Keyword: feedback
Paper Title Other Keywords Page
MOCPL06 2D-Nano-Ptychography Imaging Results on the SWING Beamline at Synchrotron SOLEIL controls, synchrotron, experiment, electron 91
 
  • C. Engblom, Y.-M. Abiven, F. Alves, F. Berenguer, T. Bizien, A. Gibert, F. Langlois, A. Lestrade, P. Montaville, J. Pérez
    SOLEIL, Gif-sur-Yvette, France
 
  A new Nanoprobe system, which was originally developed in the scope of a collaboration with MAXIV (Sweden), has recently been tested and validated on the SWING beamline in Synchrotron SOLEIL. The aim of the project was to construct a Ptychography nano-imaging station. Initial steps were taken to provide a portable system capable of nanometric scans of samples with sizes ranging from the micrometer to fractions of a millimeter. Imaging was made possible by actuating a total of 16 Degrees Of Freedom (DOF) composed of a sample stage (3 DOF), a central stop stage (5 DOF), a Fresnel zone plate stage (5 DOF), as well as an order sorting aperture stage (3 DOF). These stages were actuated by an ensemble of piezo-driven and high-quality brushless motors, of which synchronized control (with kinematic modelling) was done using the Delta Tau platform. In addition, interferometry feedback was used for reconstruction purposes. Imaging results are promising: the system was able to resolve 40 nm measured with a Siemens star, the paper will describe the system and the achieved results.  
slides icon Slides MOCPL06 [19.056 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOCPL06  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA017 pyAT, Pytac and pythonSoftIoc: a Pure Python Virtual Accelerator controls, simulation, lattice, emittance 232
 
  • W.A.H. Rogers, T.J.R. Nicholls, A.A. Wilson
    DLS, Oxfordshire, United Kingdom
 
  Virtual accelerators are used for testing control system software against realistic accelerator simulations. Previous virtual accelerators for synchrotron light sources have used Tracy* ** and Elegant*** **** as the simulator, but without Python bindings for accelerator simulations it has been difficult to create a virtual accelerator using Python. With the development of Python Accelerator Toolbox (pyAT)*****, that is now possible. This paper describes the combination of pyAT, Python Toolkit for Accelerator Controls (Pytac) and pythonSoftIoc to create an EPICS-based virtual accelerator for Diamond Light Source.
*TRACY-2 Documentation
**The DLS Control System
***elegant: A Code for Accelerator Simulation
****A Virtual Accelerator in the Tango Control System
*****pyAT: Python Accelerator Toolbox
 
poster icon Poster MOPHA017 [1.006 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA017  
About • paper received ※ 30 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA040 Beam Position Feedback System Supported by Karabo at European XFEL controls, diagnostics, FEL, photon 281
 
  • V. Bondar, M. Beg, M. Bergemann, S. Brockhauser, C. Carinan, R. Costa, F. Dall’Antonia, C. Danilevski, W. Ehsan, S.G. Esenov, R. Fabbri, H. Fangohr, G. Flucke, D. Fulla Marsa, A. Galler, G. Giovanetti, D. Goeries, J. Grünert, S. Hauf, D.G. Hickin, T. Jarosiewicz, E. Kamil, Y. Kirienko, A. Klimovskaia, T.A. Kluyver, D. Mamchyk, T. Michelat, I. Mohacsi, A. Parenti, D.B. Rück, H. Santos, R. Schaffer, A. Silenzi, C. Youngman, P. Zalden, J. Zhu
    EuXFEL, Schenefeld, Germany
  • S. Brockhauser
    BRC, Szeged, Hungary
  • H. Fangohr
    University of Southampton, Southampton, United Kingdom
 
