Keyword: laser
Paper Title Other Keywords Page
MOB03 Transforming the FEL: Coherence, Complex Structures, and Exotic Beams FEL, undulator, radiation, electron 10
 
  • E. Hemsing
    SLAC, Menlo Park, California, USA
 
  Modern high brightness electron beams used in FELs are extremely versatile and highly malleable. This flexibility can be used to precisely tailor the properties of the FEL light for improved temporal coherence (as in external seeding), but can also be exploited in new ways to generate exotic FEL modes of twisted light that carry orbital angular momentum (OAM) for new science. In this talk, I will describe how lasers and undulator harmonics can be combined to produce both simple and complex e-beam distributions that emit intense, coherent, and highly tunable OAM light in future FELs.  
slides icon Slides MOB03 [12.208 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOC04 Operating of SXFEL in a Single Stage High Gain Harmonic Generation Scheme bunching, FEL, electron, linac 29
 
  • G.L. Wang, D.X. Dai, G.R. Wu, X.M. Yang, W.Q. Zhang
    DICP, Dalian, People's Republic of China
 
  The beam energy spread at the entrance of undulator system is of paramount importance for efficient density modulation in high-gain seeded free-electron lasers (FELs). In this paper, the dependencies of high harmonic bunching efficiency in the high-gain harmonic generation (HGHG) schemes on the electron energy spread distribution are studied. Theoretical investigations and multi-dimensional numerical simulations are applied to the cases of uniform and saddle beam energy distributions and compared to a traditional Gaussian distribution. It shows that the uniform and saddle electron energy distributions significantly enhance the performance of HGHG-FELs. A numerical example demonstrates that, with the saddle distribution of sliced beam energy spread controlled by a laser heater, the 30th harmonic radiation can be directly generated by a single-stage seeding scheme for a soft x-ray FEL facility.  
slides icon Slides MOC04 [3.345 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP011 Status of CLARA, a New FEL Test Facility FEL, undulator, electron, gun 49
 
  • J.A. Clarke, D. Angal-Kalinin, A.D. Brynes, R.K. Buckley, S.R. Buckley, L.S. Cowie, D.J. Dunning, B.D. Fell, P. Goudket, A.R. Goulden, P.C. Hornickel, F. Jackson, S.P. Jamison, J.K. Jones, K.B. Marinov, P.A. McIntosh, J.W. McKenzie, K.J. Middleman, B.L. Militsyn, A.J. Moss, B.D. Muratori, M.D. Roper, L.K. Rudge, Y.M. Saveliev, B.J.A. Shepherd, R.J. Smith, S.L. Smith, E.W. Snedden, M. Surman, T.T. Thakker, N. Thompson, R. Valizadeh, A.E. Wheelhouse, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R.B. Appleby, K. Hanahoe, O. Mete Apsimon, H.L. Owen, G.X. Xia
    UMAN, Manchester, United Kingdom
  • P. Atkinson, N. Bliss, R.J. Cash, N.A. Collomb, G. Cox, G.P. Diakun, S. Dobson, A. Gallagher, S.A. Griffiths, C. Hill, C. Hodgkinson, D.M.P. Holland, T.J. Jones, B.G. Martlew, J. Williams
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • R. Bartolini, I.P.S. Martin
    DLS, Oxfordshire, United Kingdom
  • S.T. Boogert, E. Yamakawa
    Royal Holloway, University of London, Surrey, United Kingdom
  • G. Burt, P.N. Ratoff
    Lancaster University, Lancaster, United Kingdom
  • L.T. Campbell, A.J.T. Colin, J. Henderson, B. Hidding, B.W.J. MᶜNeil
    USTRAT/SUPA, Glasgow, United Kingdom
  • A.M. Kolano
    University of Huddersfield, Huddersfield, United Kingdom
  • A. Lyapin
    JAI, Egham, Surrey, United Kingdom
  • V.V. Paramonov, A.K. Skasyrskaya
    RAS/INR, Moscow, Russia
  • J.D.A. Smith
    TXUK, Warrington, United Kingdom
  • S. Spampinati
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • Y. Wei, C.P. Welsch, A. Wolski
    The University of Liverpool, Liverpool, United Kingdom
 
  CLARA is a new FEL test facility being developed at STFC Daresbury Laboratory in the UK. The main motivation for CLARA is to test new FEL schemes that can later be implemented on existing and future short wavelength FELs. Particular focus will be on ultra-short pulse generation, pulse stability, and synchronisation with external sources. The project is now underway and the Front End section (photoinjector and first linac) installation will begin later this year. This paper will discuss the progress with the Front End assembly and also highlighting other topics which are currently receiving significant attention.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP012 Present Status of Source Development Station at UVSOR-III radiation, experiment, undulator, electron 54
 
  • N.S. Mirian, K. Hayashi, M. Katoh, J. Yamazaki
    UVSOR, Okazaki, Japan
  • M. Hosaka, Y. Takashima
    Nagoya University, Nagoya, Japan
  • T. Konomi, N. Yamamoto
    KEK, Ibaraki, Japan
  • H. Zen
    Kyoto University, Kyoto, Japan
 
  Construction and development of a source development station are in progress at UVSOR-III, a 750 MeV electron storage ring. It is equipped with an optical klystron type undulator system, a mode lock Ti:Sa Laser system, a dedicated beam-line for visible-VUV radiation and a parasitic beam-line for THz radiation. New light port to extract edge radiation was constructed recently. An optical cavity for a resonator free electron laser is currently being reconstructed. Some experiments such as coherent THz radiation, coherent harmonic radiation, laser Compton Scattering gamma-rays and optical vortices are in progress.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP013 The Fermi Seeded FEL Facility: Operational Experience and Future Perspectives FEL, experiment, electron, photon 57
 
  • L. Giannessi, E. Allaria, L. Badano, F. Bencivenga, C. Callegari, F. Capotondi, D. Castronovo, P. Cinquegrana, M. Coreno, R. Cucini, I. Cudin, G. D'Auria, M.B. Danailov, R. De Monte, G. De Ninno, P. Delgiusto, A.A. Demidovich, S. Di Mitri, B. Diviacco, A. Fabris, R. Fabris, W.M. Fawley, M. Ferianis, E. Ferrari, P. Finetti, P. Furlan Radivo, G. Gaio, D. Gauthier, F. Gelmetti, F. Iazzourene, M. Kiskinova, S. Krecic, M. Lonza, N. Mahne, M. Manfredda, C. Masciovecchio, M. Milloch, F. Parmigiani, E. Pedersoli, G. Penco, L. Pivetta, O. Plekan, M. Predonzani, K.C. Prince, E. Principi, L. Raimondi, P. Rebernik Ribič, F. Rossi, E. Roussel, L. Rumiz, C. Scafuri, C. Serpico, P. Sigalotti, M. Svandrlik, C. Svetina, M. Trovò, A. Vascotto, M. Veronese, R. Visintini, D. Zangrando, M. Zangrando
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  FERMI is the seeded FEL user facility in Trieste, Italy, producing photons from the VUV to the soft X-rays with a high degree of coherence and spectral stability. Both FEL lines, FEL-1 and FEL-2, are available for users, down to the shortest wavelength of 4 nm. We report on the completion of the commissioning of the high energy FEL line, FEL-2, on the most recent progress obtained on FEL-1 and on the operational experience for users, in particular those requiring specific FEL configurations, such as two-colour experiments. We will also give a perspective on the improvements and upgrades which have been triggered based on our experience, aiming to maintain as well as to constantly improve the performance of the facility for our user community.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP018 Comparison of Astra Simulations With Beam Parameter Measurements at the Kaeri Ultrashort Pulse Facility electron, simulation, quadrupole, emittance 74
 
  • H.W. Kim, I.H. Baek, M.S. Chae, B.A. Gudkov, B. Han, K.H. Jang, Y.U. Jeong, Y. Kim, K. Lee, S.V. Miginsky, S. H. Park, S. Park, S. Setiniyaz, N. Vinokurov
    KAERI, Daejon, Republic of Korea
  • K.H. Jang, Y.U. Jeong, H.W. Kim, K. Lee, S.V. Miginsky, S. H. Park, N. Vinokurov
    University of Science and Technology of Korea (UST), Daejeon, Republic of Korea
  • S.V. Miginsky, N. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
 
  An RF-photogun-based linear accelerator for ultra-short electron beam generation is under construction at Korea Atomic Energy Research Institute (KAERI). This facility are mainly composed of an 1.5 cell S-band (2856 MHz) RF gun, a travelling wave type linac 3 m long and 90-degree achromatic bends. The emitted electron beams are accelerated in high RF field to ~ 3 MeV. The electrons can be deflected by a first bending magnet installed right after the RF gun. Each beamline has second bending magnet similar to the first one and three quadrupoles between the bending magnets. Two bending and three quadrupole magnets compose the 90-degree achromatic bend. The deflected electron beams will be used for ultrafast electron diffraction (UED) experiments. We have performed computer simulation using ASTRA code to investigate the electron beam dynamics in the system with the input data of bead tested gun electric field distribution and the magnetic fields of the magnets. We will present the simulated and experimental electron beam parameters.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP025 Electron Beam Properties from a Compact Seeded Terahertz FEL Amplifier at Kyoto University electron, emittance, gun, solenoid 85
 
  • K. Damminsek, S. Rimjaem, S. Suphakul, C. Thongbai
    Chiang Mai University, Chiang Mai, Thailand
  • H. Ohgaki, H. Zen
    Kyoto University, Kyoto, Japan
 
  A compact seeded Terahertz FEL amplifier is started construction at Institute of Advanced Energy, Kyoto University, Japan. The system consists of a 1.6 cell BNL type S-Band photocathode RF-gun, a magnetic bunch compressor in form of a chicane, triplet quadrupole magnets and a short planar undulator. Electron beams from the photocathode RF-gun were measured and compared with the PARMELA simulation results. Numerical and experimental studies on the contribution of the space charge effect were carried out. By using the RF power of 9 MW, the RF phase of 40 degree, the laser pulse energy of 20 μJ, and the solenoid magnet current of 135 A, the electron beam with a bunch charge of 50 pC, a beam energy of around 5 MeV and an RMS emittance of 6-8 mm-mrad was achieved.  
poster icon Poster MOP025 [1.837 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP033 Numerical Simulations of a Sub-THz Coherent Transition Radiation Source at PITZ radiation, electron, simulation, booster 97
 
  • P. Boonpornprasert, M. Krasilnikov, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • B. Marchetti
    DESY, Hamburg, Germany
 
