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Abstract
We further the studies of the model-based optimization

of tapered free-electron lasers presented in a recent publi-
cation [Phys. Rev. ST Accel. Beams 18, 040702 (2015)].
Departing from the ideal case, wherein the taper profile is
a smooth and continuous function, we consider the more
realistic case, with individual undulator segments separated
by break sections. Using the simulation code GENESIS, we
apply our taper optimization method to a case, which closely
resembles the FLASH2 facility in Hamburg, Germany. By
comparing steady-state and time-dependent simulations, we
examine how time-dependent properties alter the optimal
taper scenario. From the simulation results, we also deduce
that the “traditional” empirical method, whereby the inter-
mediate radiation power is maximized after closing every
undulator gap, does not necessarily produce the highest final
power at the exit of the undulator line.

INTRODUCTION
Present-day imaging experiments at x-ray free-electron

laser (FEL) facilities call for an increased number of photons
within a shorter pulse duration [1, 2]. To meet the stringent
demand on the radiation power, the technique of undulator
tapering has been revisited in recent years, and much theo-
retical effort has been dedicated to the optimization of this
technique [3–6].
In a recent publication [6], we propose a modification

to the Kroll-Morton-Rosenbluth (KMR) model [7], which
serves as a method of optimizing the taper profile. The
method features a variable phase of the resonant particle, and
opens up possibilities for further enhancement of radiation
power beyond the constant-phase model.
In the ideal case, the taper profile K (z) is a smooth and

continuous function. However, most existing taperable x-
ray FELs, such as FLASH2 [8] and SACLA [9], consist of
individual undulator segments separated by break sections.
With these limitations, a reduction of radiation power from
the ideal case is inevitable.
The break sections are needed for beam focusing, trajec-

tory correction and diagnostics. However, vacuum diffrac-
tion of the optical beam in the break sections leads to a
decrease in the on-axis field strength, which also causes
particle detrapping [3].
Also, as each undulator segment is uniform within it-

self, the segment length sets a limit on the rate at which K
can decrease, and hence a limit on the bucket deceleration
rate. Furthermore, if the segment length is larger than the
synchrotron period, the electron beam can absorb energy
momentarily from the optical beam [6].
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In this article, we study a case with 2.5-m undulator
segments separated by break sections. Using the simula-
tion code GENESIS [10], we adapt our taper optimization
method to these limitations, and obtain the highest possible
power. We then compare the simulation results obtained in
the steady-state mode and the time-dependent mode, quanti-
fying the effects of time-dependent properties.

The case chosen for our simulation studies is intended to
match the design parameters of the FLASH2 facility, which
achieved its first lasing [11] in August 2014.

CASE DEFINITION
For the simulation studies in this article, we choose a case

with main parameters as shown in Table 1. These param-
eter values are within the designed range for the FLASH2
facility [8].

Table 1: Main Parameters for the Simulated Case

Parameter Symbol Value
Electron beam energy E 1.25GeV
Peak current I 2.5 kA
Bunch charge Q 630 pC
Bunch length σt 30 µm
Energy spread σE 0.5MeV
Normalized emittance εx,y 1.4 µm rad
Average beta function 〈βx,y〉 6m
Radiation wavelength λ 6 nm
Undulator period λw 31.4mm
Undulator segment length Lseg 2.5m

The undulator segments considered in this case are planar.
The lattice for the transverse focusing of the electron beam
is in a FODO configuration. The period of the FODO cell
is 6.6 m, in which two quadrupole magnets are 3.3 m apart
from one another.

The FLASH2 facility has 12 undulator segments [8]. But
in our simulation studies, we first consider a total of 30 seg-
ments, for the purpose of understanding the FEL dynamics
over a long distance. After that, we consider the more re-
alistic 12-segment case, by discarding all the subsequent
segments in the simulations.

TAPER OPTIMIZATION METHOD
Our taper optimization method is detailed in a recent

publication [6]. The method is based on the KMR model [7]
and a modification thereto. It considers a resonant particle
with phase-space coordinates (ψR, γR). With a constant
phase ψR (z) = ψR (0), it is known as the ordinary KMR
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method. With an increasing phase

ψR (z) =
π

2

(
z

Ld

)n
,

it is known as the modified KMR method, where Ld and n
are positive real numbers at our choice.

Ld is known as the detrapping length. At z = Ld, the
phase ψR reaches π/2. The area of ponderomotive bucket
then becomes zero, and total detrapping occurs. Adjusting
Ld allows us to control the rate at which ψR increases.
The degree n does not have to be an integer. But in Ref. [6],

we have shown with another case that the output power is
maximized by choosing n = 1. In this article, we restrict
ourselves to n = 1.