  The XrayFeed device of Karabo [1, 2] is designed to provide spatial X-ray beam stability in terms of drift compensation utilizing different diagnostic components at the European XFEL (EuXFEL). Our feedback systems proved to be indispensable in cutting-edge pump-probe experiments at EuXFEL. The feedback mechanism is based on a closed loop PID control algorithm [3] to steer the beam position measured by a so-called diagnostic devices to the desired centered position via defined actuator adjusting the alignment of X-ray optical elements, in our case a flat X-ray mirror system. Several diagnostic devices and actuators can be selected according to the specific experimental area where a beam position feedback is needed. In this contribution, we analyze the improvement of pointing stability of X-rays using different diagnostic devices as an input source for our feedback system. Different types of photon diagnostic devices such as gas-based X-ray monitors [4], quadrant detectors based on avalanche photo diodes [5] and optical cameras imaging the X-ray footprint on scintillator screens have been evaluated in our pointing stability studies.  
poster icon Poster MOPHA040 [0.963 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA040  
About • paper received ※ 30 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA044 Development of Ethernet Based Real-Time Applications in Linux Using DPDK Linux, network, Ethernet, real-time 297
 
  • G. Gaio, G. Scalamera
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  In the last decade Ethernet has become the most popular way to interface hardware devices and instruments to the control system. Lower cost per connection, reuse of existing network infrastructures, very high data rates, good noise rejection over long cables and finally an easier maintainability of the software in the long term are the main reasons of its success. In addition, the need of low latency systems of the High Frequency Trading community has boosted the development of new strategies, such as CPU isolation, to run real-time applications in plain Linux with a determinism of the order of microseconds. DPDK (Data Plane Development Kit), an open source software solution mainly sponsored by Intel, addresses the request of high determinism over Ethernet by bypassing the network stack of Linux and providing a more friendly framework to develop tasks which are even able to saturate a 100 Gbit connection. Benchmarks regarding the real-time performance and preliminary results of employing DPDK in the acquisition of beam position monitors for the fast orbit feedback of the Elettra storage ring will be presented.  
poster icon Poster MOPHA044 [2.626 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA044  
About • paper received ※ 29 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA064 An Off-Momentum Beam Loss Feedback Controller and Graphical User Interface for the LHC controls, monitoring, GUI, collimation 360
 
  • B. Salvachua, D. Alves, G. Azzopardi, S. Jackson, D. Mirarchi, M. Pojer
    CERN, Meyrin, Switzerland
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  During LHC operation, a campaign to validate the configuration of the LHC collimation system is conducted every few months. This is performed by means of loss maps, where specific beam losses are deliberately generated with the resulting loss patterns compared to expectations. The LHC collimators have to protect the machine from both betatron and off-momentum losses. In order to validate the off-momentum protection, beam losses are generated by shifting the RF frequency using a low intensity beam. This is a delicate process that, in the past, often led to the beam being dumped due to excessive losses. To avoid this, a feedback system based on the 100 Hz data stream from the LHC Beam Loss system has been implemented. When given a target RF frequency, the feedback system approaches this frequency in steps while monitoring the losses until the selected loss pattern conditions are reached, so avoiding the excessive losses that lead to a beam dump. This paper will describe the LHC off-momentum beam loss feedback system and the results achieved.  
poster icon Poster MOPHA064 [5.005 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA064  
About • paper received ※ 27 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA151 Feasibility of Hardware Acceleration in the LHC Orbit Feedback Controller GPU, hardware, controls, acceleration 584
 
  • L. Grech, D. Alves, S. Jackson, J. Wenninger
    CERN, Meyrin, Switzerland
  • G. Valentino
    University of Malta, Information and Communication Technology, Msida, Malta
 
