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Abstract
The injection kicker system MKP of the Super Proton

Synchrotron SPS at CERN is composed of 4 kicker tanks.
The MKP-L tank provides additional kick needed to inject
26 GeV Large Hadron Collider LHC 25 ns type beams. This
device has been a limiting factor for operation with high
intensity, due to the magnet’s broadband beam coupling
impedance and consequent beam induced heating. To op-
timise the usage of the SPS and avoid idle (kicker cooling)
time, studies were conducted to develop a recurrent deep
learning model that could predict the measured temperature
evolution of the MKP-L, using the beam conditions and
temperature history as input. In a second stage, the ferrite
temperature is also estimated putting together the external
temperature predictions from accurate thermo-mechanical
simulations of the kicker magnet. In this paper, the method-
ology is described and details of the neural network archi-
tecture used, together with the implementation of an ad-hoc
loss function, are given. The results applied to the SPS 2021
operational data are presented.

INTRODUCTION
The restart in 2021 after the Long Shutdown (LS) 2 of the

CERN accelerator complex was the first year where all the
upgrades of the LHC Injector Upgrade (LIU) project were
deployed with the goal of achieving the High Luminosity
(HL) LHC brightness requirements [1, 2]. The brightness
increase is achieved by doubling the intensity per bunch of
the beams and reducing the transverse emittances [3].

The SPS injection system comprises a septum system,
MSI, and a kicker system, MKP. The kicker system is com-
posed of four tanks, The first three are used to inject 14 GeV
beams, and the last one, the so-called MKP-L, aids to inject
the 26 GeV beam for LHC physics.

The MKP-L is one of the main limiting systems to the
maximum storable beam intensity in the SPS. Due to beam
induced heating via broadband coupling impedance, the
MKP-L temperature rises at a rate much higher than all other
MKP kickers, risking the ferrite to reach the Curie temper-
ature and inducing significant out-gassing. This translates
in reduced availability of the system, as machine operation
has to stop to restore safe conditions. Such stops are in the
order of many hours due to the large thermal inertia of the
MKP-L kicker modules.

In order to optimise the machine time and to avoid idle
time, we propose a data-driven model to estimate the MKP-
L temperature readings starting from beam parameters and
expected operational scenarios. The limitation of such an
∗ francesco.maria.velotti@cern.ch

approach are the temperature probe locations, as they are
not on the ferrite directly. In this paper we summarise the
purely data-driven model and its application. We present the
thermo-mechanical simulation studies that aim to model the
full heat transfer from the beam induced power deposition
in the ferrite, and finally we give an overview on how to
combine the two approaches using PINN.

Brief Physical Model Description
The MKP-L showed a factor of three to four larger temper-

ature increase with high intensity beam operation than the
other MKP kickers [4]. This is due to the large real longi-
tudinal beam impedance of the MKP-L. The beam induced
power loss can be written as:

Δ𝑊 = (𝑓0𝑒𝐼𝑏𝑁𝑏)2
∞
∑

𝑘=−∞
(|Λ(𝑘𝜔0)|2ℜ [𝑍||(𝑘𝜔0)]) (1)

where 𝑓0 is the revolution frequency, 𝐼𝑏𝑁𝑏 is total number of
particles in the accelerator, Λ(𝑘𝜔0) is the normalised beam
spectrum and ℜ [𝑍||(𝑘𝜔0)] is the real part of the longitudinal
impedance of the kicker. From simple considerations, the
temperature variation due to Δ𝑊 power loss is [5]:

𝑑
𝑑𝑡𝑇 = Δ𝑊

𝐹𝑐𝑜𝑜𝑙𝐶𝑡ℎ
(2)

where 𝐶𝑡ℎ is the thermal capacitance and 𝐹𝑐𝑜𝑜𝑙 is the cooling
factor. In order to extend the calculation to a different loca-
tion in a kicker module, one considers a simplified model of
the heat propagation:

𝜕𝑇
𝜕𝑡 = 𝑘

𝜌𝐶𝑝

𝜕2𝑇
𝜕𝑥2 + Δ𝑊(𝑥, 𝑡)

𝜌𝐶𝑝
(3)

where 𝑘 is the thermal conductivity, 𝜌 is the density of the
material and 𝐶𝑝 is the specific heat capacity. Solving Eq. (1)
and Eq.( 3), one can compare data from the temperature
probe, as measured in the SPS, with expected temperature
of the same location in the MKP-L module.