  The Photo Injector Test facility at DESY, Zeuthen site (PITZ), develops high brightness electron sources for modern linac-based Free Electron Lasers (FELs). The PITZ accelerator can be considered as a proper machine for the development of an IR/THz source prototype for pump and probe experiments at the European XFEL. For this reason, the radiation generated by high-gain FEL and Coherent Transition Radiation (CTR) produced by the PITZ electron beam has been studied. In this paper, numerical simulations on the generation of CTR based on the PITZ accelerator are presented. The beam dynamics simulations of electron bunches compressed by velocity bunching are performed by using the ASTRA code. The characteristics of CTR are calculated numerically by using the generalized Ginzburg-Frank formula. The details and results of the simulations are described and discussed.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP036 Femtosecond Synchronization of 80-MHz Ti:Sapphire Photocathode Laser Oscillator with S-Band RF Oscillator timing, detector, FEL, electron 105
 
  • H. Yang, C. Jeon, K. Jung, J. Kim
    KAIST, Daejeon, Republic of Korea
  • H. Chung
    Korea University Sejong Campus, Sejong, Republic of Korea
  • B. Han, Y.U. Jeong
    KAERI, Daejon, Republic of Korea
 
  Precision synchronization between lasers and RF sources in free-electron lasers (FELs) and ultrafast electron diffraction (UED) systems is becoming more important. There have been intense research and development toward femtosecond synchronization of lasers and RF sources in the last decade. Most of the previous approaches at large-scale FELs have used cw lasers or low-jitter mode-locked lasers at telecomm wavelength as the master oscillator and distributed the timing signals via stabilized fiber links. However, for smaller-scale FELs and UED, this approach may be a complex and high-cost method. In this work, we studied the possibility of using the commercial Ti:sapphire photocathode laser as the optical master oscillator as well. For its use in UED and FELs, we synchronized the 80-MHz Ti:sapphire photocathode laser oscillator to a 2.856-GHz RF source (used for RF-photogun) with 50-fs precision. Some interesting findings are following. First, intrinsic rms timing jitter of the used photocathode laser is 2.6 fs [10 kHz-10 MHz], which sets the fundamental limit in synchronization. Second, timing jitter in 100 Hz-1 kHz in photocathode laser is so severe (e.g., ~40 fs even feedback control is applied), so that it will require additional external-cavity control for achieving sub-10-fs precision. By addressing this issue, we are currently working toward 10-fs precision.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP039 First Results of Commissioning of the PITZ Transverse Deflecting Structure electron, simulation, klystron, emittance 110
 
  • H. Huck, P. Boonpornprasert, A. Donat, J.D. Good, M. Groß, I.I. Isaev, L. Jachmann, D.K. Kalantaryan, M. Khojoyan, W. Köhler, G. Kourkafas, M. Krasilnikov, D. Malyutin, D. Melkumyan, A. Oppelt, M. Otevřel, M. Pohl, Y. Renier, T. Rublack, J. Schultze, F. Stephan, G. Trowitzsch, G. Vashchenko, R.W. Wenndorff, Q.T. Zhao
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • M. A. Bakr
    Assiut University, Assiut, Egypt
  • D. Churanov, L.V. Kravchuk, V.V. Paramonov, I.V. Rybakov, A.A. Zavadtsev, D.A. Zavadtsev
    RAS/INR, Moscow, Russia
  • C. Gerth, M. Hoffmann, M. Hüning
    DESY, Hamburg, Germany
  • C. Hernandez-Garcia
    JLab, Newport News, Virginia, USA
  • M.V. Lalayan, A.Yu. Smirnov, N.P. Sobenin
    MEPhI, Moscow, Russia
  • O. Lishilin, G. Pathak
    Uni HH, Hamburg, Germany
 
  For successful operation of X-ray Free Electron Lasers, one crucial parameter is the ultrashort electron bunch length yielding a high peak current and a short saturation length. In order to effectively compress the bunches during the acceleration process, a detailed understanding of the full longitudinal phase space distribution already in the injector is required. Transverse deflecting RF structures (TDS) can shear the bunch transversely, mapping the longitudinal coordinate to a transverse axis on an observation screen downstream. In addition to the bunch length, the slice emittance along the bunch as well as the full longitudinal phase space can be obtained. At the Photo Injector Test Facility at DESY, Zeuthen site (PITZ), an S-band traveling wave TDS is under commissioning since 2015. This cavity is a prototype for the TDS in the injector part of the European XFEL and has been designed and manufactured by the Institute for Nuclear Research (INR, Moscow, Russia). In this paper, first commissioning results of the system at PITZ are presented and discussed.  
poster icon Poster MOP039 [0.893 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP040 Implementation of MTCA.4-based Controls for the Pulsed Optical Synchronization Systems at DESY controls, FPGA, hardware, FEL 115
 
  • M. Felber, L. Butkowski, M.K. Czwalinna, M. Fenner, C. Gerth, M. Heuer, E. Janas, M. Killenberg, T. Lamb, U. Mavrič, J.M. Müller, P. Peier, K.P. Przygoda, S. Ruzin, H. Schlarb, C. Sydlo, M. Titberidze, F. Zummack
    DESY, Hamburg, Germany
  • T. Kozak, P. Prędki
    TUL-DMCS, Łódź, Poland
 
  Funding: This work has partly been funded by the Helmholtz Validation Fund Project MTCA.4 for Industry (HVF-0016)
With the current state of the synchronization system at FLASH (Free-electron Laser in Hamburg) the arrival time between electron bunches and optical laser pulses can be synchronized to a level of 30 fs rms, e.g. for pump-probe experiments. In the course of the development of an up-scaled system for the European XFEL and the migration of control hardware to the modern MTCA.4 (Micro Telecommunications Computing Architecture) platform, all involved components of the system will be replaced with new developments. The front-end devices are upgraded. FPGAs (Field Programmable Gate Arrays) are performing the data processing and feedback calculations. In order to facilitate the firmware development, a toolset (Rapid-X) was established which allows application engineers to develop, simulate, and generate their code without help from FPGA experts in a simple and efficient way. A software tool kit (MTCA4U) provides drivers and tools for direct register access e.g. via Matlab or Python and a control system adapter, which allows the server applications to be written control system independent. In this paper, an overview on the synchronization setups and their upgrades as well as an introduction to the new hardware is given. The Rapid-X and MTCA4U tool kits are presented followed by a status report on the implementation of the new developments.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP041 Turbo-ICT Pico-Coulomb Calibration to Percent-level Accuracy resonance, impedance, plasma, network 118
 
  • F. Stulle, J.F. Bergoz
    BERGOZ Instrumentation, Saint Genis Pouilly, France
 
  We report on the calibration methods implemented for the Turbo-ICT/BCM-RF. They allow to achieve percent-level accuracy for charge and current measurements. Starting from the Turbo-ICT/BCM-RF working principle, we discuss scientific fundaments of calibration and their practical implementation in a test bench. Limits, both principle and practical, are reviewed. Achievable accuracy is estimated.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP042 All-Fiber Approach to Long-Term Stable Timing Distribution System timing, polarization, coupling, optics 122
 
  • M. Xin, K. Safak, F.X. Kaernter
    DESY, Hamburg, Germany
  • P.T. Callahan, M.Y. Peng
    MIT, Cambridge, Massachusetts, USA
 
  High precision timing distribution systems are critical for free-electron lasers (FELs). Real facilities such as FLASH and the European XFEL need fiber networks consisting of 20 or more timing links, which require tremendous attention to the alignment and stability of the free-space optics to minimize timing-drifts induced by beam pointing instabilities. This situation also necessitates preamplification of the master laser output to overcome excessive free-space to fiber coupling losses to provide adequate power for all timing links. Recently, we have developed integrated, fiber-coupled balanced optical cross-correlators (FC-BOC) using periodically-poled KTiOPO4 (PPKTP) waveguides. These waveguides exhibit second harmonic conversion efficiencies 20 times higher than the bulk optical devices, which will decrease the power demand from the master laser and consequently support more timing links. Furthermore, the robustness and ease of implementation of these fiber-coupled devices will eliminate alignment-related problems observed in free-space optics. In this paper, we present an all-fiber implementation of a 3.5-km timing distribution system using FC-BOCs, over 200 hours operation without interruption. The remaining drift (<1 Hz) is only 3.3 fs RMS, and the integrated jitter above 1 Hz is kept below 0.7 fs, which is more than sufficient for an efficient FEL synchronization.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP044 A Laser Heater for CLARA electron, FEL, undulator, linac 129
 
  • S. Spampinati
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • B.D. Muratori, N. Thompson, P.H. Williams
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  CLARA is a new FEL test facility, being developed at STFC Daresbury Laboratory in UK, based on a high brightness electron linac. The electron beam of CLARA can potentially be affected by the longitudinal microbunching instability leading to a degradation of the beam quality. The inclusion of a laser heater in the linac design can allow control of the microbunching instability, the study of microbunching and deliberate increase of the final energy spread to study energy spread requirements of the FEL schemes tested at CLARA. We present the initial design and layout of the laser heater system for CLARA and its expected performance.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP057 Front End Simulations and Design for the CLARA FEL Test Facility emittance, gun, linac, simulation 171
 
  • J.W. McKenzie, A.D. Brynes, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  We present the design and simulations of the Front End for CLARA (Compact Linear Accelerator for Research and Applications), the proposed UK FEL test facility at Daresbury Laboratory. This is based around an S-band RF photocathode gun. Initially this will be the 2.5 cell gun, currently used on VELA facility at Daresbury, which is limited to 10 Hz repetition rate. Later, this will be up-graded to a 1.5 cell gun, currently under development, which will allow repetition rates of up to 400 Hz to be reached. The beam will be accelerated up to 50 MeV with a booster linac which will be operated in both bunching and boosting modes for different operating regimes of CLARA. Simulations are presented for a currently achieved performance of the RF system and drive laser with optimisation of the laser pulse lengths for various operational modes of CLARA.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP062 Technology Maturation for the MaRIE 1.0 X-FEL linac, emittance, FEL, simulation 181
 
  • J.W. Lewellen, K. Bishofberger, B.E. Carlsten, L.D. Duffy, F.L. Krawczyk, Q.R. Marksteiner, D.C. Nguyen, S.J. Russell, R.L. Sheffield, N.A. Yampolsky
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This research was funded by the Matter-Radiation Interactions in Extremes program at Los Alamos National Laboratory, under contract DE-AC52-06NA25396.
Los Alamos National Laboratory is proposing a high-energy XFEL, named MaRIE*, to meet its mission needs. MaRIE will be required to generate coherent 42+ keV photons, and, due to space constraints at the LANSCE accelerator complex at Los Alamos, MaRIE's design electron beam energy is 12 GeV. This combination places significant restrictions upon the MaRIE electron beam parameters, in particular the transverse emittance and energy spread at the undulator entrance. We are developing approaches to meet these requirements, but these often require solutions extending beyond the current state-of-the-art in X-FEL design. To reduce overall project risk, therefore, we have identified a number of key experimental and modeling / simulation efforts intended to address both the areas of greatest uncertainty in the preliminary MaRIE design, and the areas of largest known risk. This paper describes the general requirements for the MaRIE X-FEL, our current areas of greatest concern with the preliminary design concept, and our corresponding Technology Maturation Plan (TMP).
* MaRIE website: http://www.lanl.gov/science-innovation/science-facilities/marie/index.php
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP071 Carrier-Envelope-Phase Stable Linearly and Circularly Polarized Attosecond Pulse Sources electron, undulator, radiation, simulation 205
 