  Orbit correction in accelerators typically make use of a linear model of the machine, called the Response Matrix (RM), that relates local beam deflections to position changes. The RM is used to obtain a Pseudo-Inverse (PI), which is used in a feedback configuration, where positional errors from the reference orbit as measured by Beam Position Monitors (BPMs) are used to calculate the required change in the current flowing through the Closed Orbit Dipoles (CODs). The calculation of the PIs from the RMs is a crucial part in the LHC’s Orbit Feedback Controller (OFC), however in the present implementation of the OFC this calculation is omitted as it takes too much time to calculate and thus is unsuitable in a real-time system. As a temporary solution the LHC operators pre-calculate the new PIs outside the OFC, and then manually upload them to the OFC in advance. In this paper we aim to find a solution to this computational bottleneck through hardware acceleration in order to act automatically and as quickly as possible to COD and/or BPM failures by re-calculating the PIs within the OFC. These results will eventually be used in the renovation of the OFC for the LHC’s Run 3.  
poster icon Poster MOPHA151 [0.844 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-MOPHA151  
About • paper received ※ 30 September 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCPL05 ESRF-Double Crystal Monochromator Prototype - Control Concept controls, SRF, real-time, laser 776
 
  • M. Brendike, R. Baker, G. Berruyer, L. Ducotté, H. Gonzalez, C. Guilloud, M. Perez
    ESRF, Grenoble, France
 
  The ESRF-Double Crystal Monochromator (ESRF-DCM) has been designed and developed in-house to enable spectroscopy beamlines to exploit the full potential of the ESRF-EBS upgrade. To reach concomitant beam positioning accuracy and beam stability at nanometer scale with a reliable, robust and simple control system, a double cascaded control architecture is implemented. The cascade is comprised of three modes: classic open loop actuation, an optimized open loop mode with error mapping, and closed loop real-time actuation. Speedgoat hardware, programmable from MATLAB/SIMULINK and running at 10 kHz loop frequency is used for the real-time mode. From the EBS startup 2020, the ESRF plans to deploy BLISS – the new BeamLine Instrumentation Support Software control system – for running experiments. An interface between Speedgoat hardware and BLISS has therefore been developed. The DCM and its control architecture have been tested in laboratory conditions. An overview of the concept, implementation and results of the cascaded control architecture and its three modes will be presented  
slides icon Slides TUCPL05 [5.113 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-TUCPL05  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEMPL008 The MAX IV Way of Agile Project Management for the Control System controls, software, project-management, synchrotron 1020
 
  • V.H. Hardion, M. Lindberg, D.P. Spruce
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Projects management of synchrotron is both complicated and complex. Building scientific facilities are resource consuming although largely made out of standard and well known components. The industrial approach of project management resolves this complication by requiring analysis and planning to facilitate the execution of tasks. The complexity comes by all the research making unique the accelerators, the beamlines and its usage. Known unknown requires experiments which evolve continuously causing the development path to be naturally iterative. Agile project management has come a long way since its definition in 2001. Nowadays this method is ubiquitous in the software development industry following different implementation like Scrum or XP and started to evolve at a bigger scale (i.e Scaled Agile) applied within an entire organization. The versatility of the Agile method has been applied to a Scientific technical development program such as the MAX IV Laboratory control system. This article describes the experience of 7 years of Agile project management and the use of Lean Management principles to develop and maintain the control system.  
slides icon Slides WEMPL008 [1.834 MB]  
poster icon Poster WEMPL008 [0.959 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPL008  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEMPR010 Anomaly Detection for CERN Beam Transfer Installations Using Machine Learning detector, experiment, controls, kicker 1066
 
  • T. Dewitte, W. Meert, E. Van Wolputte
    Katholieke Universiteit Leuven, Leuven, Belgium
  • P. Van Trappen
    CERN, Geneva, Switzerland
 
