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Abstract

In this article we discuss the usage of tilted multipoles
for correction of chromatic aberrations in the design of the
beam switchyard arc at the European X-Ray Free-Electron
Laser (XFEL) Facility [1].

INTRODUCTION

The European XFEL has been planed as a multiuser fa-
cility and from the beginning will have the possibility to
distribute electron bunches of one beam pulse to one or the
other of two electron beamlines, each serving its own set
of undulators. Additional space is reserved for the later
addition of a third electron beamline. Because different
users have contradictory requirements to the bunch repeti-
tion pattern, operational flexibility will be reached by a dis-
tribution system which will use very stable flat-top kickers
for directing beam into the undulator beamlines and fast
single bunch kickers to kick individual bunches into the
transport line to the beam dump before the beam distribu-
tion [1, 2].

Both, the beam separation between undulator beamlines
and beam deflection into the beam dump will be realized
with a kicker-septum scheme. While the beam quality in
the dump line is not an issue, the optics of the beam sepa-
ration between two undulator beamlines must meet a very
tight set of performance specifications. It should be able to
accept bunches with different energies (up to ±1.5% from
nominal energy) and transport them without any notice-
able deterioration not only transverse, but also longitudi-
nal beam parameters, i.e. it must be sufficiently achromatic
and sufficiently isochronous. Besides that it is necessary
to avoid magnet collisions in the design, and to keep the
degradation of the beam quality due to collective effects
within acceptable limits.

In this paper we discuss the optics solution for the
beam separation area between two undulator beamlines
(see Fig.1) with the main attention played to the improve-
ment of the chromatic properties of the beam deflection arc
by usage of sextupole and octupole magnets. Because of
the Lambertson type septums used in the design, the de-
flection arc has nonzero horizontal and vertical dispersions
simultaneously. This means that regardless of the fact that
the linear on-energy betatron motion is still transversely
uncoupled in such a beamline, we have not only the non-
linear dispersions generated in both transverse planes, but
also vertical and horizontal oscillations become chromat-
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ically coupled due to vertical dispersion in the horizontal
bending magnets and horizontal dispersion in the vertical
dipoles. Nevertheless, because these effects are not the re-
sult of magnet misalignments and imperfections and are
well controlled by the linear optics design, the usage of
tilted sextupoles and octupoles in such a beamline allows
to maintain the total number of multipoles required for cor-
rection of chromatic aberrations on the same level as re-
quired in the mid-plane symmetric systems.
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Figure 1: Top view of the separation area between two
electron beamlines. Green, red and purple colors mark
quadrupole magnets, and horizontal and vertical dipole
magnets, respectively. Horizontal and vertical distances are
measured in meters.

SECOND-ORDER CHROMATIC
ABERRATIONS DUE TO SEXTUPOLES

In this section we give formulas for the sextupole con-
tributions to the second-order chromatic aberrations from
which one can see similarities and differences in the usage
of tilted sextupole magnets in the beamlines with non-flat
dispersion and in beamlines which bend the beam only hor-
izontally (formulas (7)-(21) with arbitrary angle θ and with
angle θ multiple of 180◦, respectively). The effect of oc-
tupoles can be calculated and analyzed in a similar fashion
and due to space limitation is not given here.

As usual, we take the path length along the reference or-
bit τ to be the independent variable and use a complete set
of symplectic variables z = (x, px, y, py, σ, ε) as particle
coordinates [3, 4]. In these variables the Hamiltonian de-
scribing the motion of a particle in the magnetostatic sys-
tem of interest can be written as

H(z) = ε − (1 + hx + αy) ·
[(

(1 + ε)2

− (px − Āx)2 − (py − Āy)2 − (ε/γ0)2
)1/2

+ Āz

]
, (1)
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where Āx, Āy and Āz are the components of the magnetic
vector potential multiplied by the rigidity of the reference
particle, and h and α are the horizontal and vertical curva-
tures of the reference orbit, respectively. We assume that
h(τ) · α(τ) ≡ 0 and that both curvatures are positive if
the reference orbit bends in the direction opposite to that
of the corresponding coordinate axis. With the assumption
that all magnets in our system are multipoles of separate
function type and with appropriately chosen vector poten-
tial, the Hamiltonian (1) expanded up to third order in the
variables z then takes the form H =3 H2 + H3, where

H2 = (1 / 2)
(
p2

x + p2
y + ε2 / γ2

0

) − (hx + αy) ε

+ (1 / 2)
(
h2 + k1

)
x2 + (1 / 2)

(
α2 − k1

)
y2, (2)

H3 = (1 / 2)
(
hx + αy − ε

) (
p2

x + p2
y + ε2 / γ2

0

)

− (1 / 2)
(
h′px − α′py

) (
x2 − y2

)

− (1 / 6)
(
h′′ x3 + α′′ y3

)
+ k2 Vs, (3)

Vs = cos(3ϕ)
x3 − 3xy2

6
− sin(3ϕ)

y3 − 3x2y

6
, (4)

and =n means equality up to order n, prime denotes differ-
entiation with respect to the variable τ , ϕ is a sextupole tilt
angle, and k1 and k2 are quadrupole and sextupole coeffi-
cients, respectively.