  • Z. Tibai, G. Almási, Zs. Csiha-Nagy, J.A. Fülöp, J. Hebling
    University of Pecs, Pécs, Hungary
  • J.A. Fülöp, Gy. Tóth
    MTA-PTE High-Field Terahertz Research Group, Pecs, Hungary
 
  Recently, we proposed a robust method for producing waveform-controlled attosecond pulses in the EUV spectral range.* In our scheme the relativistic electron beam, provided by a LINAC, is sent through a modulator undulator where a TW-power laser beam is superimposed on it in order to generate nanobunches. The nanobunched electron beam passes through a single- or few-period radiator undulator (RU). The waveform of the generated attosecond pulses closely resembles the longitudinal distribution of the magnetic field. According to our calculations, at 20 nm (60 nm) wavelength carrier-envelope-phase (CEP) stable pulses with 23 nJ (80 nJ) energy, 80 as (240 as) duration, and 31 mrad (13 mrad) CEP fluctuation (standard deviation) can be achieved at K=0.5. More than 500 nJ energy is predicted at longer wavelengths and larger K. The energy fluctuation of the EUV pulse is 2.5 times higher than that of the laser. By using a helical RU, even circularly polarized attosecond pulses with 30/300 nJ energy can be generated, depending on the wavelength. To the best of our knowledge, no other presently available technique enables the generation of arbitrary-waveform, CEP-controlled attosecond pulses. The predicted pulse energies are sufficiently high to be used as pump pulses in attosecond pump-probe measurements.
* Z. Tibai et al., Phys. Rev. Lett. 113, 104801 (2014).
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOP076 Free-Electron Laser Driven by a 500 MeV Laser Plasma Accelerator Beam FEL, undulator, emittance, plasma 217
 
  • W. Qin, J.E. Chen, S. Huang, K.X. Liu, X.Q. Yan, L. Zeng
    PKU, Beijing, People's Republic of China
  • Y. Ding, Z. Huang
    SLAC, Menlo Park, California, USA
 
  A laser plasma accelerator is under construction at Peking University and several hundred MeV electron beams are expected. In this paper we discuss applying a 500 MeV beam with 1% relative energy spread to FEL. Bunch decompression method is considered to deal with the large energy spread of the beam. Emittance growth induced by large divergence and energy spread in electron beam transport has been treated with the chromatic matching manipulation. Simulation shows that 100 MW level, 6.3 fs , 0.008 bandwidth output can be obtained for 30 nm FEL. TGU method with assumed matched beam is also discussed as a comparison.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOD02 Overview of Alternative Bunching and Current-shaping Techniques for Low-Energy Electron Beams electron, bunching, wakefield, radiation 274
 
  • P. Piot
    Fermilab, Batavia, Illinois, USA
  • P. Piot
    Northern Illinois University, DeKalb, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy contracts No. DE-SC0011831 to Northern Illinois University and No. DE-AC02-07CH11359 with the Fermi Research Alliance, LLC
Techniques to bunch or shape an electron beam at low energies (E <15 MeV) have important implications toward the realization of table-top radiation sources [1] or to the design of compact multi-user free-electron lasers[2]. This paper provides an overview of alternative methods recently developed including techniques such as wakefield-based bunching, space-charge-driven microbunching via wave-breaking [3], ab-initio shaping of the electron-emission process [4], and phase space exchangers. Practical applications of some of these methods to foreseen free-electron-laser configurations are also briefly discussed [5].
[1] W. S. Graves, PRL 108, 263904 (2012)
[2] A. Zholents, FEL14, 993 (2014)
[3] P. Musumeci, PRL 106, 184801 (2011)
[4] F. Lemery, PRSTAB 17, 112804 (2014)
[5] G. Penco, PRL 112, 044801 (2014)
 
slides icon Slides MOD02 [5.426 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOD03 Alkali Cathode Testing for LCLS-II at APEX cathode, gun, electron, operation 280
 
  • H.J. Qian, J. Feng, D. Filippetto, J.R. Nasiatka, H.A. Padmore, F. Sannibale
    LBNL, Berkeley, California, USA
  • R.K. Li, J.F. Schmerge, F. Zhou
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by the Director of the Office of Science of the US Department of Energy under Contract no. DEAC02-05CH11231
Electron sources of high brightness and high bunch charge (~300 pC) with MHz repetition rate are one of the key technologies for next generation X-FEL facilities such as the LCLS-II at SLAC and the Euro XFEL at DESY. The Advanced Photoinjector EXperiment (APEX) at the Lawrence Berkeley National Laboratory (LBNL) is developing such an electron source based on high quantum efficiency (QE) alkali photocathodes and the VHF-Gun, a new scheme normal conducting RF gun developed at LBNL. The VHF-Gun already demonstrated stable CW operation with high gradient (~ 20 MV/m), high gun voltage (~ 750 kV) and low vacuum pressure (~ 3 E-10 torr) laying the foundation for the generation of high brightness electron beams. In this paper, we report the test and characterization of several different alkali cathodes in high average current (several hundreds of pC/bunch with MHz repetition rate) operation at APEX. Measurements include cathode life time, QE map evolution and thermal emittance characterization, to investigate the compatibility of such cathodes with the challenging requirements of LCLS-II.
 
slides icon Slides MOD03 [6.030 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
MOD04 Emittance Measurements of the Electron Beam at PITZ for the Commissioning Phase of the European X-FEL electron, emittance, simulation, gun 285
 
  • G. Vashchenko, P. Boonpornprasert, J.D. Good, M. Groß, H. Huck, I.I. Isaev, D.K. Kalantaryan, G. Kourkafas, M. Krasilnikov, D. Malyutin, D. Melkumyan, A. Oppelt, M. Otevřel, Y. Renier, T. Rublack, F. Stephan
    DESY Zeuthen, Zeuthen, Germany
  • G. Asova
    INRNE, Sofia, Bulgaria
  • M. A. Bakr
    Assiut University, Assiut, Egypt
  • C. Hernandez-Garcia
    JLab, Newport News, Virginia, USA
  • O. Lishilin, G. Pathak
    Uni HH, Hamburg, Germany
  • Q.T. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  For the operation of free electron lasers (FELs) like the European X-FEL and FLASH located at DESY, Hamburg Site, high quality electron beams are required already from the source. The Photo Injector Test facility at DESY, Zeuthen Site (PITZ) was established to develop, characterize and optimize electron sources for such FELs. Last year the work at PITZ focused on the optimization of a photo injector operated with the startup parameters of the European X-FEL. This implies photocathode laser pulses with a Gaussian temporal profile of about 11-12 ps FWHM to drive the photo gun operated at a gradient of 53 MV/m. Significant effort was spent on the electron beam characterization and optimization for various bunch charges. Emittance measurements were performed as a function of major accelerator parameters such as main solenoid current, laser spot size on the cathode and the gun launching phase. The requirement on the beam emittance for bunch charge of 500 pC for the European XFEL commissioning phase has been demonstrated. Results of these studies accompanied with the corresponding simulations are presented in this paper.  
slides icon Slides MOD04 [1.603 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUA02 Suppression of FEL Lasing by a Seeded Microbunching Instability electron, FEL, undulator, photon 289
 
  • C. Lechner, A. Azima, M. Drescher, L.L. Lazzarino, Th. Maltezopoulos, V. Miltchev, T. Plath, J. Rönsch-Schulenburg, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt, G. Brenner, M. Dohlus, N. Ekanayake, T. Golz, T. Laarmann, T. Limberg, E. Schneidmiller, N. Stojanovic, M.V. Yurkov
    DESY, Hamburg, Germany
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K10PE1, 05K10PE3, 05K13GU4, and 05K13PE3 and the German Research Foundation programme graduate school GRK1355.
Collective effects and instabilities due to longitudinal space charge and coherent synchrotron radiation can degrade the quality of the ultra-relativistic, high-brightness electron bunches driving free-electron lasers (FELs). In this contribution, we demonstrate suppression of FEL lasing induced by a laser-triggered microbunching instability at the free-electron laser FLASH. The interaction between the electron bunches and the 800-nm laser pulses takes place in an undulator upstream of the FEL undulators. A significant decrease of XUV photon pulse energies has been observed in coincidence with the laser-electron overlap in the modulator. We discuss the underlying mechanisms based on longitudinal space charge amplification (LSCA) [E.A. Schneidmiller and M.V. Yurkov, Phys. Rev. ST Accel. Beams 13, 110701 (2010)] and present measurements.
 
slides icon Slides TUA02 [14.298 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUA03 Multi-beamline Operation Test at SACLA electron, operation, undulator, kicker 293
 
  • T. Hara, T. Inagaki, R. Kinjo, C. Kondo, Y. Otake, H. Takebe, H. Tanaka, K. Togawa
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
  • K. Fukami
    JASRI/SPring-8, Hyogo-ken, Japan
 
  A new undulator beamline (BL2) was installed in September 2014 at SACLA. Following the installation of this second beamline, a DC switching magnet was replaced by a kicker magnet and a DC septum magnet for bunch-to-bunch multi-beamline operation. The commissioning of the new beamline and bunch-to-bunch operation was started early this year. Since SACLA has been operated with much higher peak currents around 10 kA compared to its original design value of 3 kA, the CSR effect in the beam transport line to BL2, where the electron beam is deflected twice by 3 degree, turns out to be non-negligible. BL2 is currently operated with reduced peak currents and the photon pulse energies of 100-150 μJ are obtained with increased undulator K-values around 2.6-2.85. Although the photon pulse energies of BL2 are still smaller than those of the existing beamline (BL3), the expected stability of the electron beam orbit after the bunch-to-bunch BL switching was achieved and simultaneous lasing at the two beamlines was demonstrated with 8 GeV electron beams. We will report the status and operational issues related to the multi-beamline operation at SACLA.  
slides icon Slides TUA03 [7.095 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUB05 Tunable High-power Terahertz Free-Electron Laser Amplifier FEL, electron, radiation, simulation 305
 
  • G. Zhao, S. Huang, K.X. Liu, W. Qin, L. Zeng
    PKU, Beijing, People's Republic of China
  • C.H. Chen, Y.C. Chiu, Y.-C. Huang
    NTHU, Hsinchu, Taiwan
 