  Reliability, availability and maintainability determine whether or not a large-scale accelerator system can be operated in a sustainable, cost-effective manner. Beam transfer equipment (e.g. kicker magnets) has potentially significant impact on the global performance of a machine complex. Identifying root causes of malfunctions is currently tedious, and will become infeasible in future systems due to increasing complexity. Machine Learning could automate this process. For this purpose a collaboration between CERN and KU Leuven was established. We present an anomaly detection pipeline which includes preprocessing, detection, postprocessing and evaluation. Merging data of different, asynchronous sources is one of the main challenges. Currently, Gaussian Mixture Models and Isolation Forests are used as unsupervised detectors. To validate, we compare to manual e-logbook entries, which constitute a noisy ground truth. A grid search allows for hyper-parameter optimization across the entire pipeline. Lastly, we incorporate expert knowledge by means of semi-supervised clustering with COBRAS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEMPR010  
About • paper received ※ 30 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA010 Control Systems Design for LCLS-II Fast Wire Scanners at SLAC National Accelerator Laboratory controls, EPICS, FPGA, software 1075
 
  • N. Balakrishnan, H. Bassan, J.D. Bong, M.L. Campell, P. Krejcik, K.R. Lauer, J.J. Olsen, L. Sapozhnikov
    SLAC, Menlo Park, California, USA
 
  One of the primary diagnostic tools for beam emittance measurement at the Linac Coherent Light Source II (LCLS-II), an upgrade of the SLAC National Accelerator Laboratory’s Linac Coherent Light Source (LCLS) facility, is the wire scanners. LCLS-II’s new Fast Wire Scanner (FWS) is based on a similar mechanical design of linear servo motor with position feedback from an incremental encoder as that for LCLS. With a high repetition rate of up to 1 MHz from the superconducting accelerator of LCLS-II, it is no longer sufficient to use point-to-point EPICS-controlled moves from wire to wire, as continued exposure will damage the wires. The system needs to perform on-the-fly scans, with a single position versus time profile calculated in advance and executed in a single coordinated motion by Aerotech Ensemble motion controller. The new fast wire scanner control system has several advantages over LCLS fast wire scanner controls with the capability to program safety features directly on the drive and integrate machine protection checks on an FPGA. This paper will focus on the software architecture and implementation for LCLS-II Fast Wire Scanners.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA010  
About • paper received ※ 30 September 2019       paper accepted ※ 11 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA012 A General Multiple-Input Multiple-Output Feedback Device in Tango for the MAX IV Accelerators TANGO, controls, storage-ring, linac 1084
 
  • P.J. Bell, V.H. Hardion, M. Lindberg, V. Martos, M. Sjöström
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  A general multiple-input multiple-output feedback device has been implemented in Tango for various applications in the MAX IV accelerators. The device has a configurable list of sensors and actuators, response matrix inversion, gain and frequency regulation, takes account of the validity of the sensor inputs and may respond to external interlocks. In the storage rings, it performs the slow orbit feedback (SOFB) using the 10 Hz data stream from the Libera Brilliance Plus Beam Position Measurement (BPM) electronics, reading 194 (34) BPMs in the large (small) ring as sensor inputs. The BPM readings are received as Tango events and a corrector-to-BPM response matrix calculation outputs the corrector magnet settings. In the linac, the device is used for the trajectory correction, again with sensor input data sent as Tango events, in this case from the Single Pass BPM electronics. The device is also used for tune feedback in the storage rings, making use of its own polling thread to read the sensors. In the future, a custom SOFB device may be spun off in order to integrate the hardware-based fast orbit feedback, though the general device is also seeing new applications at the beamlines.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA012  
About • paper received ※ 20 September 2019       paper accepted ※ 08 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA042 Commissioning of the 352 MHz Transverse Feedback System at the Advance Photon Source controls, FPGA, operation, storage-ring 1180
 
  • N.P. DiMonte, C. Yao
    ANL, Lemont, Illinois, USA
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
With the success and reliability of the transverse feedback system installed at the Advance Photon Source (APS), an upgraded version to this system was commissioned in 2019. The previous system operated at a third of the storage-ring bunch capacity, or 432 of the available 1296 bunches. This upgrade samples all 1296 bunches which allowed corrections to be made on any selected bunch in a single storage-ring turn. To facilitate this upgrade the development of a new analog I/O board capable of 352 MHz operation was necessary. This paper discusses some of the challenges associated in processing one bunch out of 1296 bunches and how flexible the system can be in processing all 1296 bunches. We will also report on the performance of this system.
 