LONG SHORT TERM MEMORY MODEL
FOR TEMPERATURE PREDICTIONS

Deep neural networks are not designed to deal with time-
series, where causality imposes well determined constraints.
To solve this problem, the proposed architecture was the so-
called recurrent neural network (RNN [6]) which exploits
recursion to deal with sequences with time dependence. Due
to practical issues [7], pure RNN are not very common
anymore and they have been replaced with Long Short Term
Memory (LSTM) networks [8].
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Figure 1: (Top) Temperature measured and reconstructed
at the PT100 sensor using the described LSTM-based NN.
(Bottom) Relative error of the reconstruction when predict-
ing for the whole period length.

Classic time-series forecasting use multi-feature inputs
from the past to forecast the future evolution of those quan-
tities. In our case, and in most of particle accelerators prob-
lems, we are interested in feeding the model with exogenous
inputs of the future time intervals to predict. This can be
seen as the forcing term of our Initial Value Problem (IVP).
Also, we are interested in predicting very far ahead in time
and hence exposing the LSTM layers to their own noise is
fundamental.

Data Structure and Model Architecture
In order to build a complete dataset the following beam

characteristics were selected from the accelerator logging
system: integrated intensity for 25 ns bunch spacing beams,
mean and minimum bunch length and peak bunch intensity,
all averaged along 5 min of machine operation. The quanti-
ties, together with the measured temperature, are arranged
to form input sequences of 40 time steps long. The sequence
to predict is finally 30 time steps long: ̂𝑌 = 𝑁𝑁(𝑋); 𝑋 ∈
𝑡(−40, 0]; ̂𝑌 ∈ 𝑡[1, 30]. The framework used to design and
train the NN is PyTorch [9]. The network architecture that
better suited the problem and the amount of data available
for training is composed by two LSTM layers with 170 units,
every layer is followed by a dropout layer with 50 % proba-
bility and finally a linear layer for the output prediction. The
loss function used for training the NN weights is calculated
comparing the whole output sequence and not just the single
time step prediction.

PREDICTION OF MKP-L MEASURED
TEMPERATURE

The data used for training and validation spans from 2015
to 2018 high intensity runs. All data were aggregated in

periods, which were chosen in case of breaks of operation
longer than 6 h. These periods are then used to test the NN
predictions for sequences which are much longer than those
used at training time.

The full dataset adds up to about 2500 data points which
were split in 90% training and 10% validation. Such a large
imbalance was chosen because the final testing is done on
prediction of sequences longer than NN was trained on, as
just discussed. There is a large difference in amount of
data between heating and cooling due to the way data were
collected - this is one of the main concerns for the result of
the trained model.

The result of the forward pass of the NN on each of the
periods available in the full dataset is shown in Fig. 1. Even
for long periods, which extend more than five times the
sequence length used in training, the NN successfully recon-
structs the measured temperature. The error is less than 4 °C
also for completely unseen data during training.

TOWARDS FERRITE TEMPERATURE
ESTIMATION

The MKP-L injection kickers are of transmission line
type, consisting of 22 cells per module [4]. A cell is con-
structed from a C-core ferrite sandwiched between HV plates.
Ground plates interleave with the HV plates to form parallel
plate capacitors. The thermal contact conductance (TCC) be-
tween ferrite and HV plates is an important parameter for the
extraction of heat energy from the ferrite. As mentioned in
the introduction, there is strong interest to predict the temper-
ature of the ferrite so that SPS operation can be fine-tuned to
avoid the ferrite reaching its Curie temperature, as there is a
relatively long thermal time-constant for cool-down. Several
MKP modules have PT100 temperature sensors mounted on
a side-plate, which is at ground potential. The approach was,
for a given beam and thus predicted power deposition in the
ferrite yoke, model the non-linear beam induced power de-
position [10] using ANSYS and compare the measured and
predicted temperatures in the location of the PT100. A bal-
ance between precision and computational resources must
be reached, as a large number of simulations are carried out
to tune the parameters of the model. Thus, the model was
kept as simple as feasible, neglecting all non-critical parts
for thermal analysis. The non-linear beam induced power
deposition, in the ferrite yokes, results in the first yokes to
see beam being heated the most [10]: hence, the first three
cells are modelled in ANSYS.