  In the THz spectrum, radiation sources are relatively scarce. Although recent advancement on optical technologies has enabled THz radiation generation covering a broad spectral range, free-electron laser (FEL) continues to be the most importance source for generating high-power THz radiation. Here we present an ongoing collaboration between Peking University (PKU) and National Tsinghua University (NTHU) to demonstrate high peak and average powers from a THz free-electron laser amplifier driven by a superconducting accelerator system at PKU. The superconducting accelerator comprises the DC-SRF photoinjector and a linac utilizing two 1.3 GHz Tesla-type cavities. It is expected to deliver high repetition rate electron beam with the energy of 10-25 MeV and rms bunch length of about 3 ps. The driver laser of the photoinjector is a mode-locked frequency-quadrupled Nd:YVO4 laser at 266 nm. We use the remaining gun driver laser power at 1064 nm to pump a THz parametric amplifier (TPA) which designed at NTHU and generate the THz seed radiation for the FEL amplifier. The signal laser of the TPA is tunable over 2 THz, permitting generation of radiation between 0.5 and 2.5 THz to seed the FEL amplifier. With our design parameters and computer simulation in GENESIS, we expect to generate narrow-band, wavelength-tunable THz radiation with sub-MW peak power and Watt-level average power.  
slides icon Slides TUB05 [2.349 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUC01 The Microbunching Instability and LCLS-II Lattice Design simulation, bunching, FEL, linac 308
 
  • M. Venturini
    LBNL, Berkeley, California, USA
 
  The microbunching instability is a pervasive occurrence when high brightness electron beams are accelerated and transported through dispersive sections like bunch-compression chicanes or distributions beamlines. If uncontrolled the instability can severely compromise the performance of x-ray FELs, where beam high brightness is crucial. In this talk we discuss how consideration of the microbunching instability is informing the LCLS-II design and determining the specifications for the laser heater and transport lines. We also review some of the expected and not so-expected phenomena that we have encountered while carrying out high-resolution macroparticle simulations of the instability and the analytical models we have developed to interpret the numerical results.  
slides icon Slides TUC01 [4.206 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP002 Further Studies of Undulator Tapering in X-Ray FELs undulator, simulation, electron, radiation 321
 
  • A. Mak, F. Curbis, S. Werin
    MAX-lab, Lund, Sweden
 
  We further the studies of the model-based optimization of tapered free-electron lasers presented in a recent publication [Phys. Rev. ST Accel. Beams 18, 040702 (2015)]. Departing from the ideal case, wherein the taper profile is a smooth and continuous function, we consider the more realistic case, with individual undulator segments separated by break sections. Using the simulation code GENESIS, we apply our taper optimization method to a case, which closely resembles the FLASH2 facility in Hamburg, Germany. By comparing steady-state and time-dependent simulations, we examine how time-dependent effects alter the optimal taper scenario. From the simulation results, we also deduce that the "traditional" empirical method, whereby the intermediate radiation power is maximized after closing every undulator gap, does not necessarily produce the highest final power at the exit of the undulator line.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP003 Threshold of a Mirror-less Photonic Free Electron Laser Oscillator Pumped by One or More Electron Beams electron, free-electron-laser, radiation, plasma 327
 
  • P.J.M. van der Slot, K.-J. Boller, A. Strooisma
    Mesa+, Enschede, The Netherlands
 
  Funding: This research is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organisation for Scientific Research, and which is partly funded by the Ministry of Economic Affairs
Transmitting electrons through a photonic crystal can result in stimulated emission and the generation of coherent Cerenkov radiation. Here we consider a photonic-crystal slab consisting of a two-dimensional, periodic array of bars inside a rectangular waveguide. By appropriately tapering the bars at both ends of the slab, we numerically show that an electromagnetic wave can be transmitted through the waveguide filled with the photonic-crystal slab with close to zero reflection. Furthermore, the photonic-crystal slab allows transmission of electrons in the form of one or more beams. By appropriately designing the photonic-crystal slab, we obtain a backward wave interaction at low electron-beam energy of around 15 kV, that results in distributed feedback of the radiation on the electrons without any external mirrors being present. Here we discuss the dynamics of the laser oscillator near threshold and numerically show that the threshold current can be distributed over multiple electron beams, resulting in a lower current per beam.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP005 A Mirror-Less, Multi-Beam Photonic Free-Electron Laser Oscillator Pumped Far Beyond Threshold electron, radiation, free-electron-laser, feedback 334
 
  • P.J.M. van der Slot, K.-J. Boller, A. Strooisma
    Mesa+, Enschede, The Netherlands
 
  Funding: This research is supported by the Dutch Technology Foundation STW, which is part of the Netherlands Organisation for Scientific Research, and which is partly funded by the Ministry of Economic Affairs
In a photonic free-electron laser electrons are transmitted through a photonic crystal in the form of one or multiple electron beams to generate coherent Cerenkov radiation. Here we consider a photonic-crystal slab consisting of a two-dimensional, periodic array of bars inside a rectangular waveguide, with both ends tapered to provide complete transmission of an electromagnetic wave. By appropriately designing the photonic-crystal slab, we obtain a backward wave interaction at low electron beam energy of around 15 kV, that results in distributed feedback of the radiation on the electrons without any external mirrors being present. Here we numerically study the dynamics of the laser oscillator when pumped far beyond threshold with one or multiple electron beams. We show that using multiple beams with the same total current provide better suppression of higher-order modes and can produce more output power, compared to the laser pumped by a single beam of the same total current.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP006 Quantum Nature of Electrons in Classical X-ray FELs FEL, electron, undulator, radiation 338
 
  • P.M. Anisimov
    LANL, Los Alamos, New Mexico, USA
 
  X-ray FELs built to date are well described by the classical theory. This theory in its simplest form is expressed as a system of pendulum equations for electrons coupled to the electromagnetic field. The FEL interaction requires bunching of the electrons on a scale less than radiation wavelength. The progress in the development of FELs and the need to reach even shorter laser radiation wavelength with low energy electrons require that the quantum characteristic of the FEL interaction to be properly considered. Quantum theories have been already proposed by a number of authors. These theories, however, have been developed for regimes that are not relevant for modern/planned X-ray FELs. Here, we focus on quantum effects in modern/future X-ray FELs and stop treating an electron as a point-particle. This results in quantum reduction of the bunching! Starting with the analysis of the free space dispersion for the electron wave packet, we will present a modified 1D FEL theory that takes into account the quantum uncertainty of the electron position in X-ray FELs. This theory allows for a unified classification of FELs with respect to the wave nature of an electron that shows a planned FEL at Los Alamos National Lab to be most affected. The Genesis simulation code has been modified in order to include quantum reduction of the bunching that lead to interesting results. LA-UR-15-26276  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP009 Coherent Thomson Scattering Using the PEHG radiation, scattering, electron, simulation 351
 
  • S. Chen, K. Ohmi, D. Zhou
    KEK, Ibaraki, Japan
 
  Electron beam is density modulated by the phase-merging effect to obtain ultra-short longitudinal structures in the phase space. Coherent radiations are then generated by the coherent Thomson scattering between the phase-merged beam and a long wavelength laser pulse.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP012 Plans for an EEHG-based Short-Pulse Facility at the DELTA Storage Ring radiation, electron, storage-ring, synchrotron 363
 
  • S. Hilbrich, F.H. Bahnsen, M. Bolsinger, M.A. Jebramcik, S. Khan, C. Mai, A. Meyer auf der Heide, R. Molo, H. Rast, G. Shayeganrad, P. Ungelenk
    DELTA, Dortmund, Germany
 
  Funding: Work supported by DFG, BMBF, FZ Jülich, and by the Federal State NRW.
The 1.5-GeV synchrotron light source DELTA, operated by the TU Dortmund University, comprises a short-pulse facility based on the coherent harmonic generation (CHG) technique, which allows for the generation of radiation pulses with wavelengths down to 50 nm and a duration of 50 fs. In order to reach even shorter wavelengths, the present setup will be modified to employ the echo-enabled harmonic generation (EEHG) and femtoslicing techniques. In this paper, recent developments including an improved lattice design and a concept for the new vacuum chambers will be presented.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP015 Status of the ALICE IR-FEL: from ERL Demonstrator to User Facility FEL, cavity, radiation, operation 379
 
  • N. Thompson, J.A. Clarke, D.J. Dunning, A.J. Moss, Y.M. Saveliev, M. Surman
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • T. Craig, M.R.F. Siggel-King, P. Weightman
    The University of Liverpool, Liverpool, United Kingdom
  • O.V. Kolosov, P.D. Tovee
    Lancaster University, Lancaster, United Kingdom
  • M.R.F. Siggel-King
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
 
  The ALICE (Accelerators and Lasers In Combined Experiments) accelerator at STFC Daresbury Laboratory in the UK was conceived in 2003 and constructed as a short-term Energy Recovery Linac demonstrator to develop the underpinning technology and expertise required for a proposed 600MeV ERL-based FEL facility. In this paper we present an update on the performance and status of ALICE which now operates as a funded IR-FEL user facility. We discuss the challenges of evolving a short-term demonstrator into a stable, reliable user facility and present a summary of the current scientific programme.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP019 Time Locking Options for the Soft X-Ray Beamline of SwissFEL FEL, electron, undulator, radiation 388
 
  • E. Prat, S. Reiche
    PSI, Villigen PSI, Switzerland
 
  SwissFEL is an FEL facility presently under construction at the Paul Scherrer institute that will serve two beamlines: Aramis, a hard X-ray beamline which is in construction phase and will provide FEL radiation in 2017 with a wavelength between 0.1 and 0.7 nm; and Athos, a soft X-ray beamline which is in design phase and it is expected to offer FEL light in 2021 for radiation wavelengths between 0.7 and 7 nm. A passive synchronization of the FEL signal to a laser source is fundamental for key experiments at Athos, such as the time-resolved resonant inelastic X-ray scattering (RIXS) experiments. In this paper we explore different options to achieve this time synchronization by means of energy modulating the electron beam with an external laser.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP020 Recent Study in iSASE FEL, electron, distributed, undulator 393
 
  • K. Fang, C. Pellegrini, J. Wu
    SLAC, Menlo Park, California, USA
  • C. Emma, C. Pellegrini
    UCLA, Los Angeles, USA
  • S. Hsu
    University of California, San Diego (UCSD), La Jolla, California, USA
 
  The Improved Self-Amplified Spontaneous Radiation (iSASE) scheme has potential to reduce SASE FEL bandwidth. This is achieved by repeatedly delaying the electrons with respect to the radiation pulse using phase shifters in the undulator break sections. It has been shown that the strength, locations and sequences of phase shifters are important to the iSASE performance. Particle swarm optimization algorithm is used to explore the phase shifters configuration space globally.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP023 A Modified Self-Seeded X-ray FEL Scheme Towards Shorter Wavelengths FEL, electron, radiation, undulator 409
 
  • L. Zeng, J.E. Chen, S. Huang, K.X. Liu, W. Qin
    PKU, Beijing, People's Republic of China
  • Y. Ding, Z. Huang, G. Marcus
    SLAC, Menlo Park, California, USA
 
