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Abstract
Reinforcement Learning (RL) is one of the most promis-

ing techniques in Machine Learning because of its modest
computational requirements with respect to other algorithms.
RL uses an agent that takes actions within its environment
to maximize a reward related to the goal it is designed to
achieve. We have recently used RL as a model-free approach
to improve the performance of the FERMI Free Electron
Laser. A number of machine parameters are adjusted to
find the optimum FEL output in terms of intensity and spec-
tral quality. In particular we focus on the problem of the
alignment of the seed laser with the electron beam, initially
using a simplified model and then applying the developed
algorithm on the real machine. This paper reports the results
obtained and discusses pros and cons of this approach with
plans for future applications.

INTRODUCTION
Free-Electron Lasers (FELs) are complex systems that

require continuous effort by experts in order to maintain the
high performance that users demand. For seeded FELs, such
as FERMI, there are parameters related to the alignment
of the seed laser with the electron beam in addition to the
large number of electron beam parameters (many dozens
at FERMI) [1–4]. Perhaps the most critical parameter is
the spatial-temporal overlap between the electron and laser
beams in the modulator undulator, the main source of the
FEL instability.

The existing feedback systems [5] are able to maintain a
steady FEL intensity by controlling the trajectories of the
two beams on a shot-to-shot basis. To ease the procedure the
electron beam trajectory is kept steady while the position of
the seed laser is varied.

Currently, the maintenance of the optimal superimposition
of the two beams is carried out by an automatic procedure
that is based on the correlation between FEL intensity and
the natural jitter in the seed laser parameters [6]. However,
this approach cannot be successful if there is insufficient
natural jitter: in this case the introduction of artificial noise
can help to find the optimal overlap, but FEL performance
is affected by the injected noise.

Typical model-free approaches [7] applied in FEL opti-
mization have some intrinsic limitations: they require the
availability of the objective function gradient, they are very
sensitive to hyper-parameters, and they do not learn from
previous experiences. An interesting option to overcome
these limitations is given by Machine Learning algorithms,
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although these approaches can be extremely time consum-
ing.

Nowadays, different optimization techniques are adopted
in various FEL facilities [8]. OCELOT [9] has been devel-
oped since 2011 at European XFEL and is currently used at
the Stanford Linear Accelerator Center (SLAC) [10, 11] and
at Deutsches Elektronen-SYnchrotron (DESY) [12]. [13–
15] adopt neural networks to model and control particle ac-
celerators. In addition, [16] presents a proof-of-principle
of a model-free approach applied at CERN using Deep Q-
Learning.

In this paper we present preliminary results obtained using
a simple RL algorithm, Q-Learning with Linear Function
Approximation, on FERMI. The experiments have been car-
ried out on two different systems.

ENVIRONMENTS
In this work, two different tasks have been considered.

Both of them concern the trajectory control of a laser. The
first task uses the service laser in the Electro-Optical Sam-
pling station [17–19], while in the second task the seed laser
of the undulator modulator of FERMI Free-Electron Laser
is used.

In the EOS station the laser movement system is a standard
optical alignment scheme, as shown in Fig. 1. It is composed
of two planar tip-tilt mirrors [20], each axis of which is
driven by a piezo-motor (horizontal and vertical motors),
and two virtual screens based on Charged-Coupled Devices
(CCDs) [21]. The position of the laser on the two screens is
adjusted by moving the tip-tilts. The goal of the task is to
align the laser such that it passes through a pair of predefined
Regions of Interest (ROI), that must contain a certain fraction
of the laser spot to successfully end an episode of the task.
The performance of the agent on the task is measured online
by the computing the product of the intensity measured in
each of the the ROIs.

laser source TT1

TT2

CCD1
CCD2

Figure 1: Experimental setup of the EOS laser alignment
task. TT1 and TT2 are the tip-tilt mirrors while CCD1 and
CCD2 are the virtual screen CCDs.

