
REVISITING THE BUNCH-SYNCHRONIZED DATA ACQUISITION
SYSTEM FOR THE EUROPEAN XFEL ACCELERATOR

T. Wilksen†, A. Aghababyan, L. Froehlich, O. Hensler, R. Kammering, K. Rehlich, V. Rybnikov
Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany

Abstract
After about two years in operation the bunch-synchro-

nized data acquisition as used with the accelerator control
system at the European XFEL is being revisited. As we
have now gained quite some experience with the current
system design it was found to have some shortfalls specif-
ically the offered methods and tools for data retrieval and
management. In this paper issues of the current implemen-
tation are being discussed and taken as an input for an eval-
uation of new frameworks readily used by many internet
and business companies in the context of modern data col-
lection and management technologies. The main focus is
currently put on streaming technologies which are being
reviewed with respect to feasibility and adaptability for
control system architectures at DESY's accelerator facili-
ties.

INTRODUCTION
The European XFEL is a 3.4 km long X-ray Free-Elec-

tron Laser starting in Hamburg, Germany, and ending
south of Schenefeld, a city in the neighbourhood of Ham-
burg. The linear, super-conducting accelerator comprises a
photocathode laser-based RF gun followed by a 1.6 km ac-
celerating linac section with 96 superconducting cavity
modules installed. The electron energy operating points
can be chosen between 11 GeV up to 16.5 GeV with pre-
sent number of RF stations. The machine can provide up to
2700 electron bunches for each shot at a repetition rate
ranging from 1 Hz to 10 Hz. The bunch repetition rate can
vary between 100 kHz and 4.5 MHz. After a collimation
section in the main tunnel the electron bunches are distrib-
uted according to a highly configurable bunch pattern se-
lection into two electron beam lines with each one resp.
two undulator sections to produce X-ray photon beams for
six possible experiment stations as shown in Fig. 1. Cur-
rently the full machine is operated with up to 1000 bunches
in the main linac and up to 400 bunches each in the two
electron beam lines.

Figure 1: Layout of the European XFEL accelerator.

ACCELERATOR CONTROL SYSTEM
General Layout

The accelerator control system for the European XFEL
had been designed using a standard hardware platform
based on the MicroTCA.4 technology [1] and a software
framework suitable to control a pulsed linear accelerator
driving a free-electron laser. As laid out in [2] the choice
made uses primarily DOOCS [3] as well as TINE [4] which
is integrated by default into the DOOCS core libraries. One
of the key requirements was to be able to synchronize all
accelerator beam diagnostics data and RF- resp. LLRF in-
formation for diagnostic displays and high-level controls
or physics applications. For this the accelerator control sys-
tem layout integrates shot-synchronized and bunch-re-
solved data acquisition instances as part of the overall con-
trol system. This is illustrated in Fig. 2.

Figure 2: Accelerator control system layout with three lay-
ers and integrated data acquisition system on the middle
layer.

The integral nature of the data acquisition part within the
control system allows for synchronized and efficient online
access of all shot-related data. This provides the possibility
to plug in services on the middle layer using the shot-syn-
chronized data for high-level applications, doing online
processing and computations or even providing slow feed-
back capabilities. Those services can work seamlessly to-
gether with classic middle-layer applications using stand-
ard DOOCS calls to retrieve the data.

On the user interface layer the shot-synchronized data is
available through dedicated interfaces alongside with data
from any other DOOCS channel. Though there is a limita-
tion on the amount of data and its selection with respect to
the time range, it is possible to visualize these together with
archived DOOCS data.

__
†Tim.Wilksen@desy.de

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA161

WEPHA161
1460

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

DATA ACQUISITION
Design and Layout

On the device layer MicroTCA-based ADC modules,
camera devices as well as PLC and other embedded de-
vices are sending data to collector processes. A fast collec-
tor acquires data at the bunch repetition rate from triggered
devices and a slow collector polling the data at rates of
about 1 Hz from other hardware. The data has been tagged
on the front-ends with a unique shot number provided by
the timing system. Both collector processes are feeding the
received data into a buffer manager using shared memory
for storing the data. The distributor process functions as
buffer manager and is in charge of managing the shared
memory structure. Middle layer processes can connect to
the buffer manager and read and/or write back to it. Once
all data for a given shot number has been acquired in shared
memory it is sent to the event builder and –writer pro-
cesses. They will write the data as compressed files to disk.
To tape it the dCache [5] facility at DESY is being utilized.
Several applications interfaces exist to read the data files
and extract data for individual control system parameters
(i.e. DOOCS channels on the front-end server). Middle
layer server can provide data for other applications includ-
ing graphical user interfaces for online monitoring pur-
poses. A schematic overview is shown in Fig. 3.

Figure 3: Schematic layout of a single data acquisition in-
stance as used for acquiring shot-synchronized data from
MicroTCA systems at the European XFEL linear accelera-
tor control system.

The following sections will explain the individual com-
ponents of this design.

Front-End Devices
Providing a unique identification of individual pulses or

shots is achieved by sending timing system information i.e.
clock signals, trigger events etc. including a unique number
created by the timing system master to all front-end de-
vices. For the European XFEL accelerator control system
this has been implemented using a timing system based on
the MTCA.4 standard. Since all front-ends for beam diag-
nostics, RF- and LLRF-controls are using the MicroTCA
hardware platform a MTCA.4 module has been developed
at DESY together with the University of Stockholm. This
module is installed in every MicroTCA system. It receives

the timing system information from the master via a fiber
optic link at the shot repetition rate of 10 Hz. Clocks, event
trigger and shot number are then provided to the Mi-
croTCA system components via backplane as a PCIe inter-
rupt or via M-LVDS lines. A timer server program on every
MicroTCA system provides the timing system information
also via ZeroMQ [6] to other applications as shown in
Fig. 2. The stamped data is sent via a push-type protocol
based on Multicast UDP to all subscribers. That way mul-
tiple clients can connect to front-end devices without cre-
ating an additional load to the front-end systems. The in-
stance on the front-end to subscribe to is called a “sender”.

Collector
A collector process is running on a dedicated server

node, usually a multi-core server with sufficient memory1.
It subscribes to all front-end senders via Multicast, which
are capable of acquiring data at bunch repetition rates.
Hardware offering control system parameters of the accel-
erator without being connected to the XFEL timing system
are retrieved via standard DOOCS RPC calls and stamped
with the current shot number.

The data from an individual Multicast UDP sender is
packed up into a so called “sender block” which combines
all its DOOCS channels to be sent to the data acquisition
system with a server block header. The header contains
name, length, timestamp, number of channels, status and
shot number to identify it. The collector allows for several
retries until it would mark this specific server block as
missing for this shot.

The collector process is registered as a client to the
buffer manager and permitted to write to the shared
memory area to store the server blocks.

The number of collector processes is not restricted. Sev-
eral collector instances can connect to the same buffer
manager. One individual collector process may have dif-
ferent locations for separating the received channels into
smaller subsets.

Shared Memory
The buffer manager [7] is the master of managing the

shared memory area. It allocates the overall memory struc-
ture separated into a “client segment” for keeping all the
client information subscribed to the buffer manager and an
“event segment” for tracking the information about current
shot data available in the shared memory. The data section
itself holds all server blocks in memory for a couple of
shots. These control and data segments are being set up ac-
cording to a run control configuration. This configuration
is aware of all sender locations of which data is to be ex-
pected and acquired.

Clients can subscribe for reading to all server blocks
managed by the buffer manager or by specifying just a sub-
set of what they are interested in. Clients can also write to
the buffer manager like the collector processes do when
filling the shared memory with received server blocks.
Whenever expected server blocks for a given shot number

1 Currently up to 512 GB RAM is used for DAQ nodes.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA161

Data Management
WEPHA161

1461

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

are stored interested clients are being notified that the data
is now available. DOOCS middle layer server with an in-
terface to the buffer manager can subscribe to specific
server blocks available in shared memory, too. Examples
for this case are server processing shot-synchronous data
of several front-end sender locations for displays e.g. the
electron beam orbit derived from all BPM devices; or the
energy measurement of the overall beam energy using
LLRF data from all the RF stations. These middle layer
servers can even write back the results of their computa-
tions to shared memory, e.g. the energy, and add it to the
current shot data still in memory. The shot data is consid-
ered to be complete only if every one of the subscribed cli-
ents has been notified about the availability of the data.
Every client must signal having received the data and all
potential producers must have written back their data. Sub-
sequently, the event record will be released from the shared
memory after a waiting time. There are several mecha-
nisms in place in case one of the clients is not present any-
more, server blocks are missing or sender and clients are
just very late in providing data. It is guaranteed that for
every shot number an event record is created even if indi-
vidual sender blocks are missing i.e. are potentially empty.

The distributor which hosts the buffer manager is fur-
thermore able to group selected server blocks together to
various event records and distribute them into data sets or
so-called “streams”. The configuration which server
blocks form an event record and correspondingly a stream
is defined by the run control configuration. This stream
configuration is quite useful for separating groups of chan-
nels logically into manageable data volumes. It allows also
to dynamically switch on or off sending individual stream
data to be further processed and archived on disk.

The event builder process connects to the distributor and
receives a stream data via a dedicated TCP data link. This
stream data is then distributed further to one event writer
process per stream, which writes eventually the data files
to disk. From there the data can be written to dCache disks
and eventually – on request only – being taped for long-
term storage.

Applications and Tools
To access the data file on disk several interfaces exist.

There are API libraries available for C/C++, Java,
MATLAB and Python. Several tools written in C/C++ and
Java exist to just browse available data on disk and display
it quickly e.g. the DAQ data GUI. Tools for extracting only
a subset of the data help reducing the amount of data col-
lected in a given file.

In general, there are two ways of accessing these offline
data files. Either via direct disk or filesystem access using
the DAQReader library for which the file system needs to
be mounted or via a farm of data servers. The latter ap-
proach is done by sending an XML-type request containing
the time range for the desired data, the stream and the
names of the DOOCS channels to the DAQ data server
farm. The requested data is extracted from the files and
send back to the client. This way one the DAQ data server

takes care of finding the correct file sets and extracting the
desired channel data.

The standard graphical user interface used for the
DOOCS control system framework, JDDD, is able to read
DAQ data and visualize it together with data from local
DOOCS archives. For this the plot widget supports the se-
lection of a time range in an archived data plot for which
one would like to retrieve the data again through the DAQ
data server. Essentially, the same XML request is sent to
the server farm as with the other interfaces. The received
data is displayed together with the archived data.

STATUS
In the following paragraphs the current status of the

DAQ system as well as some lessons learned will be de-
scribed.

Operation
As of now the European XFEL accelerator control sys-

tem comprises six DAQ instances2, one more is being set
up currently and one instance is for test purposes. The first
and main instance is used for collecting all electron- and
some photon-beam related diagnostics data, while the next
two are collecting LLRF cavity and RF coupler interlock
information. All three instances are used for online moni-
toring of orbit, charge transmission, beam power and slow
RF feedbacks as well as for (beam) energy management
and are therefore critical for accelerator operations. These
DAQ instances are running 24/7. Another DAQ instance is
currently used for collecting data from the photocathode
laser system, mainly for performance and diagnostic pur-
poses. For the optical synchronization subsystem one more
instance is in the process of being setup currently. Here it
is worth to notice that some of the data is actually not syn-
crhonized with the 10 Hz shot rate but is recorded contin-
uously independent of the shot trigger. For the virtual
XFEL – a testbed for testing and evaluating mostly high-
level controls software relevant for accelerator operations
but also for software checks in general – has been set up
separately from the accelerator controls. And finally, an-
other test system can be configured like one of the above
systems to test new configurations, software or new algo-
rithms.

While the overall accelerator control system provides
about 10 million control system parameters including meta
parameters like polynomial parameter settings for archive
filters or channel descriptions, only a small subset is fed
into the DAQ instances. It should be noted, that channels
as appearing in the DAQ systems are usually hybrid chan-
nels which can combine several DOOCS parameters into
one. The combined input rate of these instances is about
2.1 GByte/s, not yet taking into account the data from the
optical synchronization and test instance.

As for data being written to disk for a later analysis we
do collect about 30 TByte/day as compressed data3. This
data is moved to the dCache disks, usually kept there for
up to two weeks and then removed unless it has not been
requested to put it into the long-term storage.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA161

WEPHA161
1462

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

All these instances usually are up and running 24/7 and
are only interrupted on maintenance days or in longer shut-
downs. An overview panel gives a quick glance of the over-
all data transfer status as illustrated in Fig. 4.

Figure 4: Overview of input (middle left column) and out-
put rates (middle right column). On the rightmost side the
disk size for transfer space is being monitored.

Using the stream configuration mechanism, a dedicated
one for the electron beam diagnostics data is being pro-
vided as well as one for parts of the photon beam diagnos-
tics data. Information about the RF cavities and LLRF con-
trols is combined together with RF coupler interlock data.
Here the streams have been split up into two halves to cope
with the large number of files being written and to manage
file handling with respect to dCache. It is possible to switch
on or off individual distributor locations (input streams) to
control even further which RF station data is actually fed
into the streams. Image data is fed into separate streams to
simplify the analysis.

Observations - Transport
While UDP multicast enables the accelerator control

system to collect in a very efficient way the information off
the front-end systems, its configuration at various levels
turns out to be tricky. This starts with setting up the Linux
kernel correctly to cope with high amounts of UDP traffic,
configuring Ethernet adapters and drivers so that one can
use the full available bandwidth and use a proper segmen-
tation with respect to the network topology. Initially set up
interfaces with link aggregation seemed to be not as per-
formant and reliable as expected, missing a proper LACP
set up of the system. Therefore, adapters were split up ac-
cording to the subnet topology which fits the collector ar-
chitecture much better but is more problematic for network
routing and its topology. The current configuration how-
ever works very reliable and scales nicely.

One major issue arose early this year using Linux kernel
versions with patches to mitigate Spectre and Meltdown
vulnerabilities showing up late last year. A dramatic perfor-
mance loss was noticed when collecting the data via UDP
using those kernel versions. Still early 5.x versions had
massive impacts while a version from fall last year without
the newer Spectre patches was performing well. This was
at first not easy to debug because it did not show up in our
initial tests without beam during shutdown.

Observations - Instances
The UDP multicast-based data collection - it is imple-

mented as a push-protocol - allows to run multiple DAQ
instances in parallel subscribing to the same groups of mul-
ticast sender. This is very helpful when setting up, re-con-
figuring, testing or debugging an individual instance be-
cause the original can be kept running while working on its
twin system without disturbing operations. It allows further
for better segmentation of offline data and offers more flex-
ibility when managing files for individual streams. And last
but not least, it can provide redundancy.

Observations – Shared Memory
The shared memory used by the buffer manager is the

source of shot-synchronized and bunch-resolved data. This
is useful for online monitoring of accelerator operations.
At the European XFEL this feature is particularly used to
display and track the orbit of the electron beam as well as
the quality of the beam transmission derived from the
transported charge and the beam loss monitor system. Uti-
lizing the data from the RF station controls an energy man-
ager allows for adaptive management of individual stations
to provide the desired electron beam energy.

A couple of so called “slow-feedback” managers have
been implemented on the main instance using the shared
memory data. These can act on deviations observed either
by the orbit monitoring or by looking at the bunch com-
pression monitoring and acts on the RF setup as well as
orbit steering. It is segmented according to the machine
layout, therefore several of these feedback managers are
running in parallel.

One drawback of these high-level control applications is,
that they have to be written in C++ and have to use the API
to access the shared memory and to register with the buffer
manager. This kind of prohibits rapid-application develop-
ment of accelerator physics tools as often desired in the ac-
celerator control room by machine physicists. A similar re-
quest often appears at beamline experiments, where exper-
imenters want to look online at data to be recorded while
still changing the set-up of the experiment. This is often
referred to as near-real-time online monitoring. Since the
accelerator data acquisition presented here in detail has
been in use at FLASH beamline experiments since quite
some years now, this request has come up here, too. One
solution for now is to use a standard DOOCS server which
can access the shared memory and provide data from any
channel in there via subscription. While this works quite
well, not many experiences have been made to which ex-
tent this will scale. Likely, this approach cannot cope with
large numbers of subscribed channels.

Observations – Offline Storage
Many issues have been observed with storing data on lo-

cal disks of the DAQ nodes itself but also with shipping it
to the DESY dCache instance. Most of them were newbie
mistakes, some have been conceptual issues. It turned out
to be problematic to use DOOCS archives together with
DAQ data on the same system. This affected moving the

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA161

Data Management
WEPHA161

1463

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

data to the dCache disks. In general, our DAQ node hard-
ware can only keep the offline data for a few days therefore
the dCache disk space is the offline storage area. To resolve
restrictions with the current setup a new 1 PB dCache space
will be deployed in the near future. Connected dynamically
to several dCache nodes, this will hopefully speed up our
shipping process.

Observations – Offline Analysis and Tools
One of the longstanding complaints had been the some-

what tedious use of the offline data files. The choice to im-
plement a proprietary binary format for the data files had
been made early on in the development of the DAQ system,
since it was found to be the most efficient one when look-
ing at the compression rate and write speed. Investigations
of the ROOT file format and later HDF5 did not meet our
expectations with respect to its performance at the time.
However, the proprietary format reduces significantly the
number of available tools to retrieve and analyze the data.
One remedy is to convert the data into the HDF5 format
later in batch. The real issue here might be a perceptional
one, in so far, that 30 TB of data per day is not as easy to
“browse” as many control system users would expect from
using archiver and small databases. Clearly missing is here
some kind of metafile database which holds all the meta
data to find quickly the information one is looking for.

One should point out here, that the event-like structure
of the data and the tagging of all data with a unique macro
pulse number turned out to be a key element to ease the
offline analysis. There is no hassle at all anymore to match
timestamps and such. With a metafile system to search eas-
ily for individual events according to given categories, this
would complement it.

Next-generation DAQ
Considering the aforementioned observations and short-

comings, the following requirements are considered to be
key to the next-generation accelerator DAQ. A new DAQ
type is foreseen to serve the European XFEL as well as fu-
ture accelerator projects like PETRA IV.

a) Event structure with shot-synchronized and bunch-
resolved data requiring corresponding FE support
(that is, timing and synchronization information has
to be present on the FE).

b) Using streaming concepts for efficient data collec-
tion from FE as well as any other sources and pro-
cessing capabilities within the streaming architec-
ture for online analysis.

c) Near-real-time access of shot-synchronized data.
d) Control system framework independent i.e. use

plug-in mechanism for FE software and the used
control system framework.

e) Metafile information database to allow for tagging
and categorizing events. E.g. cavity trips, certain
kinds of beam loss, SASE intensity loss or any kind
of post-mortem events defined by a trigger rule.

f) Browser tools to access data with tagging function-
ality for event types (e.g. cavity trip, beam loss).

First attempts to use Apache Spark and Kafka frame-
works for evaluation have been started already taking part
of the above requirements into account.

CONCLUSION
The DOOCS-based shot-synchronous and bunch-re-

solved data acquisition system has turned out to be an es-
sential part of the overall accelerator control system for op-
erations and diagnostics of individual subsystems. While
the online monitoring features are performing quite well,
the capabilities of analysing the offline data are not yet ex-
plored and utilized to the level which would be desired. I.e.
to allow for in-depth analysis of individual subsystems as
well as the accelerator machine as a whole. Key issues like
availability and reliability are crucial now for the European
XFEL as it has turned into a user machine. To enable a bet-
ter understanding of the machine to improve the perfor-
mance e.g. by optimization the SASE process as well as
reducing and preventing faults in soft- and hardware, col-
lecting all relevant data and processing it for analysis is es-
sential.

A major revamp of the data acquisition system is fore-
seen based on the experience made with the current imple-
mentation but will also consider utilizing new technologies
nowadays readily available within the data management
and analytics field.

REFERENCES
[1] H. Schlarb et al., “The case of MTCA.4: Managing the intro-

duction of a new crate standard at large scale facilities and
beyond,” in Proc. 14th Int. Conf. on Accelerator and Large
Experimental Physics Control System (ICALEPCS’13), San
Francisco, CA, USA, Oct. 2013, paper FMOPPC081, pp.
285-287.

[2] Distributed Object-Oriented Control System, DOOCS,
http://doocs.desy.de/.

[3] T. Wilksen et al., “The control system for the linear accelera-
tor at the European XFEL - Status and first experiences,” in
Proc. 16th Int. Conf. on Accelerator and Large Experimental
Physics Control System (ICALEPCS’17), Barcelona, Spain,
Oct. 2017, pp. 1-5.
doi:10.18429/JACoW-ICALEPCS2017-MOAPL01

[4] Three-fold Integrated Network Environment, TINE,
http://tine.desy.de

[5] dCache, https://www.dcache.org
[6] ZeroMQ, http://zeromq.org/.
[7] V. Rybnikov et al., “Buffer Manager Implementation for the

FLASH Data Acquisition System”, in Proc. 7th Int. Work-
shop on Personal Computers and Particle Accelerator Con-
trols (PCaPAC'08), Ljbuljana, Slovenia, Oct. 2008, paper
TUP010, pp. 102-104.

17th Int. Conf. on Acc. and Large Exp. Physics Control Systems ICALEPCS2019, New York, NY, USA JACoW Publishing
ISBN: 978-3-95450-209-7 ISSN: 2226-0358 doi:10.18429/JACoW-ICALEPCS2019-WEPHA161

WEPHA161
1464

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

19
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

Data Management

