

Alkali Cathode Testing for LCLS-II at APEX

Houjun Qian, LBNL on behalf of APEX team FEL 2015, Korea, April 24, 2015

The APEX Team!

K. Baptiste, M. Chin, J. Corlett, C. Cork, S. De Santis, M. Dickinson,
L. Doolittle, J. Doyle, J. Feng, D. Filippetto, G. Harris, G. Huang, H. Huang,
R. Huang, M. Johnson, T. Kramasz, S. Kwiatkowski, D. Leitner,
R. Lellinger, V. Moroz, W. E. Norum, H. Padmore, G. Portmann, H. Qian,
F. Sannibale, J. Staples, M. Vinco, S. Virostek, W. Wan, R. Wells,

@ Berkeley Lab

Outline

- Introduction to APEX systems
- Photocathodes test at APEX
 - Cs₂Te cathode testing results
 - Gun improvements benefit cathode operation
 - Preliminary Alkali antimonide cathodes testing
- Summary

Science asks for higher flux

- Next-gen XFEL facility: 100 Hz \rightarrow MHz
 - More coherent X-ray photon flux per sec
 - More stable machine with wider control BW
 - More FEL beamlines, more users

RERKELEY LAP

Office of Science

Electron source requirements

• Typical specs on electron source for MHz XFEL

Parameter	Value and Unit
Bunch Repetition rate	Up to 1 MHz
Charge per bunch	10 – 300 pC
Normalized emittance	0.2 – 0.6 mm
Beam energy at the gun exit	> 500 keV
Cathode electric field at photoemission	>10 MV/m
Bunch length and shape control	5 - 60 ps
Magnetic field at cathode	< 2 G
Dark current at nominal gun energy	< 400 nA
Operational vacuum pressure	< 2 10 ⁻⁹ Torr
Loadlock cathode vacuum system	

Typical gun requests:

- High duty cycle CW
- High gradient
- High gun voltage
- Low dark current
- UHV vacuum w/ loadlock
- ..

Typical photocathode requests:

- High QE (>1%)
- Low thermal emittance (< 1 mm.mrad/mm)
- Long life time (>1 week)

Normal Conducting VHF gun demonstrated

F. Sannibale et al., Phys. Rev. ST Accel. Beams 15, 103501 (2012).

Frequency	185.7 MHz
Operation mode	CW
Gap voltage	> 750 kV
Field at the cathode	20 MV/m
Q0 (measured at R.T.)	30050
Shunt impedance	5.8 MΩ
RF Power @ Q ₀	99 kW
Stored energy	2.4 J
Peak surface field	24.4 MV/m
Peak wall power density	25.0 W/cm ²
Accelerating gap	4 cm
Diameter/Length	69.4/35.0 cm
Operating pressure	~3 x 10 ⁻¹⁰ Torr
Transported dark current	< 0.1 nA

@ Berkeley

Photocathodes under test at APEX^{® Berkeley Lab}

- Alkali cathodes
 - Cesium Telluride Cs₂Te (UV)
 - Multi-Alkali Antimonides CsK₂Sb, CsSb₃... (Green)

APEX Photo-Cathode Laser

@ Berkeley Lab

APEX Photo-Cathode Laser

LASER 1: 1 MHz reprate Yb fiber laser from a LLNL/UCB/LBNL collaboration, 0.7 W at ~1064 nm

LASER 2: Commercial 1 MHz 2 W @ 1052 nm (presently used).

Loadlock for high QE cathodes

APEX loadlock system

Collaboration with INFN – LASA, adapted version of the INFN/PITZ/FLASH loadlock system.

Loadlock for high QE cathodes

APEX loadlock system

Collaboration with INFN – LASA, adapted version of the INFN/PITZ/FLASH loadlock system.

Loadlock for high QE cathodes

APEX loadlock system

Collaboration with INFN – LASA, adapted version of the INFN/PITZ/FLASH loadlock system.

