to take the minimum of the right hand sides of
the inequality (24) and analogous inequality written for the
vertical beam motion. As an important practical example,
Fig.1 shows the maximal allowed resolution of two feed-
back BPM’s in the situation when they will be used for
the measurement of both transverse jitters simultaneously
for the case of the IBFB beam line of the European XFEL
Facility [6]. Note that calculations presented at this fig-
ure were done for p0 = 0.95, nσ = 0.1, beam energy of
17.5 GeV and normalized emittances of 1.4 mm · mrad.

REFERENCES

[1] T.Lohse and P.Emma, “Linear Fitting of BPM Orbits and Lat-
tice Parameters”, SLAC-CN-371 (1989).

[2] Y.Chao, “Optics Measurement Resolution and BPM Errors”,
Proc. PAC 1997, Vancouver, B.C., Canada, p.2125.

[3] V.Balandin, W.Decking and N.Golubeva, “Errors in Recon-
struction of Difference Orbit Parameters due to Finite BPM-
Resolutions”, TESLA-FEL 2009-07, DESY, July 2009.

[4] V.Balandin, W.Decking and N.Golubeva, “Errors in Measur-
ing Transverse and Energy Jitter by Beam Position Moni-
tors”, DESY 10-023, February 2010.

[5] M.Altarelli, R.Brinkmann et al. (Eds), “XFEL: The Euro-
pean X-Ray Free-Electron Laser. Technical Design Report”,
DESY 2006-097, DESY, Hamburg, 2006.

[6] V.Balandin, W.Decking and N.Golubeva, “Magnet Lattice for
High-Energy XFEL IBFB: Version of May 2008”, Unpub-
lished Note.

Proceedings of IPAC’10, Kyoto, Japan MOPD087

06 Beam Instrumentation and Feedback

T03 Beam Diagnostics and Instrumentation 905