A simplified representation of the second task, alignment
between the seed laser and electron beam at FERMI is shown
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in Fig. 2. As in the EOS task the laser trajectory can be
moved by the motorized mirrors. Unlike the EOS system
the goal is to maximize the value acquired by the intensity
monitor (I0) that measures the energy output of the FEL
process.

laser source TT1

TT2

Screen/CCD1

e− beam

modulator
Screen/CCD2

light
generation

I0 monitor

Figure 2: Scheme of the FERMI FEL seed laser alignment
set up. TT1 and TT2 are the tip-tilt mirrors, Screen/CCD1
and Screen/CCD2 are the two removable screens with CCDs
and I0 monitor is the employed intensity sensor.

The state x(t), in both systems, is given by sampling at
each instant t the voltage applied to the tip-tilts. Since one
tip-tilt can be controlled by two voltages (one to move it
horizontally and the other to move it vertically) the resulting
state, considering both tip-tilts, is a four dimension vector.

REINFORCEMENT LEARNING
Reinforcement Learning (RL) [22, 23] is a sub-field of

Machine Learning in which an agent learns a policy π(u|x)
by interacting with an environment and maximizing the
rewards it receives for desired behavior. The basic elements
of RL are states x ∈ X (a measure of the environment),
actions u ∈ U (things the agent does in the environment)
and rewards r(x,u) (a scalar function that the agent attempts
to maximize). We define u j as the j-th action. The task is to
find the optimal policy π∗ with respect to the maximization
of the discounted reward:

∞∑
t=0
γtr(x,u)

where γ ∈ [0,1] is the discount factor.
Q-learning [24] is an algorithm that follows the dynamic

programming approach where the action-value function
Q(x,u) is estimated iteratively. The optimal policy is:

π∗(u|x) = arg max
u

Q(x,u)

The choice of Q-learning is due to its simplicity and that, in
combination with reward shaping [25], it learns efficiently
despite sparse rewards.

During learning the exploration is driven by an ϵ-greedy
policy, where ϵ is the parameter that defines the probability
of a random action (exploration) instead of the best action
(exploitation). Furthermore, the update rule is:

Q(u, x) ← Q(u, x) + αδ

where α is the learning rate [26] and δ is the temporal dif-
ference error (see Algorithm 1 for more details).

The version of Q-learning we adopted works with a con-
tinuous state space. This is due to the linear function approx-
imation of the action-value function:

Q(x,u j) = θ
T
j ϕ(x)

where ϕ(x) is a vector of features and θ j a vector of weights
associated with the action u j . Hereafter, the corresponding
policy will be identified by πθ .

Many possible choices of linear function approximation
are available, we chose Gaussian Radial Basis Functions
(RBFs):

ϕi(x) = exp

(
−
∥ x − ci ∥2

2σ2
i

)
where ci is a set of centers and σi determines the decay rate
of the RBF.

The pseudo code of the algorithm used is reported in
Algorithm 1.

Algorithm 1 Q-learning algorithm with linear function ap-
proximation [27]
Initialize θ and set α, γ
For each episode:

Initialize x
Until x ′ is terminal:

Choose and perform u j ∈ U using πθ
Evaluate x ′ and r(x,u j)

δ← r(x,u j) + γ max
u j′ ∈ U

θTj′φ(x
′,u j′) − θ

T
j φ(x,u j)

θ ← θ + αδφ(x,u j)

x ← x ′

IMPLEMENTATION AND RESULTS
The tasks are divided into two parts, an initial training

phase followed by a test phase.
As previously described, the state is a four dimensional

vector containing the voltages applied to the tip-tilts. Sim-
ilarly, the input u is a four-element vector indicating the
displacement that leads to the next state x ′. We worked with
a discrete action space and, for this reason, the allowed val-
ues of u are fixed to change the voltage applied to the each
motor by a given magnitude either positive or negative.