Office of Science

Loadlock for high QE cathodes @ Berkeley Lab APEX loadlock system **RF** spring R. Wells Old plug Collaboration with INFN – New plug LASA, adapted version of Photo-emitting cathode plug surface the INFN/PITZ/FLASH loadlock system. Gun nose Cathode manipulation Vacuum "suitcase" magnetic poles compatible with airplane

transportation (NEG pump)

U.S. DEPARTMENT OF

Office of

Science

APEX Phase-I beamline for cathode testing

14/20

Office of

Science

@ Berkeley Lab

APEX Phase-I beamline for cathode testing

15/20

Office of Science

@ Berkeley Lab

Office of

Science

Cs₂Te cathode testing

- Cs₂Te cathodes prepared by INFN/LASA
 - 2010/2011, 3 cathodes prepared by INFN
 - 2012.10, tested in vacuum suite, QE ~ 13% (#409.1)

Almost two years in the vacuum suitcase with no apparent QE degradation!

Demonstration for LCLS-II at AEPX ^{® Berkeley Lab}

0.3 mA - 0.02 mA LCLS-II modes

demonstrated with Cs₂Te at APEX.

~0.1 mA, ~2.6 days, ~23 C, cathode #407.1

Office of

Science

TTTT

QE & lifetime satisfy LCLS-II with margineters

18/26

BERKELEY LAB

Absolute pressure goes from low 10⁻¹¹ (RF off) to high 10⁻¹⁰ Torr (RF on).

Oxygen line increases by almost two orders of magnitude achieving a partial pressure of ~8 x 10⁻¹² Torr.

Previous work* demonstrated that the major QE degradation mechanism for Cs₂Te is oxidation

Office of

Science

Absolute pressure goes from low 10⁻¹¹ (RF off) to high 10⁻¹⁰ Torr (RF on).

Oxygen line increases by almost two orders of magnitude achieving a partial pressure of ~8 x 10⁻¹² Torr.

No QE lifetime correlation with current.

@ Berkeley

Consistent with previous findings*, lifetime can support LCLS-II operation.

U.S. DEPARTMENT OF

Office of

Science

@ Berkeley

RF assisted **QE** rejuvenation

Cs₂Te thermal emittance

@ Berkeley

- Solenoid scan Fixed charge: 0.5 pC bunch charge, 56 ps, 780 keV beam energy
- Values in line with previous measurements. D. Sertore et al., Proc. EPAC 2004
- Meets LCLS-II requirement of 1 μm/mm rms

Laser rms Y (mm)

Gun improvement for cathode operation

Better machining of the contact parts between the anode and cathode halves of the cavity, improved the flatness of the parts and hence the contact, and a damaged RF spring was replaced with one that has thicker gold coating.

Nominal energy (750 keV) achieved with~ 15% less RF power, which benefits gun vacuum.

Combination of dry-ice cleaning and mirrorlike polishing of the cathode/anode areas.

Dark current @ the nominal energy (750 keV) dropped from 350 nA to ~ 0.1 nA!

Both are very important improvements for LCLS-II

- Cathode life time
- Collimation system

Gun improvement for cathode operation

Impact of the Improved Cavity Quality Factor

Science

Gun improvement for cathode operation

Combination of dry-ice cleaning and mirror polishing of the cathode/anode areas:

@ Berkeley

Dark current @ the nominal energy (750 keV) dropped from 350 nA to < 0.1 nA!

Alkali antimonide

• Locally fabricated at LBNL (CsK₂Sb, CsSb₃...)

APEX gun provides practical test environment for antimonide cathode preparation recipe optimization for QE/lifetime/thermal emittance:

- Deposition sequence
- Deposition thickness
- Deposition speed
- Surface roughness

Alkali antimonide

• Locally fabricated at LBNL (CsK₂Sb, CsSb₃...)

BERKELEY L

APEX gun provides practical test environment for antimonide cathode preparation recipe optimization for QE/lifetime/thermal emittance:

2SS

- Deposition sequence
- Deposition thickness

13

14

• Deposition speed

S Office of

Science

APEX Phase-II installations

APEX phase II commissioning starts soon!

Office of

Science

Conclusion

- A first campaign of measurements demonstrated that Cs₂Te cathode from INFN/LASA satisfies all requirements for LCLS-II.
- Initial tests with CsK₂Sb have not yet demonstrated the required performance but are showing a promising trend with improved cathode recipe.
- APEX gun is an ideal test bed for characterizing high QE reactive photocathode performance in practical environment.

Recent APEX publications:

- F. Sannibale, et al., PRST-AB 15, 103501 (2012)
- R. Huang, et al., PRST-AB 18, 013401 (2015)
- D. Filippetto, H. Qian, F. Sannibale, Appl. Phys. Letters 107, 042104 (2015).