The method involves iterative simulations, with step size
∆z along the undulator line. In the ideal case,∆z should be as
small as possible, such as ∆z = λw . But in the case at hand,
the individual undulator segments require us to make the
adaptation ∆z = Lseg. Furthermore, we adapt the method to
the presence of break sections. In each step ∆z, the decrease
in on-axis field amplitude due to vacuum diffraction in the
preceding break section is taken into account.
The iterative simulations are performed in the steady-

state mode of GENESIS. Upon choosing a constant resonant
phase ψR for the ordinary KMR method or a detrapping
length Ld for the modified KMR method, the iterative simu-
lations will result in a taper profile K (z). Upon obtaining
the taper profile, we input it to GENESIS again and run it in
the time-dependent mode.

RESULTS AND DISCUSSIONS
General Results with 30 Undulator Segments
To examine the FEL dynamics over a long distance, we

simulate a total of 30 undulator segments with GENESIS.
For the ordinary KMRmethod, we vary the resonant phase

ψR from 0.05 rad to 0.5 rad at intervals of 0.05 rad. For the
modified KMR method, we vary the detrapping length Ld

from 50 m to 500 m at intervals of 50 m.
In all these runs, we probe the final radiation power at

the exit of the 30th undulator segment. The results are sum-
marized in Fig. 1. The blue solid curves are the results of
steady-state simulations, and the green dashed curves are
the results of time-dependent simulations.

Ordinary KMR versus Modified KMR In the steady-
state mode (see blue solid curves in Fig. 1), the final power is
maximized at ψR = 0.35 rad for the ordinary KMR method,
and at Ld = 200 m for the modified KMRmethod. The max-
imized final powers are 76.8 GW and 94.9 GW, respectively.
The maximized final power for the modified KMR method
is 123% that for the ordinary KMR method.

In the time-dependent mode (see green dashed curves in
Fig. 1), the final power is maximized at ψR = 0.2 rad for the
ordinary KMR method, and at Ld = 300 m for the modified
KMR method. The maximized final powers are 18.9 GW
and 21.4 GW, respectively. The maximized final power for
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Figure 1: The final radiation power at the exit of the 30th
undulator segment (a) as a function of the resonant phase
ψR in the ordinary KMR method and (b) as a function of the
detrapping length Ld in the modified KMR method. The
blue solid curves are the results of steady-state simulations,
and the green dashed curves are the results of time-dependent
simulations.

the modified KMR method is 113% that for the ordinary
KMR method.

In both the steady-state and the time-dependent modes, the
modified KMR method produces a higher final power than
the ordinary KMR method. This shows that an increasing
ψR is more favourable than a constant ψR for maximizing
the final power, even when time-dependent properties are
taken into account. The benefit of using an increasing ψR

over a constant ψR has been justified in Ref. [6] in terms
of the initial capturing of particles and the rate of bucket
deceleration.

Steady-state versus Time-dependent For the ordinary
KMR method [see Fig. 1(a)], the maximized final power in
the time-dependent mode constitutes a 75% drop from that in
the steady-state mode. For the modified KMR method [see
Fig. 1(b)], the maximized final power in the time-dependent
mode constitutes a 77% drop from that in the steady-state
mode. These show that time-dependent properties are a
significant cause of power reduction.
The power reduction can be understood as follows. In

GENESIS, a steady-state simulation is equivalent to consid-
ering only the central slice in a time-dependent simulation.
Thus, a taper profile K (z) obtained in the steady-state mode
is only optimal for the centremost part of the longitudinal
bunch profile, when running in the time-dependent mode.
Towards the head and the tail of a Gaussian bunch profile,
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Figure 2: Results of steady-state simulations, showing the optimal scenarios of the ordinary KMR method (blue) and the
modified KMR method (red) with the use of 30 undulator segments. The following quantities are plotted as functions of the
distance z along the undulator line: (a) the radiation power; (b) the undulator parameter K ; (c) the rms radius of the optical
beam; (d) the field amplitude on axis; (e) the bunching factor; (f) the synchrotron frequency.

the slice current is significantly lower. These parts of the
bunch behave in a non-optimal fashion under a taper pro-
file K (z) optimized for the central slice, thus reducing the
average power produced by the bunch.

Another observation is that the optimal scenarios are not
the same in the steady-state mode and in the time-dependent
mode. When going from steady-state to time-dependent
in the ordinary KMR method, the optimal ψR decreases.
Similarly, when going from steady-state to time-dependent
in the modified KMR method, the optimal Ld increases,
which corresponds to an overall decrease in the range of ψR.

As discussed in Ref. [6], the area of the ponderomotive
bucket decreases with ψR, while the bucket deceleration rate
increases with ψR. This implies that in the presence of time-
dependent effects, it is preferable to maintain a relatively
large bucket at the expense of slowing down the bucket
deceleration. This trade-off can be justified by the fact that
time-dependent effects constitute an additional source of
particle detrapping [3].

Optimal scenarios with 30 Segments
Without any tapering, power saturation occurs at around

z = 30 m in the 10th undulator segment. This is known as
the initial saturation point. The saturation power is 2.5 GW
in the steady-state mode and 1.7 GW in the time-dependent
mode.
The optimal taper scenarios in the steady-state mode are

examined in Fig. 2. The blue solid curves correspond to
the ordinary KMR method with ψR = 0.35 rad, while the
red dashed curves correspond to the modified KMR method
with Ld = 200 m.

Figure 2(a) shows the evolution of the radiation power
along the undulator line. At the exit of the undulator line,
the modified KMR method yields a higher power than the

ordinary KMR method does, in agreement with Fig. 1. But
upstream at z = 30 − 60 m, the situation is actually the op-
posite, i.e. the modified KMR method gives a lower power.
This shows that it is possible to obtain a higher power down-
stream by sacrificing the power upstream. In other words,
the “traditional” empirical method, whereby the radiation
power is maximized after closing every undulator gap, does
not necessarily yield the highest power at the end of the
undulator line.
Figure 2(b) shows the taper profiles obtained from the

iterative simulations. The individual undulator segments
and the break sections are clearly seen. For both the ordi-
nary KMR method and the modified KMR method, the K
value hardly changes within the first seven segments. The
decrease in K begins slightly before the initial saturation
point. Immediately after the initial saturation point, the par-
ticle trapping development region begins [3]. In this region,
the K value for the modified KMR method decreases more
slowly than that for the ordinary KMRmethod. Downstream
in the undulator line, the K value for the modified KMR
method decreases more rapidly than that for the ordinary
KMR method. Note that the rate of K decrease reflects the
rate of bucket deceleration. For the modified KMR method,
the bucket deceleration is kept slow in the particle trapping
development region, thus allowing more particles to be cap-
tured in the bucket for the subsequent energy extraction.

Figure 2(c) shows the optical beam size as a function of z.
Before the initial saturation point (z = 30 m), gain guiding
keeps the optical beam size small. Beyond the initial satura-
tion point, gain guiding is weakened, and refractive guiding
becomes dominant. The strength of refractive guiding varies
with the phase ψR as cosψR [6]. For the modified KMR
method, ψR increases with z, making the refractive guiding
stronger. This partly explains why the optical beam size is
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Figure 3: Results of time-dependent simulations, showing the optimal scenarios of the ordinary KMR method (blue) and
the modified KMR method (red) with the use of 30 undulator segments. The following quantities are plotted as functions of
z: (a) the radiation power; (b) the undulator parameter K ; (c) the rms radius of the optical beam; (d) the field amplitude on
axis; (e) the bunching factor; (f) the synchrotron frequency. These quantities are averaged over the electron bunch, and
weighted by the slice current.

smaller for the modified KMR method than for the ordinary
KMR method beyond the initial saturation point.
The effect of keeping the optical beam size small is also

seen in Fig. 2(d), which shows the evolution of the on-axis
field amplitude. With a smaller optical beam size beyond
the initial saturation point, the modified KMR method gives
a stronger field on axis.
Figure 2(e) shows the bunching factor as a function of z.

Here the bunching factor is defined as the absolute value
of 〈e−iψ〉, where the brackets denote the average over all
particles, and ψ is the particle phase in the ponderomotive
potential. In the particle trapping development region im-
mediately beyond z = 30 m, the bunching factor for the
modified KMR method is higher than that for the ordinary
KMR method. This can be attributed to the larger on-axis
field amplitude and the slower decrease in K value.

Figure 2(f) shows the synchrotron frequency as a function
of z. The synchrotron frequency is given by [6, 12]

Ωs (z) =

√
2πe

mec2λw

K (z) fB (z)E0(z)
γ2
R (z)

cos[ψR (z)].

For both the ordinary KMR method and the modified KMR
method, the synchrotron frequency increases from zero at
the entrance to the undulator line and reaches its maximum
value slightly after the initial saturation point. Afterwards,
the ordinary KMR method exhibits a relatively uniform syn-
chrotron frequency, while the modified KMR method shows
a rapid decrease in synchrotron frequency. The behaviour
of the synchrotron frequency is a combined effect of the
variations in K , E0 and ψR along the undulator line.