The target value is defined as IT and it depends on the
system: in the EOS one it is given by the product of the in-
tensities detected by the ROIs when the laser spot is centered
in each ROI, while in the FEL it is the value detected by the
I0 monitor. At each time step, the input selected by the con-
troller is applied and the new intensity ID(x ′) is compared
with the IT . The episode ends in two cases:

• In the new state a certain percentage of the target inten-
sity is reached, i.e. ID(x ′) ≥ % × IT , i.e. the goal is
achieved.

• The number of steps reaches an upper limit without
reaching the goal.
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During training the ϵ and α values decay following the
rules derived from [28, 29]:

α← α ·
N0 + 1

N0 + #episode
, ϵ ←

1
#episode

; (1)

where the N0 value is set empirically. Furthermore, the
reward is shaped according to [25]:

r(x,u) = R + k ·
γrs ID(x ′) − ID(x)

IT
, (2)

where R is taken equal to 1 if the target is reached, 0 other-
wise; while the γrs and k values are set empirically. During
the test phase ϵ and α are kept fixed, following [30]. The
values of these parameters are presented in Table 1 for both
tasks.

At the end of each episode a new episode starts from a
randomly selected initial state until the maximum number
of episodes is reached. When all the training episodes are
completed, the test phase begins while maintaining the target
conditions previously defined. Once again, each episode
begins with the a randomly selected initial state. The values
of the hyper-parameters used for both systems are listed in
Table 1.

Table 1: RL General Hyper-parameters

Parameters Treaining Test
max num. of steps 10000 10000
σ2
RBF 0.0075 0.0075

initial ϵ 1 0.05
initial α 0.1 -
N0 in α decay 20 -
γ 0.99 -
γrs 0.99 -
k 1 -
training episodes 300 300
test episodes 100 50
motor step size (a.u.) 3000 1000

The remaining task parameters are the following:
• % of IT : this percentage on EOS goes from 95% in

training to 90% in test, while on FEL it is set to 92.5%
in training and 90% in test. If the agent reaches these
values in the respective tasks, the episode is considered
successfully completed.

• The full scale range for the voltage applied to the motors
spans from 0 to 262144 arbitrary units.

The averaged results obtained during experiments on EOS
are presented in Fig. 3.

The implementation of the algorithm on FERMI FEL has
been done only once due to the high request of the light
source. However, the results obtained during this single run
are shown in Fig. 4 and seem to be promising.

The training plots of both systems show the effectiveness
of reward shaping [25]. In both cases the exploration that
occurs in the first episode is sufficient for the next episodes
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(a) average number of time-steps for each episode during the 10
runs in training performed on the EOS system
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(b) average number of time-steps for each episode during the 10
runs in test performed on the EOS system

Figure 3: EOS system results.
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(a) Number of time-steps for each episode during a single run of
training performed on the FERMI FEL system
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(b) number of time-steps for each episode during a single run of test
performed on the FERMI FEL system

Figure 4: FEL system results.

to solve the problem in a considerably smaller number of
time-steps. However, a new hyper-parameter, k has been
introduced by the reward shaping[31]. This value must be
empirically tuned to ensure a good balance between the re-
ward R at the end of the successful episodes and the shaping
contribution. Furthermore, in the episodes in the test phase
that show a peak in the number of steps, the agent placed
the beam very close to the target without reaching it. Our
conjecture is that this is a consequence of an improper set-
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ting of the pair k, R during training. Further analysis will
be carried out in future works.

CONCLUSIONS
A model free-approach Reinforcement Learning has been

implemented on two different systems at Elettra Sincrotrone
Trieste. The Q-learning algorithm was able to control the
laser alignment process by learning the correct state-action
association with only knowledge of the laser beam inten-
sity detected. The positive results obtained from both tasks
with this preliminary work has motivated further work on
Reinforcement Learning control at the FERMI FEL facility.

Future work will regard the evaluation of a deep Q-
learning algorithm [30] first and than the introduction of
other RL methods and techniques (e.g. the actor-critic algo-
rithm [32]), to move towards automatic optimization of the
FEL facility.
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