  We present a modified self-seeded FEL scheme for harmonic generation. Different from classical HGHG scheme whose seed laser is a conventional laser with longer wavelength, this scheme first uses a regular self-seeding monochromator to generate a seed laser, followed by a HGHG configuration to produce shorter-wavelength radiations. As an example, we perform start-to-end simulations to demonstrate the second and third harmonic FELs from a soft x-ray self-seeding case at the fundumental wavelength of 1.72 nm. The harmonic performance results will be discussed.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP025 Studies of Undulator Tapering for the CLARA FEL FEL, electron, undulator, brightness 412
 
  • I.P.S. Martin, R. Bartolini
    DLS, Oxfordshire, United Kingdom
  • R. Bartolini
    JAI, Oxford, United Kingdom
  • D.J. Dunning, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  Undulator tapering is a well-known method for enhancing the performance of free-electron lasers [1]. It works by keeping the resonant wavelength constant, despite variation in the electron beam energy. Both the energy-extraction efficiency and the spectral brightness of the FEL can be improved using this technique. In this paper we present recent studies of undulator tapering for the CLARA FEL in both SASE and seeded modes. The methods used to optimise the taper profile are described, and the properties of the final FEL pulses are compared.
[1] N.M. Kroll, P.L. Morton, M.N. Rosenbluth, J. Quantum Electronics 17, 8 (1981).
 
poster icon Poster TUP025 [0.919 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP027 Facility Upgrades for the High Harmonic Echo Program at SLAC's NLCTA undulator, radiation, electron, focusing 422
 
  • B.W. Garcia, M.P. Dunning, C. Hast, E. Hemsing, T.O. Raubenheimer
    SLAC, Menlo Park, California, USA
  • D. Xiang
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
 
  The Echo program currently underway at SLAC's NLCTA test accelerator aims to use Echo-Enabled Harmonic Generation (EEHG) to produce considerable bunching in the electron beam at high harmonics of a 2.4um seed laser. The production of such high harmonics in the EUV wavelength range necessitates an efficient radiator and associated light diagnostics to accurately characterize and tune the echo effect. We have installed and commissioned the Visible to Infrared SASE Amplifier (VISA) undulator, a strong focusing two meter long planar undulator of Halbach array design with 1.8cm period length. To characterize the output radiation, we have designed, built, and calibrated a grazing incidence EUV spectrometer which operates between 12-120nm with resolution sufficient to resolve individual harmonics. An absolute wavelength calibration is achieved by using both EEHG and High Gain Harmonic Generation (HGHG) signals from the undulator.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP028 DESIGN OF THE MID-INFRARED FEL OSCILLATOR IN CHINA FEL, electron, undulator, cavity 427
 
  • H.T. Li, Q.K. Jia, L. Wang, S.C. Zhang
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  In 2014, Xiamen University and other three research organizations received the approval to realize an infrared free electron laser (IR-FEL) for fundamental of energy chemistry. The IR-FEL covers the spectral range of 2.5-200 μm and will be built in NSRL. Two FEL oscillators driven by one Linac will be used to generate mid- infrared and far-infrared lasers. In this article we describe the design studies for the mid-infrared FEL oscillator.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP029 Single Picosecond THz Pulse Extraction from the FEL Macropulse using a Laser Activating Semiconductor Reflective Switch FEL, radiation, extraction, linac 430
 
  • K. Kawase, M. Fujimoto, K. Furukawa, A. Irizawa, G. Isoyama, R. Kato, K. Kubo
    ISIR, Osaka, Japan
 
  The THz-FEL at the Institute of Scientific and Industrial Research, Osaka University can generate high-intensity THz pulses or FEL macropulses, which comprise approximately 100 micropulses at 37 ns intervals in the 27 MHz mode or 400 micropulses at 9.2 ns intervals in the 108 MHz mode. The maximum macropulse energy in the 27 MHz mode reaches 26 mJ at a frequency of 4.5 THz and the micropulse energy is estimated to be 0.2 mJ. To open new areas of studies with high intensity THz radiation for user experiments, we are developing a single pulse extraction system from the pulse train using a laser activating semiconductor reflective switch. We have succeeded in extracting a single THz pulse, duration of which is estimated to be less than 20 ps, from the FEL macropulse using a gallium arsenide wafer for the switch. We will report on the THz pulse extraction system and its performance.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP034 New Ellipsoidal Photocathode Laser Pulses at the Upgraded PITZ Facility gun, cathode, simulation, electron 439
 
  • J.D. Good, P. Boonpornprasert, M. Groß, H. Huck, I.I. Isaev, D.K. Kalantaryan, G. Kourkafas, M. Krasilnikov, D. Melkumyan, A. Oppelt, M. Otevřel, Y. Renier, T. Rublack, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • A.V. Andrianov, E. Gacheva, E. Khazanov, S. Mironov, A. Poteomkin, V. Zelenogorsky
    IAP/RAS, Nizhny Novgorod, Russia
  • G. Asova
    INRNE, Sofia, Bulgaria
  • M. A. Bakr
    Assiut University, Assiut, Egypt
  • I. Hartl, S. Schreiber
    DESY, Hamburg, Germany
  • C. Hernandez-Garcia
    JLab, Newport News, Virginia, USA
  • M. Khojoyan
    SOLEIL, Gif-sur-Yvette, France
  • O. Lishilin, G. Pathak
    Uni HH, Hamburg, Germany
  • D. Malyutin
    HZB, Berlin, Germany
  • E. Syresin
    JINR, Dubna, Moscow Region, Russia
  • Q.T. Zhao
    IMP/CAS, Lanzhou, People's Republic of China
 
  High brightness electron sources for free electron lasers like FLASH and the European XFEL are developed, optimized and characterized at the Photo Injector Test facility at DESY in Zeuthen (PITZ). Last year the facility was significantly upgraded with a new prototype photocathode laser capable of producing homogeneous ellipsoidal pulses. Previous simulations have shown that the corresponding pulses produce high brightness electron bunches with minimized emittance. Furthermore, a new normal conducting RF gun cavity was installed with a modified two-window waveguide RF feed layout for stability and reliability tests, as required for the European XFEL. Other relevant additions to the facility include beamline modifications for improved electron beam transport through the PITZ accelerator, refinement of both the cooling and RF systems for improved parameter stability, and preparations for the installation of a plasma cell. This paper describes the facility upgrades and reports on the operational experience with the new components.  
poster icon Poster TUP034 [1.211 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP035 Operation of a Slit Emittance Meter in the MAX IV Gun Test Stand emittance, gun, cathode, background 444
 
  • J. Andersson, F. Curbis, M. Isinger, F. Lindau, S. Werin
    MAX-lab, Lund, Sweden
 
  The MAX IV facility in Lund, Sweden is currently under commissioning. There are two guns in the current MAX IV injector, one thermionic gun for storage ring injection and one photocathode gun for the Short Pulse Facility. There is a possibility of extending the facility to include a Free Electron Laser. To investigate how the beam from the injector can be improved and how to match it to the future requirements for a FEL, the emittance meter from SPARC has been recommissioned at the MAX IV gun test stand. In this paper we report on the progress of this work and results from the first measurements.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP036 Initial Commissioning Results of the MAX IV Injector gun, linac, emittance, cathode 448
 
  • J. Andersson, F. Curbis, M. Eriksson, D. Kumbaro, F. Lindau, E. Mansten, D.F. Olsson, S. Thorin, S. Werin
    MAX-lab, Lund, Sweden
 
  The MAX IV facility in Lund, Sweden is currently under commissioning. In the MAX IV injector there are two guns, one thermionic gun for storage ring injection and one photocathode gun for the Short Pulse Facility. The commissioning of the injector and the LINAC has been ongoing for the last year and ring commissioning is due to start shortly. In this paper we will present the results from beam performance experiments for the injector at the current stage of commissioning.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP038 Construction of the EU-XFEL Laser Heater vacuum, undulator, electron, ion 452
 
  • M. Hamberg, V.G. Ziemann
    Uppsala University, Uppsala, Sweden
 
  Funding: We thank the Swedish research council under Project number DNR-828-2008-1093 for financial support.
Installation of the laser heater for the EU-XFEL is completed and first commissioning runs are imminent. We discuss the installation of the key elements and provide an outlook of the commissioning phase.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP041 Simultaneous Operation of Three Laser Systems at the FLASH Photoinjector electron, cathode, operation, free-electron-laser 459
 
  • S. Schreiber, C. Grün, K. Klose, J. Rönsch-Schulenburg, B. Steffen
    DESY, Hamburg, Germany
 
  The free-electron laser facility FLASH at DESY (Hamburg, Germany) operates two undulator beamlines simultaneously. Both undulator beamlines are driven by a common linear superconducting accelerator with a beam energy of up to 1.25 GeV. The superconducting technology allows the acceleration of trains of several hundred microsecond spaced bunches with a repetition rate of 10 Hz. A fast kickers-septum system is installed to distribute one part of the electron bunch train to FLASH1 and the other part to FLASH2 keeping the full 10 Hz repetition rate for both beamlines. In order to deliver different beam properties to each beamline, the FLASH photoinjector uses two independent laser systems to generate different bunch pattern and bunch charges. One laser serves the FLASH1 beamline, the other the FLASH2 beamline. A third laser with adjus ö laser pulse duration is used to generate ultra-short bunches for single spike lasing.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP042 Lifetime of Cs2Te Cathodes Operated at the FLASH Facility cathode, gun, operation, electron 464
 
  • S. Schreiber, S. Lederer
    DESY, Hamburg, Germany
 
  The injector of the free-electron laser facility FLASH at DESY (Hamburg, Germany) uses Cs2Te photocathodes. We report on the lifetime, quantum efficiency (QE), and darkcurrent of photocathodes operated at FLASH during the last year. Cathode 618.3 has been operated for a record of 439 days with a stable QE in the order of 3%. The fresh cathode 73.3 shows an enhancement of emitted electrons for a few microseconds of a 1 MHz pulse train.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP045 MTCA.4 Phase Detector for Femtosecond-Precision Laser Synchronization detector, controls, timing, experiment 474
 
  • E. Janas, M. Felber, M. Heuer, U. Mavrič, H. Schlarb
    DESY, Hamburg, Germany
  • K. Czuba
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  For time-resolved experiments at FELs such as the European XFEL an accurate synchronization of the machine is essential. The required femtosecond- level synchronization we plan to achieve with an optical synchronization system, in which an inherent part is the master laser oscillator (MLO) locked to the electrical reference. At DESY we develop a custom rear transition module in MTCA.4 standard, which will allow for different techniques of phase detection between the optical and the electrical signal, as well as locking to an optical reference using a cross-correlator. In this paper we present the current status of the development, including two basic solutions for the detection to an RF. One of the methods incorporates an external drift free detector based on the so-called MZI setup. The other one employs the currently used downconverter scheme with subsequent improvements. The module can serve for locking a variety of lasers with different repetition rates.  
poster icon Poster TUP045 [4.010 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP049 Prototype of the Improved Electro-Optical Unit for the Bunch Arrival Time Monitors at FLASH and the European XFEL timing, electron, electronics, pick-up 478
 