poster icon Poster WEPHA042 [10.931 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA042  
About • paper received ※ 24 September 2019       paper accepted ※ 19 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA057 Building a Data Analysis as a Service Portal software, data-analysis, site, photon 1228
 
  • A. Götz, A. Campbell
    ESRF, Grenoble, France
  • I. Andrian, G. Kourousias
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
  • A. Camps, D. Salvat, D. Sanchez
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
  • M. van Daalen
    PSI, Villigen PSI, Switzerland
 
  Funding: This project has received funding from the European Union’s Horizon 2020 research and innovation program under grant agreement No 730872
As more and more scientific data are stored at photon sources there is a growing need to provide services to access to view, reduce and analyze the data remotely. The Calipsoplus* project, in which all photon sources in Europe are involved in, has recognized this need and created a prototype portal for Data Analysis as a Service. This paper will present the technology choices, the architecture of the blueprint, the prototype services and the objectives of the production version planned in the medium term. The paper will cover the challenges of building a portal from scratch which covers the needs of multiple sites, each with their own data catalogue, local computing infrastructure and different workflows. User authentication and management are essential to creating a useful but sustainable service.
*http://www.calipsoplus.eu/
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA057  
About • paper received ※ 01 October 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA099 XLEAP-II Motion Control controls, undulator, wiggler, electron 1325
 
  • M.A. Montironi, H. Bassan, M.A. Carrasco, E.M. Kraft, A. Marinelli
    SLAC, Menlo Park, California, USA
 
  The XLEAP project was conceived with the main scope of extending the generation of ultrashort pulses at LCLS to the sub-femtosecond (sub-fs) regime. As the project produced the expected results, an upgrade called XLEAP-II is being designed to provide the same functionality to LCLS-II. The XLEAP project utilized one variable gap wiggler to produce sub-fs X-ray pulses. The upgrade will involve four additional wigglers in the form of repurposed LCLS fixed gap undulators mounted on translation stages. This paper describes the design of the hardware and software architecture utilized in the motion control system of the wigglers. First it discusses how the variable gap wiggler was upgraded to be controlled by an Aerotech Ensemble motion controller through an EPICS Soft IOC (input-output controller). Then the motion control strategy for the additional four wigglers, also based around Aerotech controllers driving servomotors, is presented. Lessons learned from operating the wiggler and undulators during LCLS operation are discussed and utilized as a base upon which the upgraded motion control system is designed and built. Novel challenges are also identified and mitigations are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA099  
About • paper received ※ 01 October 2019       paper accepted ※ 10 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA101 VR as a Service: Use of Virtual Reality in a Nuclear Accelerator Facility software, hardware, operation, controls 1329
 
  • L. Pranovi, M. Montis
    INFN/LNL, Legnaro (PD), Italy
 
  A nuclear plant, for energy or for nuclear physics, is a complex facility where high level security is mandatory, both for machines and people. But sometimes the status of danger is not correctly felt, inducing workers to misinterpret situations and, as consequence, not act in the best way. At the same time problems related to area accessibility can occur during normal machine operations, limiting actions related to local maintenance and environment supervision. It would be suitable to have the opportunity to perform these tasks in an independently from environment limitations and machine operations. In order to overcome these limits, we applied Virtual Technology to the nuclear physics context. As consequence, this new tool has given us the chance to reinterpret concepts like training or maintenance planning. In this paper the main proof of concept implemented are described and additional information related to different VR technology usages are exposed.  
poster icon Poster WEPHA101 [2.874 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-ICALEPCS2019-WEPHA101  
About • paper received ※ 21 September 2019       paper accepted ※ 09 October 2019       issue date ※ 30 August 2020  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)