Building the Model: Tuning the Parameters and
Difficulties

The mesh, especially at thermal contacts between surfaces
of material (e.g. ferrite and HV plate), must be carefully
defined, as the programme does not always define it correctly
by default. Measurements to determine the emissivity of
various surfaces and the TCC were carried out. For the
TCC, the value was measured in air. However, in reality the
TCC in vacuum is likely lower – but the measurement serves
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as reference for an initial value in the ANSYS simulations,
to be subsequently tuned by iterating simulations. Before
iterating the model, the influence of the TCC upon the rate
of cooling of the ferrite, in a simplified model, was verified
analytically.

During the iteration process, the relative influence of pa-
rameters was determined. In terms of heat radiation, small
changes to the emissivity of the plates (HV and GND) re-
sulted in the predicted temperature, at the position of the
PT100, changing significantly. Deriving an accurate value
of TCC between the HV plates and the ferrite yokes is a
challenge: the temperature of the PT100 location is not sen-
sitive to this TCC, whereas the temperature of the ferrite is
sensitive (Fig. 2).
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Figure 2: Influence of TCC between HV plate and ferrite.
Top: temperature simulated by ANSYS at PT100 location.
Bottom: temperature predicted for first two ferrite yokes.

Capacitive pickups (CPUs) are installed at the input and
output of the kicker magnet: a CPU faces the HV input and
output busbars, respectively. The electrical delay time of
the module is determined from the measured CPU signals:
the delay of each cell is proportional to the square root of
the cell’s inductance. If the ferrite is at the Curie tempera-
ture its relative permeability reduces to one [11]. Thus, the
delay from the CPUs can be used as a diagnostic [12, 13]
and provides input to the ANSYS simulations as it helps
to set a minimum value for TCC between a ferrite and HV
plates. Figure 3 shows a plot of the delay of a central cell (i.e.
neglecting end effects) versus the real relative permeability
of the ferrite of the cell. The delay depends upon this per-
meability and thus how close the ferrite temperature is to its
Curie point: the imaginary relative permeability is also tem-
perature dependent [11] and, thus, the beam induced losses
will also decrease as the Curie temperature is approached.
Hence, during SPS operation, the ferrite permeability may
not reduce to one, but instead reach a state where the beam
induced losses balance the radiated and conducted thermal
energy.
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Figure 3: Cell delay versus relative permeability of ferrite.

PHYSICS INFORMED NEURAL
NETWORK EXTENSION

The time-consuming ANSYS simulations could be re-
placed with a Physics Informed Neural Network (PINN),
following the very promising results shown for both the NN
and the pure ANSYS simulations. The idea is to use a very
similar NN architecture to model the temperature prediction
and then regularise the training using a physics-informed loss
function. It will be composed by different terms: reconstruc-
tion loss of temperature, initial and boundary conditions (as
simulated in a specific case with ANSYS) and the PDE loss.
The specific heat capacity, the TCC and the other system-
dependent terms will be either input from measurements
or represented with dedicated NN. In this way, a complete
surrogate model will be available to assess the ferrite and the
PT100 temperature for well defined beam conditions. Also,
once the model will be fully verified, an interlock directly
on the predicted ferrite temperature could be envisaged.

CONCLUSION AND OUTLOOK
The MKP-L is one of the main limiting elements to store

high intensity per bunch in the SPS due to its beam coupling
impedance. To predict the temperature evolution of this
system, an LSTM-based NN was trained using available
data of high intensity SPS operation. Such a model was then
used in operation to calculate the time needed for cool-down.

To estimate the actual ferrite temperature from the avail-
able measurements, a full ANSYS model of the MKP-L was
developed and initial results were presented. The model is
capable to precisely reproduce the measured temperature,
but the uncertainty on the TCC translates in too many so-
lutions available for the ferrite temperature evolution. To
bridge between ANSYS simulations and the empirical NN,
PINN is proposed. Work is still ongoing to finalise such a
model. Dedicated measurements to help the estimation of
TCC and other system parameters are foreseen, which will
also be used to constraint and validate the PINN predictions.

The approach presented is very general and hence appli-
cations to other systems, such as LHC injection kicker MKI
and SPS extraction septum ZS are being evaluated.
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