Figure 3 shows the corresponding results in the time-
dependent mode. The radiation power, K parameter, optical

beam size, on-axis field amplitude and the bunching factor
exhibit mostly the same patterns as in Fig. 2. However, the
radiation power is lower overall [see Fig. 3(a)]. The diffrac-
tion of the optical beam is stronger [see Fig. 3(c)], and the
on-axis field weaker [see Fig. 3(d)]. The bunching factor is
also smaller overall [see Fig. 3(e)].
In the two optimal taper profiles Fig. 3(b), K decreases

more slowly than in their steady-state counterparts [see
Fig. 2(b)]. This also shows that in the presence of time-
dependent effects, a slower deceleration of the ponderomo-
tive bucket is preferable.
Comparing Fig. 3(f) to Fig. 2(f), we see that time-

dependent effects give rise to a different behaviour of the
synchrotron frequency. At z = 40−80m, the synchrotron fre-
quency is higher for the modified KMR method than for the
ordinary KMR method in the time-dependent mode, but the
situation is the opposite in the steady-statemode. Also, while
the synchrotron frequency for the modified KMR method
decreases very rapidly in the steady-state mode, it remains
relatively uniform in the time-dependent mode.

Figure 4 shows the the spectral power distributions at the
exit of the 30th undulator segment. The blue and red curves
correspond to, respectively, the ordinary KMR method with
ψR = 0.2 rad and the modified KMRmethod with Ld = 300
m, which are the the optimal scenarios in the time-dependent
mode. The two distributions are largely similar.

Considering Only 12 Segments
The case studied in this article is intended to resemble the

FLASH2 facility as closely as possible. The actual FLASH2
facility has 12 undulator segments [8]. Therefore, we now
consider the more realistic 12-segment case by discarding
all the subsequent segments in our simulation results.
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Figure 4: The spectral power distributions for the ordinary
KMR method with ψR = 0.2 rad (blue) and for the modified
KMR method with Ld = 300 m (red).
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Figure 5: The final radiation power at the exit of the 12th
undulator segment (a) as a function of the resonant phase
ψR in the ordinary KMR method and (b) as a function of the
detrapping length Ld in the modified KMR method. The
blue solid curves are the results of steady-state simulations,
and the green dashed curves are the results of time-dependent
simulations.

The final power at the exit of the 12th segment is shown in
Fig. 5 for differentψR and Ld values. With only 12 segments,
the optimal ψR and Ld values are, of course, different from
those in the 30-segment case. The reason is explained in
Ref. [6].

In the steady-state mode (see blue solid curves in Fig. 5),
the optimal ψR is 0.4 rad, which gives a final power of 24.7
GW; the optimal Ld is 100 m, which gives a final power of
26.3 GW.

In the time-dependent mode (see green dashed curves in
Fig. 5), the optimal ψR is 0.3 rad, which gives a final power

z [m]
0 5 10 15 20 25 30 35

P
ow

er
 [G

W
]

0

2

4

6

8

10
(a)

Ordinary KMR, ψR = 0.3 rad

Modified KMR, Ld = 150 m

z [m]
0 5 10 15 20 25 30 35

K

1.56

1.57

1.58

1.59

1.6

1.61
(b)

Figure 6: Results of time-dependent simulations, showing
the optimal scenarios of the ordinary KMR method (blue)
and the modified KMR method (red) with the use of only 12
undulator segments. (a) The bunch-averaged radiation power
and (b) the undulator parameter K are plotted as functions
of z.

of 9.1 GW; the optimal Ld is 150 m, which gives a final
power of 9.6 GW.
With only 12 undulator segments, there is not a huge

difference in final power between the ordinary KMRmethod
and the modified KMR method. But compared to the case
of no taper, the optimized tapers increase the final power by
almost a factor of 11 in the steady-state mode, and a factor
of 6 in the time-dependent mode.
The optimal scenarios in the time-dependent mode are

shown in Fig. 6. It is apparent from Fig. 6(b) that the K value
hardly changes in the first seven undulator segments. The
post-saturation power growth is mainly due to the tapering
of the last five segments.

As seen from Fig. 6(a), the modified KMR method yields
a slightly higher final power at the exit of the 12th segment,
compared to the ordinary KMR method. Nonetheless, up-
stream at z = 25−35 m, the power produced by the modified
KMRmethod is actually lower. Once again, this shows that a
higher power can be obtained at the exit of the undulator line
by sacrificing the intermediate power upstream. This also
implies that the “traditional” empirical method, whereby
the intermediate power is maximized after closing every
undulator gap, does not necessarily yield the highest final
power.

SUMMARY AND OUTLOOK
In this article, we have furthered the study of a previously

presented [6] taper optimization method, by adapting the
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method to individual undulator segments separated by break
sections. Using the simulation code GENESIS [10], we
have applied the method to an x-ray FEL case, which closely
resembles the FLASH2 facility [8] in Hamburg, Germany.
By comparing the simulation results in the steady-state mode
and the time-dependent mode, we have quantified the effects
of time-dependent properties on the FEL dynamics. It would
be an interesting experiment to test the 12-segment time-
dependent simulation results on the FLASH2 facility.
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