Paper | Title | Other Keywords | Page |
---|---|---|---|
WEB02 | Waveguide THz FEL Oscillators | FEL, electron, extraction, undulator | 576 |
|
|||
In today's world there is a significant demand for FEL-based THz radiation sources. They have a wide tuning range, a narrow band of radiation, and comparably high peak and average emission power. There are a significant number of these machines in the world, operating or in the development. The main difference between a long-wave FEL, of THz or a millimeter band, and a conventional one is a too big transverse size of the fundamental mode of an open optical resonator. It claims a large gap in an undulator that dramatically decreases its strength. Both factors sorely decrease the amplification and the efficiency, and often make lasing impossible. The main way to solve this problem is to use a waveguide optical resonator. It decreases and controls the transverse size of the fundamental mode. However, the waveguide causes a number of problems: power absorption in its walls; higher modes generation by inhomogeneities, as it is not ideal; electron beam injection into a FEL is more sophisticated; also outcoupling is more complicated; finally, the resonator detuning control claims some special solutions. The waveguide dispersion relation differs from one in the free space. It shifts up the wavelength of the FEL, changes the optimal detuning, and creates a parasitic mode near the critical wavelength of the waveguide. These problems and possible solutions to them are considered. | |||
![]() |
Slides WEB02 [20.394 MB] | ||
Export • | reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml) | ||
WEP030 | First Lasing of an HGHG Seeded FEL at FLASH | FEL, electron, laser, experiment | 646 |
|
|||
Funding: Supported by Federal Ministry of Education and Research of Germany under contract No. 05K1GU4 and 05K10PE1 and the German Research Foundation program graduate school 1355. The free-electron laser facility FLASH at DESY operates in SASE mode with MHz bunch trains of high-intensity extreme ultraviolet and soft X-ray FEL pulses. A seeded beamline which is designed to be operated parasitically to the main SASE beamline has been used to test different external FEL seeding methods. First lasing at the 7th harmonic of a 266 nm seed laser using high-gain harmonic generation has been demonstrated. Studies of the influence of the microbunching instability are being pursued. |
|||
Export • | reference for this paper to ※ LaTeX, ※ Text, ※ IS/RefMan, ※ EndNote (xml) | ||