We represent particle passage through our system by a
symplectic map M that maps the dynamical variables z
from the location τ = 0 to the location τ = l and use for
this map the following Lie factorization

: M : =2 exp(: F3(z) :) : M(l) : . (5)

Here M(τ) = (rkm(τ)) is a fundamental matrix solution
of the linearized system driven by the Hamiltonian (2) and
the function F3 is a third order homogeneous polynomial:

F3(z) = −
∫ l

0

H3(τ, M(τ) · z) dτ. (6)

We separate the polynomialF3 in two partsF3 = Fo
3 +Fs

3 ,
where F s

3 describes the sextupole effects, and use a nota-
tion cabcde(Fs

3 ) for the coefficient with which the mono-
mial xa pb

x yc pd
y εe enters the polynomialF s

3 . Using polar
coordinates rD and θ for the r16 and r36 elements, namely
taking r16 = rD cos(θ) and r36 = rD sin(θ), the formulas
for the sextupole contributions to the chromatic aberrations
can be written as follows.

Chromatic Coupling Terms

c10101(Fs
3 ) =

∫ l

0

k2 r11 r33 rD sin(θ − 3ϕ) dτ, (7)

c01011(Fs
3 ) =

∫ l

0

k2 r12 r34 rD sin(θ − 3ϕ) dτ, (8)

c10011(Fs
3 ) =

∫ l

0

k2 r11 r34 rD sin(θ − 3ϕ) dτ, (9)

c01101(Fs
3 ) =

∫ l

0

k2 r12 r33 rD sin(θ − 3ϕ) dτ. (10)

Chromatic Focusing Terms

c20001(Fs
3 ) = −1

2

∫ l

0

k2 r2
11 rD cos(θ − 3ϕ) dτ, (11)

c02001(Fs
3 ) = −1

2

∫ l

0

k2 r2
12 rD cos(θ − 3ϕ) dτ, (12)

c11001(Fs
3 ) = −

∫ l

0

k2 r11 r12 rD cos(θ − 3ϕ) dτ, (13)

c00201(Fs
3 ) =

1
2

∫ l

0

k2 r2
33 rD cos(θ − 3ϕ) dτ, (14)

c00021(Fs
3 ) =

1
2

∫ l

0

k2 r2
34 rD cos(θ − 3ϕ) dτ, (15)

c00111(Fs
3 ) =

∫ l

0

k2 r33 r34 rD cos(θ − 3ϕ) dτ. (16)

Terms Responsible for the Second Order
Transverse and Longitudinal Dispersions

c10002(Fs
3 ) = −1

2

∫ l

0

k2 r11 r2
D cos(2θ − 3ϕ) dτ, (17)

c01002(Fs
3 ) = −1

2

∫ l

0

k2 r12 r2
D cos(2θ − 3ϕ) dτ, (18)

c00102(Fs
3 ) =

1
2

∫ l

0

k2 r33 r2
D sin(2θ − 3ϕ) dτ, (19)

c00012(Fs
3 ) =

1
2

∫ l

0

k2 r34 r2
D sin(2θ − 3ϕ) dτ. (20)

c00003(Fs
3 ) = −1

6

∫ l

0

k2 r3
D cos(3θ − 3ϕ) dτ. (21)

BEAM DEFLECTION ARC

The beam deflection arc starts from the kickers which
deflect beam vertically and, after enhancement of this de-
flection by the following quadrupole, the beam arrives at
the entrance of the first Lambertson septum magnet with
the vertical separation from the horizontal midplane y = 0
of about 18 mm. The first septum magnet is tilted by ap-
proximately 11◦ in such a way that it bends particles not
only horizontally but also slightly upward. It is done in
order to compensate the downward deflection produced by
the vertically focusing large aperture quadrupole that fol-
lows after the septum, and in order to have the beam trav-
eling in parallel to the horizontal midplane at the entrance
of the three remaining (non-tilted) septum magnets, as can
be seen in Fig.1 and Fig.2. The rest of the deflection arc is
constructed from ordinary multipoles and the arc ends by a
dogleg consisting of two vertical dipoles, which is used for
bringing beam back to the horizontal plane y = 0 and for
closing the linear vertical dispersion. The r56 coefficient
of the transfer matrix of the total deflection arc (considered
from the entrance of the first kicker up to the exit of the last
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Figure 2: Trajectories of the kicked particles in the be-
ginning of the separation area. The relative energy devia-
tions are equal to −3%, 0% and +3% (red, green and blue
curves, respectively).

vertical dipole) is equal to zero, i.e. the deflection arc is a
first-order isochronous beamline. This is achieved by us-
age of two reverse bend dipoles placed close to the arc cen-
ter. The entrance Twiss parameters of the deflection arc are
fixed and are defined by the behavior of the betatron func-
tions in the straight beamline. The exit Twiss functions are
such that they allow easy matching to the periodic down-
stream transport channel (see Fig.3). Two tilted sextupoles
and two tilted octupoles are placed in the arc to provide the
required chromatic properties of the beam transport (see
Fig.1 and Fig.4). Note that the optimization of the number
of sextupoles and octupoles, and their positions, strengths
and tilt angles was not a separate task after the finishing of
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Figure 3: Betatron and dispersion functions along deflec-
tion arc shown starting from the entrance of the first non-
tilted septum.
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Figure 4: Phase space portraits of monochromatic 0.1σx,y

and 1σx,y ellipses (matched at the entrance) after track-
ing through the deflection arc. The relative energy de-
viations are equal to −1.5%, 0% and +1.5% (red, green
and blue ellipses, respectively). Sextupoles and octupoles
are switched off (upper plots), sextupoles are on and oc-
tupoles are off (middle plots), sextupoles and octupoles are
on (lower plots).

the design of the linear optics, but both, linear and non-
linear optics were designed together.

The arc design presented in this paper meets all de-
sign specifications from the point of view of single parti-
cle beam dynamics. The impact of collective effects on the
beam quality still requires additional investigations [5].
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