  • H. Dinter, M.K. Czwalinna, C. Gerth, K.P. Przygoda, R. Rybaniec, H. Schlarb, C. Sydlo
    DESY, Hamburg, Germany
 
  At today's free-electron lasers, high-resolution electron bunch arrival time measurements have become increasingly more important in fast feedback systems providing accurate timing stability for time-resolved pump-probe experiments and seeding schemes. At FLASH and the upcoming European XFEL a reliable and precise arrival time detection down to the femtosecond level has to cover a broad range of bunch charges, which may even change from 1 nC down to 20 pC within a bunch train. This is fulfilled by arrival time monitors which employ an electro-optical detection scheme by means of synchronised ultra-short laser pulses. At both facilities, the new bunch arrival time monitor has to cope with the special operation mode where the MHz repetition rate bunch train is separated into several segments for different SASE beam lines. Each of the segments will exhibit individual timing jitter characteristics since they are generated from different injector lasers and can be accelerated with individual energy gain settings. In this paper, we describe the recent improvements of the electro-optical unit developed for the bunch arrival time monitors to be installed in both facilities.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP050 Extension of Existing Pulse Analysis Methods to High-Repetition Rate Operation: Studies of the "Time-Stretch Strategy" electron, detector, FEL, storage-ring 483
 
  • S. Bielawski
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • J.B. Brubach, L. Cassinari, M.-E. Couprie, M. Labat, L. Manceron, J.P. Ricaud, P. Roy, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
  • C. Evain, C. Szwaj
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • M. Le Parquier
    CERLA, Villeneuve d'Ascq, France
  • E. Roussel
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Funding: ANR (2010-042301, DYNACO), LABEX CEMPI project (ANR-11-LABX-0007), ERC grant COXINEL (340015), GENCI TGCC/IDRIS (x2014057057,i2015057057).
Many single-shot recording setups are based on the encoding of the information onto a laser pulse. This concerns in particular electro-optic sampling of bunch shapes, and VUV/X pulse monitors using transient reflectivity. The upgrade of these methods to high repetition rates presents challenging issues, that are due to the limited speed of the recording cameras. Recently [1], we demonstrated that multi-MHz repetition rates can be achieved using a relatively simple upgrade of existing setups, using the so-called "photonic time-stretch" technique. Here we present guidelines for the practical realization in the case of electro-optic sampling. We also present a performance analysis, and compare it to the spectral encoding case. The technique is potentially applicable to other cases where the information can be encoded on a chirped laser pulse, as, e.g., transient reflectivity diagnostics of XUV pulses.
[1] Observing microscopic structures of a relativistic object using a time-stretch strategy, E. Roussel, C. Evain, M. Le Parquier, C. Szwaj, S. Bielawski, L. Manceron, J.-B. Brubach, M.-A. Tordeux, J.-P. Ricaud, L. Cassinari, M. Labat, M.-E Couprie, and P. Roy, Scientific Reports 5, 10330 (2015).
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP065 Beam Dynamics Simulation for the Upgraded PITZ Photo Injector Applying Various Photocathode Laser Pulses emittance, electron, flattop, cathode 501
 
  • M. A. Bakr, M. Khojoyan, M. Krasilnikov, F. Stephan, G. Vashchenko
    DESY Zeuthen, Zeuthen, Germany
  • M. A. Bakr
    Assiut University, Assiut, Egypt
 
  The Photo Injector Test facility PITZ at DESY, Zeuthen site, characterizes and optimizes high brightness electron sources for linac-based Free Electron Laser (FELs) with a specific focus on the requirements of FLASH and the European XFEL. X-ray FELs require high brightness electron beam in terms of high peak current, small transverse emittance and energy spread. Such high quality beams are mandatory for efficient SASE generation in a single pass through long undulators with narrow gaps. Photocathode laser pulse shaping is a powerful tool to optimize the photo injector performance. Recently, a new photocathode laser system capable of producing 3D quasi-ellipsoidal pulses has been installed at PITZ. It is foreseen to operate this new system in parallel to the nominal one that generates cylindrical pulses with various temporal profiles. A set of numerical simulations was performed to study and compare the beam dynamics of electron beams produced with 3D ellipsoidal laser profile with the typical cylindrically shaped (flat-top) profile. Different bunch charges from 20 pC up to several nC are considered, in order to find an optimum PITZ machine setup which will yield the lowest transverse emittance. we present and discuss the results of this comparison in the submission.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP069 THz Based Phase-Space Manipulation in a Guided IFEL electron, simulation, coupling, undulator 519
 
  • E.J. Curry, S. Fabbri, P. Musumeci
    UCLA, Los Angeles, California, USA
  • A. Gover
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
 
  Funding: This work has been supported by DOE grant DE-FG02-92ER40693, and NSF grant PHY-1415583.
We propose a guided IFEL interaction driven by a broadband THz source to compress a relativistic electron bunch and synchronize it with an external laser pulse. A high field single-cycle THz pulse is group velocity-matched to the electron bunch inside a waveguide, allowing for a sustained interaction in a magnetic undulator. The THz pulse is generated via optical rectification from the external laser source, with peak field of up to 4.6 MV/m. We present measurements of the THz waveform before and after a parallel plate waveguide with varying aperture size and estimate the group velocity. We also present results from a preliminary 1-D multi-frequency simulation code we are developing to model the guided broadband IFEL interaction. Given a 6 MeV, 100 fs electron bunch with an initial 10-3 energy spread, as can be readily produced at the UCLA Pegasus laboratory, the simulations predict a phase space rotation of the bunch distribution that will reduce the initial timing jitter and compress the electron bunch by nearly an order of magnitude.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP074 Results from the Nocibur Experiment at Brookhaven National Laboratory's Accelerator Test Facility undulator, radiation, electron, experiment 540
 
  • N.S. Sudar, J.P. Duris, I.I. Gadjev, P. Musumeci
    UCLA, Los Angeles, USA
  • M. Babzien, M.G. Fedurin, K. Kusche, I. Pogorelsky, M.N. Polyanskiy, C. Swinson
    BNL, Upton, Long Island, New York, USA
 
  Conversion efficiencies of electrical to optical power in a Free Electron Laser are typically limited by their Pierce parameter, ρ ~0.1%. Introducing strong undulator tapering can increase this efficiency greatly, with simulations showing possible conversion efficiencies of ~40%. Recent experiments performed with the Rubicon Inverse Free Electron Laser have demonstrated acceleration gradients of ~ 100 MeV/m and high particle trapping efficiency by coupling a pre-bunched electron beam to a high power CO2 laser pulse in a strongly tapered helical undulator. By reversing the undulator period tapering and re-optimizing the field strength along the Rubicon undulator, we obtain an Inverse Free Electron Laser decelerator, which we have aptly renamed Nocibur. This tapering profile is chosen so that the change in beam energy defined by the ponderomotive decelerating gradient matches the change in resonant energy defined by the undulator parameters, allowing the conversion of a large fraction of the electron beam power into coherent narrow-band radiation. We discuss this mechanism as well as results from a recent experiment performed with the Nocibur undulator at Brookhaven National Laboratory's Accelerator Test Facility.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUP079 Laser Wakefield Acceleration by using a Laser Produced Aluminium Plasma plasma, target, electron, acceleration 543
 
  • J. Kim, Y.H. Hwangbo, S.G. Jeon
    KERI, Changwon, Republic of Korea
  • K.N. Kim, S. H. Park, W.J. Ryu, N. Vinokurov
    KAERI, Daejon, Republic of Korea
 
  In laser wakefield accelerator, usually a gas target is used to generate plasma medium. With this gas target, the pressure of the system cannot be keep as low as possible for electron beam application such as seeding the storage ring. To reduce this vacuum problem in LWFA, a plasma generated from solid Al target was used as plasma medium. A fundamental beam from the Q-switched ns pump laser in the Ti:sapphire power amplifier was used to generate a plasma from solid Al target. The plasma density was controlled by changing the distance between the main laser pulse for electron acceleration and the solid target. The plasma density was measured by the interferometer. The measured density indicates that the average charge of the ion in pre-plasma was 4.4. The main pulse ionized the Al plasma up to Al XII which means that the ionization injection could be used as an injection scheme. A 28 TW fs laser was used to accelerate the electron. A quasi-monochromatic electron was generated. The peak energy was 70 MeV and energy spread was 15 %. The divergence of the beam was 12 mrad in horizontal direction and 6 mrad in vertical direction.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUD01 COTR Resistant Profile Monitor electron, diagnostics, radiation, bunching 554
 
  • H. Loos
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by DOE contract DE-AC02-76SF00515
Electron beam accelerators used as drivers for short wavelength FELs need ultra-high brightness beams with small emittances and highly compressed bunch lengths. The acceleration and beam transport process of such beams leads to micro-bunching instabilities which cause the emergence of coherent optical transition radiation (COTR). The effect of COTR on profile monitors based on OTR or fluorescent screens can be quite detrimental to their intended use to measure beam sizes and profiles. This presentation will review past observations of the beam diagnostics issues due to COTR and discuss various mitigation schemes for profile monitors as well as present experience with such implementations.
 
slides icon Slides TUD01 [1.536 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
TUD03 First Results of the SRF Gun Test for CeC PoP Experiment cathode, gun, electron, cavity 564
 
  • I. Pinayev, Z. Altinbas, S.A. Belomestnykh, K.A. Brown, J.C. Brutus, A.J. Curcio, A. Di Lieto, C. Folz, D.M. Gassner, M. Harvey, J.P. Jamilkowski, Y.C. Jing, D. Kayran, R. Kellermann, R.F. Lambiase, V. Litvinenko, G.J. Mahler, M. Mapes, W. Meng, T.A. Miller, M.G. Minty, G. Narayan, P. Orfin, T. Rao, J. Reich, B. Sheehy, J. Skaritka, L. Smart, K.S. Smith, L. Snydstrup, V. Soria, R. Than, C. Theisen, J.E. Tuozzolo, E. Wang, G. Wang, B. P. Xiao, T. Xin, W. Xu, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  We have started the first tests of the equipment for the coherent electron cooling proof-of-principle experiment. After tests of the 500 MHz normal conducting cavities we proceeded with the low power beam tests of a CW SRF gun. The results of the tests with record beam parameters are presented.  
slides icon Slides TUD03 [1.201 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEB04 Saturation Dynamics, Fine Spectrum, and Chirp Control in a CW FEL Oscillator FEL, electron, coupling, operation 580
 
  • H. S. Marks, A. Gover, H. Kleinman
    University of Tel-Aviv, Faculty of Engineering, Tel-Aviv, Israel
  • D. Borodin, A. Damti, A. Friedman, Y. Vashdi
    Ariel University, Ariel, Israel
  • M. Einat, M. Kanter, Y. Lasser, Yu. Lurie, A. Yahalom
    Ariel University Center of Samaria, Faculty of Engineering, Ariel, Israel
 
