COTR Resistant Profile Monitor

International Free Electron Laser Conference 2015

Outline

- Overview
- COTR
- Mitigation methods
 - Beam manipulation
 - OTR filtering
 - Scintillating crystals
 - PSI profile monitor
- Summary

Overview

- Accelerators for X-FELs need high brightness beam
 - multi GeV
 - sub-micron emittance
 - 10⁻⁴ energy spread
 - sub 100 fs bunch duration
 - sub 100 µm beam size
- Need 2-D beam images (slice emittance, z-δ phase space)
- Choice of scintillator or OTR
- Initial choice OTR for XFELs (no saturation, resolution issues)
- High brightness also stimulates visible beam coherence
- Coherent OTR (COTR) makes OTR screens unusable

COTR Observations

SLAC

COTR Effects

- Driven by
 - longitudinal space charge instability
 - current spikes in ultrashort bunches
- Intensity enhancement
 - OTR ~ N electrons independent
 - COTR intensity ~ $N^2|f(\lambda)|^2$
- Apparent beam size changes
 - Core or fraction of bunch radiates coherently
- Shape changes
 - Doughnuts
 - Entire transverse beam extent radiates coherently

Wesch & Schmidt DIPAC11 WEOA01

FEL 2015, Aug. 24, 2015

Mitigation Schemes

- Beam manipulation
 - Change particle distribution to suppress COTR generation
- OTR filtering
 - Selective OTR observation to suppress COTR fraction
- Scintillating crystals
 - Avoid OTR and use radiation process based on energy loss in a material
- All schemes need to suppress COTR to a level much less than the intensity of the desired radiation
 - This may require many orders of magnitude

Laser Heater

- LSC instability sensitive to slice energy spread
- Increase it with laser heater
- Should suppress COTR
- Suppression observed x100
- Still x6 above incoherent OTR

COTR Induced by Laser Heater

- LCLS laser heater chicane
 - Introduces small 8 mm R₅₆
 - Creates x2 COTR
 - Emittance underestimated by 25%
- LH on still has COTR
 - 20% enhancement still underestimates emittance

Divergence Spoiler

- Thick spoiler foil adds beam divergence
- Back side of foil generates OTR
- Beam divergence broadens OTR far-field
- Effectively narrows OTR source size
- Limits ability of electrons to interfere
- Related effect on COTR observed at LCLS

Spatial COTR Suppression

- Fully transverse coherent COTR emitted by entire transverse bunch extent
- Can significantly narrow far-field distribution
- Spatial filter in Fourier plane of imaging system can block COTR entirely
- Applicability limited where only small transverse fractions of beam radiate coherently
- Main application to scintillators

250 MeV, Far field Intensities

10

Spectral COTR Suppression

- COTR more intense at longer wavelengths
- Use narrow blue band-pass filter to block COTR in favor of OTR
- Can work where LCS gain is 1 for blue wavelengths
- No benefit in situations with COTR across entire visible spectrum
- Useful to narrow CCD acceptance to scintillator BW

Wavelength (nm)

Lumpkin et al. PRSTAB 12, 080702 (2009)

SLAC

1.6

EUV OTR Detection

- OTR generation at 20 nm
- Grazing incidence Mo-target for optimum reflectivity
- Spherical Mo/Si multilayer mirror
- Vacuum setup necessary
- EUV beam size somewhat smaller than visible OTR

SLAC

Scintillators

- Based on electron beam bremsstrahlung energy loss
- Intensity proportional to charge density
- (C)OTR generation at crystal surfaces
- OTR x1000 weaker than fluorescence
- Issues
 - Resolution from finite crystal thickness
 - Saturation from high charge density
 - Avoid additional in-path viewing mirror as additional COTR source
- Investigations on optimum crystal tilt
- 15 µm beam size close to OTR measurement demonstrated
- Recently 7 µm shown (Naito IBIC14 TUPD08)

Spatial COTR Separation

- Nearly isotropic fluorescence emission
- Blocking direct path of COTR towards camera leaves plenty of solid angle of scintillator light to reach camera.
- Blocking can be done by either pointing the camera away from the direct COTR path or by masking out the COTR cone
- Demonstrated at SACLA and LCLS

Temporal COTR Separation

- OTR emission instantaneous
- Fluorescence with ~100 ns lifetime
- Uses expensive gated CCD (intensified CCD)
- Delay CCD trigger by some 10 ns < lifetime
- Only detect fluorescence while COTR is blocked

Behrens et al. PRSTAB 15, 062801 (2012)

SwissFEL Profile Monitor

- Combine optimized viewing geometry and spatial COTR suppression
- Optimum viewing angle where scintillating line source appears as point source
 β = arcsin(n sin α)
- COTR emitted at opposing angle 2α
- Off-axis mirror directs light to CCD perpendicular to beam

primary beam observer scintillating column scintillating crystal observe

Courtesy R. Ischebeck

LCLS Installation

- Area upstream of undulators with prior 10⁵
 COTR enhancement
- Camera tilted to account for tilted crystal (Scheimpflug principle)
- Use 30 µm thick crystal to limit beam losses and enable 10 Hz operation

Screen Holder

SLAC

COTR Suppression Results

- Low charge and high charge
- With and without laser heater
- Scan RF phase (chirp in MeV) to change bunch length
- 20 pC
 - Small increase at peak compression w/o LH
 - Disappears completely with LH
- 150 pC
 - Still COTR enhancement of x7 at • full compression, but much reduced with LH on
 - Nearly flat intensity over normal • operating range

FEL 2015, Aug. 24, 2015

Commissioning Results

- YAG saturation test
 - Scan quadrupole to vary beam size
 - No saturation at 20 pC
 - Some indication at 180 pC

- Spurious radiation
 - Coherent ODR from chamfered offaxis mirror
 - Presently replaced with knife-edge version

Beam

1500

SLAC

Profile Monitor YAGS:LTU1:743 12-Mar-2014 02:54:02

0.5

0

-0.5

-1

-1.5

-2

-2.5

CODR

-7

-6

-5

x (mm)

y (mm)

Still COTR?

- LCLS x-ray/electron beam diagnostics for SXRSS
- Electrons pass by 20 µm thick YAG crystal within few mm
- Upstream annular mirror provides beam pass through and blocks specular reflections from crystal within central 50 mrad
- Very strong CODR emission from crystal observed
- Possibly excitation from UV micro-bunching

FEL 2015, Aug. 24, 2015

SL AC

Summary

- Standard OTR screens unusable for high brightness accelerators due to COTR effect from uBI in many locations
- Mitigation schemes for OTR screens
 - not successful in fully suppressing COTR
 - option remains to move to much shorted detection wavelengths
- Scintillator screens
 - Reemerged as viable alternative to OTR
 - Demonstrated sub 10 µm resolution
 - Sufficient COTR suppression demonstrated by temporal and spatial separation
- Scintillator screens using spatial COTR separation schemes are used or planned for several X-ray projects operating or under construction

Thank you for your attention!