

The Microbunching Instability and LCLS-II Lattice Design

M. Venturini

Lawrence Berkeley National Laboratory

FEL 2015 Conference, Daejeon, Aug. 23-28, 2015

The microbunching instability (μ*BI*): pervasive and unwanted

- The µBI signature: micro E/z correlations, energy spread growth
- Consequences: reduced radiation output and/or degradation of radiation spectrum
- First identified by M. Borland, predicted by E. Saldin, *et al.*, early 2000s
- Of concern in all x-ray FELs Laser Heater
- A potential problem for LCLS-II
 - Characterize instability
 - Look for remedies that do not sacrifice beam brightness

Two mechanisms drive the instability

Longitudinal self-fields + longitudinal slippage from R₅₆ (The conventional and prevalent mechanism)

Transverse self-fields + longitudinal slippage from R₅₂ (New !)

Focus on shot-noise seeded instability

Effect of non-uniformities in photo-cathode laser?

Cartoon for the 'conventional' mechanism of μBI

The tools of the trade for μBI analysis

High fidelity macroparticle simulations (code IMPACT, by J. Qiang et al., LBNL)

- Efficient 3D Poisson solver for space-charge fields
- **5**th order single-particle dynamics + **1D CSR**, RF and RW **wakefields**
- Efficient parallelization; access to LBNL NERSC computing resources (1000+ processor runs)
- One electron, One macroparticle
- For this study: track idealized beam distributions to highlight μBI effects through various critical machine sections (excluding the injector).

(Semi-)analytical linear models

Impedance-based or otherwise simplified representation of space-charge fields.

Not a boring machine: the many *μBI* hot-spots along LCLS-II

LCLS-II Layout

Schematic (not to scale) by P. Emma

Not a boring machine: the many *μBI* hot-spots along LCLS-II

LCLS-II Layout

Schematic (not to scale) by P. Emma

Focus on transport to HXR FEL (baseline 100 pC bunches)

Warming up the simulation muscles: track beam from BC2 to exit of DL1

- Flat-top with nominal full compressed current I = 900A
- Track w/ <u>longitudinal</u> space charge only
- Compare with linear theory
 - LSC-Impedance

Warming up the simulation muscles: track beam from BC2 to exit of DL1

Follow the beam to the FEL and find spectacular

Start simulation with smooth beam model at exit of BC2

Strong microbunching on <u>sub-µm scale</u>

* Correlated energy chirp removed

Beam as observed at HXU FEL is strongly microbunched

What to do? Introduce local cancellation of *R*₅₆

What to do? Introduce local cancellation of R₅₆

* Correlated energy chirp removed

The *µBI* strikes back ...

(100 pC) E=100 MeV

The μBI strikes back ...

The *µBI* strikes back ...

Quite a bit of gain is still happening through the bypass line.

What causes this gain?

A close look at the dynamics through dogleg DL1 shows the effect from TSC

DL1 Compensating Chicanes are ON

A close look at the dynamics through dogleg DL1 shows the effect from TSC x/z space exitBC2 Current profile 100 900 850 50 () 800 () 800 () DL1 Compensating Chica 0 750 are ON 1μm -50700 ٥ 5 -100z (µm) -2 $^{-4}$ 0 2 4 $z(\mu m)$ L3-Linac inac DL1 Exit of DL1 Entrance of DL1 Longitudinal phase space 0.03 Current profile 0.02 0.01 850 δ (%) 0.00 I (A) -0.01800 -0.02-0.03 $1\mu m$ 750 2 3 $^{-2}$ 0 2 4 0 4 z (µm) $z(\mu m)$

A close look at the dynamics through dogleg DL1 shows the effect from TSC x/z space exitBC2 Current profile 900 100 850 50 () 800 () 800 () DL1 Compensating Chica 0 750 are ON 1μm -50700 0 5 -100z (µm) -2 $^{-4}$ 0 2 4 $z(\mu m)$ L3-Linac inac DL1 Exit of DL1 Entrance of DL1 Longitudinal phase space 0.03 Current profile 0.02 0.01 850 δ (%) 0.00 $\overline{\mathsf{A}}$ -0.01 $\delta_p \frac{2Ik}{\varepsilon_{xn}\gamma^2 I_A} \int_{s_0}^{s_f} ds \frac{\eta_x^2}{\sqrt{\beta_x \beta_y}} e^{-\frac{\varepsilon_{xn} \eta_x^2 k^2}{\gamma \beta_x}}$ 00 -0.02 b_k -0.03 $1\mu m$ 50 2 3 4 $z(\mu m)$ $z(\mu m)$

M. Venturini, et al., PRST-AB 18, 054401 (2015)

Instructive aside: why is there any bunching at 1 μm @ BC2 exit?

Beam model w/ gauss distribution in slice energy (too crude ...)

More accurate account of Laser Heater effect on energy density

Expected peak gain @ $\lambda_p \simeq 2\pi |R_{56}|\sigma_{\delta}$ LH $\sigma_E = 6 \ keV$ $R_{56}^{BC1} = 55mm; \sigma_{\delta}^{BC1} = 2.4 \times 10^{-5}$ $R_{56}^{BC2} = 38mm; \sigma_{\delta}^{BC2} = 2.2 \times 10^{-5}$

- Gain scales as ~J₁(ak) at large k*
 Shorter wavelength modes pass through
- Machine design strategy aiming at minimizing overlap between gain curves?
 - Freedom to set relevant parameters (R_{56} 's, BC energies, etc.) is limited

²⁸

^{*}Z. Huang, et al., PRST-AB, 2004

It gets better: Optimum tuning of compensating chicanes

- Exact cancellation of R₅₆ by CCs minimizes LSC effects.
- With different CC setting we can get LSC- and TSC-effects to offset each other? Yes

It gets better: Optimum tuning of compensating chicanes

Not the end of the story yet: Bunching from nonlinear momentum compaction *T*₅₆₆

Not the end of the story yet: Bunching from nonlinear momentum compaction T₅₆₆

Away from bunch center effective R^{eff}₅₆ is comparable in magnitude to DL1 R₅₆

- At entrance of DL1 bunch has still a substantial energy chirp left over from compression
 - 'dechirping' will be completed by resistive-wall wake in bypass line

Optimum setting for Laser Heater, minimum energy spread

Energy spread @FEL vs. energy spread @LH

Note: σ_E @FEL is the projected rms spread in the beam core $[-12\mu m, 20\mu m]$ upon removal of the (nonlinear) energy chirp.

Optimum setting for Laser Heater, minimum energy spread

Confirm benefit of R₅₆overcompensation over range of LH setting

LCLS-II as a fertile ground for the μBI

Long transport lines between Linac and FELs have shown potential for large amplification of the instability

New mechanism: microbunching generated by Transverse Space Charge (TSC) in high-brightness beams

Quite significant for LCLS-II

Compensating Chicanes have been found to represent an effective remedy

Properly tuned they can be used to offset LSC and TSC-induced bunching against each other.

Can we trust the predictions from our models?

Benchmarking against LCLS measurements are underway.

Acknowledgements

 J. Qiang, C. Mitchell (LBNL), Y. Ding, P. Emma, Z. Huang, G. Marcus, A. Marinelli, Y. Nosochkov, T. Raubenheimer, L. Wang, and M. Woodley (SLAC)