  As in conventional laser physics, the saturation dynamics of a long-pulse Electrostatic Accelerator FEL (EA-FEL) oscillator consists of oscillations build-up, resonator modes competition, and establishment of narrow linewidth single mode lasing. In EA-FEL the gain curve drifts to lower frequencies during the long laser pulse due to inevitable droop in the acceleration voltage. This post-saturation drift renders fine chirp of the single mode laser frequency due to the oscillator frequency pulling effect. We have integrated a voltage-ramping element into the electrostatic accelerator terminal that makes it possible to control the acceleration voltage throughout the lasing pulse. This allows us to keep the voltage constant throughout the e-beam pulse, and so increase the single mode lasing time, avoiding mode-hopping during the pulse due to the drift of the gain curve. Furthermore, by adjusting the voltage ramp rate and polarity we obtained controllable positive/negative laser frequency chirp that can be used in a single pulse sweep for fine spectral line (10-6) gas-spectroscopy. The study was conducted on the Israeli EA-FEL that operates at tunable frequencies between 95-110 GHz.  
slides icon Slides WEB04 [2.310 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP002 Simulating Single Crystal Copper Photocathode Emittance emittance, simulation, electron, FEL 587
 
  • T. Vecchione
    SLAC, Menlo Park, California, USA
 
  Funding: US DOE contract DE-AC02-76SF00515
The performance of free-electron lasers depends on the quality of the electron beam used. In some cases this performance can be improved by optimizing the choice of photocathode with respect to emittance. With this in mind, electronic structure calculations have been included in photoemission simulations and used to predict the emittance from single crystal copper photocathodes. The results from different low-index surfaces are reported. Within the model assumptions the Cu(100) surface was identified as having minimal emittance, particularly when illuminated by 266 nm light and extracted in a 60 MV/m gradient. These findings may guide future experimental work, leading to improved machine performance.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP003 Recent Understanding and Improvements of the LCLS Injector emittance, cathode, FEL, electron 592
 
  • F. Zhou, D.K. Bohler, Y. Ding, S. Gilevich, Z. Huang, H. Loos, D.F. Ratner
    SLAC, Menlo Park, California, USA
 
  Funding: U.S. DOE contract No. DE-AC02-76SF00515.
Ultraviolet drive laser and copper photocathode are the key systems for reliably delivering <0.4 micron of emittance and high brightness free electron laser (FEL) at the linac coherent light source (LCLS). Characterizing, optimizing and controlling laser distributions in both spatial and temporal directions are important for ultra-low emittance generation. Spatial truncated Gaussian laser profile has been demonstrated to produce better emittance than a spatial uniform beam. Sensitivity of the spatial laser distribution for the emittance is measured and analysed. Stacking two 2-ps Gaussian laser beams significantly improves emittance and eventually FEL performance at the LCLS in comparison to a single 2-ps Gaussian laser pulse. In addition, recent observations at the LCLS show that the micro-bunching effect depends strongly on the cathode spot locations. The dependence of the micro-bunching and FEL performance on the cathode spot location is mapped and discussed.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP004 Energy Spread Constraints on Field Suppression in a Reverse Tapered Undulator undulator, FEL, bunching, simulation 597
 
  • J.P. MacArthur, Z. Huang, A.A. Lutman, A. Marinelli, H.-D. Nuhn
    SLAC, Menlo Park, California, USA
 
  A 3.2 m variable polarization Delta undulator[1] has been installed at the end of the LCLS undulator line. The Delta undulator acts an an afterburner in this configuration, using bunching from upstream planar undulators to produce radiation with arbitrary polarization. To optimize the degree of polarization from this device, a reverse taper[2] has been proposed to suppress background radiation produced in upstream undulators while still microbunching the beam. Here we extend previous work on free electron lasers with a slowly varying undulator parameter[3] to show there is a strong energy spread dependence to the maximum allowable detune from resonance. At LCLS, this energy spread limitation keeps the reverse taper slope in the slowly varying regime and limits the achievable degree of circular polarization.
[1] A. B. Temnykh, PRST-AB, 11, 120702, (2008).
[2] E. A. Schneidmiller and M. V. Yurkov, PRST-AB, 16, 110702, (2013).
[3] Z. Huang and G. Stupakov, PRST-AB, 8, 040702, (2005).
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP005 Laser Heater Transverse Shaping to Improve Microbunching Suppresion for X-ray FELs electron, FEL, undulator, linac 602
 
  • S. Li
    Stanford University, Stanford, California, USA
  • A.R. Fry, S. Gilevich, Z. Huang, A. Marinelli, D.F. Ratner, J. Robinson
    SLAC, Menlo Park, California, USA
 
  In X-ray free electron lasers (FELs), a small amount of initial density or energy modulation in the electron beam will be amplified through acceleration and bunch compression process. The undesired microbunching on the electron bunch will increase slice energy spread and degrade the FEL performance. The Linac Coherent Light Source (LCLS) laser heater (LH) system was installed to increase the uncorrelated energy spread in the electron beam in order to suppress the microbunching instability. The distribution of the induced energy spread depends strongly on the transverse profile of the heater laser and has a large effect on the microbunching suppression. In this paper we discuss strategies to shape the laser profile in order to obtain better suppression of microbunching. We present analysis to achieve the Gaussian-like energy spread using a Laguerre-Gaussian laser mode and study the efficiency and alignment tolerance for implementation.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP008 Four-Dimensional Models of FEL Amplifiers and Oscillators electron, FEL, undulator, simulation 607
 
  • J. Blau, K. R. Cohn, W.B. Colson
    NPS, Monterey, California, USA
 
  Funding: This work has been supported by the High Energy Laser Joint Technology Office.
New four-dimensional models of free electron lasers (FELs) are described, for both amplifier and oscillator configurations. Model validation and benchmarking results are shown, including comparisons to theoretical formulas and experiments.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP010 Development of Phonon Dynamics Measurement System by MIR-FEL and Pico-second Laser FEL, scattering, timing, lattice 615
 
  • T. Murata, T. Katsurayama, T. Kii, T. Konstantin, K. Masuda, T. Nogi, H. Ohgaki, S. Suphakul, K. Torgasin, H. Zen
    Kyoto University, Kyoto, Japan
  • K. Hachiya
    Kyoto University Graduate School of Energy Science, Kyoto, Japan
  • K. Yoshida
    Kumamoto University, Department of Applied Chemistry and Biochemistry, Kumamoto, Japan
 
  Coherent control of a lattice vibration in bulk solid (mode-selective phonon excitation: MSPE) is one of the attractive methods in the solid state physics because it becomes a powerful tool for the study of ultrafast lattice dynamics (e.g. electron-phonon interaction and phonon-phonon interaction). Not only for that, MSPE can control electronic, magnetic, and structural phases of materials. In 2013, we have directly demonstrated MSPE of a bulk material with MIR-FEL (KU-FEL) by anti-Stokes Raman scattering spectroscopy. For the next step, we are starting a phonon dynamics measurement to investigate the difference of physical property between thermally excited phonon (phonon of equilibrium state) and optically excited phonon (phonon of non-equilibrium state) by time-resolved method in combination with a pico-second VIS laser. By using pico-second laser, we also expect to perform the anti-Stokes hyper-Raman scattering spectroscopy to extend MSPE method to the phonon mode which has Raman inactive . As the first step, we have commissioned the time-resolved phonon measurement system and started measurement on 6H-SiC. In this conference, we will present the outline of measurement system, and experimental results.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP016 Free Electron Lasers in 2015 FEL, electron, undulator, free-electron-laser 625
 
  • K. R. Cohn, J. Blau, W.B. Colson, J.W. Ng, M.J. Price
    NPS, Monterey, California, USA
 
  Funding: This work has been supported by the High Energy Laser Joint Technology Office.
Thirty-nine years after the first operation of the short wavelength free electron laser (FEL) at Stanford University, there continue to be many important experiments, proposed experiments, and user facilities around the world. Properties of FELs in the infrared, visible, UV, and x-ray wavelength regimes are tabulated and discussed.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP023 Two Bunches with ns-Separation with LCLS timing, experiment, photon, controls 634
 
  • F.-J. Decker, S. Gilevich, Z. Huang, H. Loos, A. Marinelli, C.A. Stan, J.L. Turner, Z. Van Hoover, S. Vetter
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by U.S. Department of Energy, Contract DE-AC02-76SF00515.
The Linac Coherent Light Source (LCLS) delivers typically one bunch. Two bunches are interesting for pump / probe experiments. Two electron bunches with ps separation have been already produced using a split and delay in the laser which produces them on the gun cathode. Here we present the combination of two lasers with a combiner, this allows any time separation and is it limited to RF bucket spacing so far to about 40 ns limited by the setup of our beam containment system. Different beam energies were also provided and the most challenging part was a transverse separation of a few σs for the two beams. Although this setup was very jittery a successful user experiment was accomplished.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP025 Effect of Microbunching on Seeding Schemes for LCLS-II electron, undulator, radiation, photon 639
 
  • G. Penn, J. Qiang
    LBNL, Berkeley, California, USA
  • P. Emma, E. Hemsing, Z. Huang, G. Marcus, T.O. Raubenheimer, L. Wang
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.
External seeding and self-seeding schemes are particularly sensitive to distortions and fluctuations in the electron beam profile. Wakefields and the microbunching instability are important sources of such imperfections. Even at modest levels, their influence can degrade the spectrum and decrease the output brightness. These effects are evaluated for seeded FELs at the soft X-ray beam line of LCLS-II. FEL simulations are performed in GENESIS based on various realistic electron distributions obtained using the IMPACT tracking code. The sensitivity depends on both the seeding scheme and the output wavelength.
 
poster icon Poster WEP025 [0.962 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP029 Influence of Seed Laser Wavefront Imperfections on HGHG Seeding Performance FEL, undulator, simulation, electron 643
 
  • T. Plath, C. Lechner
    Uni HH, Hamburg, Germany
  • S. Ackermann, J. Bödewadt
    DESY, Hamburg, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K1GU4 and 05K10PE1 and the German Research Foundation program graduate school 1355.
To enhance the spectral and temporal properties of a free-electron laser the FEL process can be seeded by an external light field. The quality of this light field strongly influences the final characteristics of the seeded FEL pulse. To push the limits of a seeding experiment and reach the smallest possible wavelengths it is therefore crucial to have a thorough understanding of relations between laser parameters and seeding performance. In this contribution we numerically study the influence of laser wavefront imperfections on high-gain harmonic generation seeding at the seeding experiment at FLASH.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP030 First Lasing of an HGHG Seeded FEL at FLASH FEL, electron, experiment, injection 646
 
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
  • S. Ackermann, Ph. Amstutz, A. Azima, M. Drescher, L.L. Lazzarino, C. Lechner, Th. Maltezopoulos, T. Plath, J. Roßbach
    Uni HH, Hamburg, Germany
  • S. Ackermann, R.W. Aßmann, J. Bödewadt, N. Ekanayake, B. Faatz, I. Hartl, R. Ivanov, T. Laarmann, J.M. Müller
    DESY, Hamburg, Germany
 
  Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K1GU4 and 05K10PE1 and the German Research Foundation program graduate school 1355.
The free-electron laser facility FLASH at DESY operates in SASE mode with MHz bunch trains of high-intensity extreme ultraviolet and soft X-ray FEL pulses. A seeded beamline which is designed to be operated parasitically to the main SASE beamline has been used to test different external FEL seeding methods. First lasing at the 7th harmonic of a 266 nm seed laser using high-gain harmonic generation has been demonstrated. Studies of the influence of the microbunching instability are being pursued.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP031 Measurements and Simulations of Seeded Electron Microbunches with Collective Effects electron, simulation, FEL, bunching 650
 
  • K.E. Hacker, S. Khan, R. Molo
    DELTA, Dortmund, Germany
  • S. Ackermann, J. Bödewadt, M. Dohlus, N. Ekanayake, T. Laarmann, H. Schlarb
    DESY, Hamburg, Germany
  • L.L. Lazzarino, C. Lechner, Th. Maltezopoulos, T. Plath, J. Roßbach
    Uni HH, Hamburg, Germany
 
  Funding: The experiments were carried out at FLASH at DESY. BMBF contract No. 05K10PE1, 05K10PE3, 05K13GU4, and 05K13PE3, and the German Research Foundation program graduate school 1355.
Measurements of the longitudinal phase-space distribution of electron bunches seeded with an external laser were done in order to study the impact of collective effects on seeded microbunches in free-electron lasers. Velocity bunching of a seeded microbunch appears to be a viable alternative to compression with a magnetic chicane under high-gain harmonic generation seeding conditions when the collective effects of Coulomb forces in a drift space and coherent synchrotron radiation in a chicane are considered. Measurements of these effects on seeded electron microbunches were performed with an RF deflecting structure and a dipole magnet which streak out the electron bunch for single-shot images of the longitudinal phase-space distribution. Particle tracking simulations in 3D predicted the compression dynamics of the seeded microbunches with collective effects.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP047 Femtosecond Timing Distribution at the European XFEL timing, optics, FEL, electron 669
 
  • C. Sydlo, M.K. Czwalinna, M. Felber, C. Gerth, J.M. Müller, H. Schlarb, F. Zummack
    DESY, Hamburg, Germany
  • S. Jabłoński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
 
  Accurate timing synchronization on the femtosecond timescale is an essential installation for time-resolved experiments at free-electron lasers (FELs) such as FLASH and the upcoming European XFEL. To date the required precision levels can only be achieved by a laser-based synchronization system. Such a system has been successfully deployed at FLASH and is based on the distribution of femtosecond laser pulses over actively stabilized optical fibers. For time-resolved experiments and for special diagnostics it is crucial to synchronize various laser systems to the electron beam with a long-term stability of better than 10 fs. The upcoming European XFEL has raised the demands due to its large number of stabilized optical fibers and a length of 3400 m. Specifically the increased lengths for the stabilized fibers had necessitated major advancement in precision to achieve the requirement of less than 10 fs precision. This extensive rework of the active fiber stabilization has led to a system exceeding the current existing requirements and is even prepared for increasing demands in the future. This paper reports on the laser-based synchronization system focusing on the active fiber stabilization for the European XFEL, discusses major complications, their solutions and the most recent performance results.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP048 Electron Beam Diagnostics for FEL Studies at CLARA FEL, electron, diagnostics, simulation 672
 
  • S. Spampinati
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • D. Newton
    The University of Liverpool, Liverpool, United Kingdom
 
  CLARA (Compact Linear Accelerator for Research and Applications) is a proposed 250 MeV, 100-400 nm FEL test facility at Daresbury Laboratory [1]. The purpose of CLARA is to test and validate new FEL schemes in areas such as ultra-short pulse generation, temporal coherence and pulse-tailoring. Some of the schemes that can be tested at CLARA depend on a manipulation of the electron beam properties with characteristic scales shorter than the electron beam. In this article we describe the electron beam diagnostics required to carry on these experiments and simulations of FEL pulse and electron beam measurements.
[1] J. A. Clarke et al., JINST 9, 05 (2014).
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP054 Control of Gap Dependent Phase Errors on the Undulator Segments for the European XFEL undulator, electron, free-electron-laser, FEL 685
 
  • Y. Li, J. Pflüger
    XFEL. EU, Hamburg, Germany
 
  Strong magnetic forces in long undulators always result in some girder deformation. This problem gets more serious in long gap tuneable undulators. In addition the deformation varies with changing forces at different gaps resulting in gap dependent phase errors. For the undulators for the European XFEL this problem has been studied thoroughly and quantitatively. A compensation method is presented which uses a combination of suitable shims and pole height tuning. It is exemplified by tuning one of the undulator segments for the European XFEL back to specs.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP058 Emittance Measurements at the PAL-XFEL Injector Test Facility emittance, quadrupole, gun, electron 690
 
  • J. Lee
    POSTECH, Pohang, Kyungbuk, Republic of Korea
  • J.H. Han, J.H. Hong, C.H. Kim, I.S. Ko, S.J. Lee, S.J. Park, H. Yang
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  The PAL-XFEL Injector Test Facility (ITF) at PAL has been operating for experimental optimization of electron beam parameters and for beam test of various accelerator components. It consists of a photocathode RF gun, two S-band accelerating structures, a laser heater system, and beam diagnostics such as ICTs, BPMs, screens, beam energy spectrometers and an RF deflector. Projected and slice emittance measurements were carried out by using single quadrupole scan. In this paper, we present the emittance measurements.  
poster icon Poster WEP058 [0.646 MB]  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP060 Longitudinal Electron Bunch Shaping Experiments at the PAL-ITF electron, cavity, experiment, FEL 694
 
  • M. Chung, J.M. Seok
    UNIST, Ulsan, Republic of Korea
  • J.H. Han, J.H. Hong, H.-S. Kang, C.H. Kim
    PAL, Pohang, Kyungbuk, Republic of Korea
  • J.C.T. Thangaraj
    Fermilab, Batavia, Illinois, USA
 
  Longitudinal shaping of electron beam has received much attention recently, due to its potential applications to THz generation, dielectric wakefield acceleration, improvement of FEL performance, and controlled space-charge modulation. Using a set of alpha-BBO crystals, shaping of laser pulse and electron bunch on the order of ps is tested at the Injector Test Facility (ITF) of Pohang Accelerator Laboratory (PAL). In particular, we investigate the response of the longitudinally-modulated beam to a dechirper, which is a vacuum chamber of two corrugated, metallic plates. Initial experimental results will be presented with analytical theory and numerical simulations.  
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP078 Advances on the LUNEX5 and COXINEL Projects FEL, electron, operation, plasma 730
 
  • M.-E. Couprie, C. Benabderrahmane, P. Berteaud, C. Bourassin-Bouchet, F. Bouvet, J.D. Bozek, F. Briquez, L. Cassinari, L. Chapuis, J. Da Silva, J. Daillant, D. Dennetière, Y. Dietrich, M. Diop, J.P. Duval, M.E. El Ajjouri, T.K. El Ajjouri, C. Herbeaux, N. Hubert, M. Khojoyan, M. Labat, N. Leclercq, A. Lestrade, A. Loulergue, J. Lüning, P. Marchand, O. Marcouillé, J.L. Marlats, F. Marteau, C. Miron, P. Morin, A. Nadji, R. Nagaoka, F. Polack, F. Ribeiro, J.P. Ricaud, P. Rommeluère, P. Roy, G. Sharma, K.T. Tavakoli, M. Thomasset, M. Tilmont, M.-A. Tordeux, M. Valléau, J. Vétéran, W. Yang, D. Zerbib
    SOLEIL, Gif-sur-Yvette, France
  • S. Bielawski, M. Le Parquier
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • X. Davoine
    CEA/DAM/DIF, Arpajon, France
  • N. Delerue, M. El Khaldi, W. Kaabi, F. Wicek
    LAL, Orsay, France
  • G. Devanz, C. Madec
    CEA/IRFU, Gif-sur-Yvette, France
  • A. Dubois
    CCPMR, Paris, France
  • C. Evain, C. Szwaj
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • D. Garzella
    CEA/DSM/DRECAM/SPAM, Gif-sur-Yvette, France
  • G. Lambert, V. Malka, A. Rousse, C. Thaury
    LOA, Palaiseau, France
  • A. Mosnier
    CEA/DSM/IRFU, France
  • E. Roussel
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  Funding: ERC COXINEL 340015
LUNEX5 (free electron Laser Using a New accelerator for the Exploitation of X-ray radiation of 5th generation) aims at investigating compact and advanced Free Electron Laser (FEL). It comprises one one hand a 400 MeV superconducting linac for studies of advanced FEL schemes, high repetition rate operation (10 kHz), multi-FEL lines, and one the other hand a Laser Wake Field Accelerator (LWFA) for its qualification by a FEL application, an undulator line enabling advanced seeding and pilot user applications in the 40-4 nm spectral range. Following the CDR completion, different R&D programs were launched, as for instance on FEL pulse duration measurement, high repetition rate electro-optical sampling. The COXINEL ERC Advanced Grant aims at demonstrating LWFA based FEL amplification, thanks to a proper electron beam manipulation, with a test experiment under preparation. As a specific hardware is also under development such as a cryo-ready 3 m long undulator of 15 mm period is under development.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)  
 
WEP082 High-Power Ultrashort Terahertz Pulses generated by a Multi-foil Radiator with Laser-Accelerated Electron Pulses polarization, radiation, electron, timing 739
 
  • J.S. Jo, B.A. Gudkov, Y.U. Jeong, H.N. Kim, K.N. Kim, K. Lee, S.V. Miginsky, S. H. Park, W.J. Ryu, N. Vinokurov
    KAERI, Daejon, Republic of Korea
  • B.A. Gudkov, S.V. Miginsky, N. Vinokurov
    BINP SB RAS, Novosibirsk, Russia
 
  Terahertz (THz) wave is an attractive source for a variety of research including imaging, spectroscopy, security, etc. We proposed a new scheme of high-power and ultrashort THz generation by using the coherent transition radiation from a cone-shaped multi-foil radiator [*] and a rectangle-shaped multi-foil radiator. To perform the proof-of-principle of the multi-foil THz radiator, we used 80~100 MeV electron bunches from laser-plasma acceleration. While a cone-shaped multi-foil radiator has a circular polarization with a conic wave, we made a rectangle-shaped multi-foil radiator that has a linear polarization in a plane-like wave, which can be used more widely for various applications. We can easily control the power of multi-foil radiator by adjusting the number of foils. We compare the THz power ratio between 1 sheet and multi sheets using cooled bolometer. We will measure the pulse duration and bandwidth of the THz wave from the multi-foil radiators in a single-shot by using electro-optic sampling and cross-correlation method.
* Phys. Rev. Lett. 110, 064805.
 
Export • reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml)