
DEVELOPMENT OF ETHERNET BASED
REAL-TIME APPLICATIONS IN LINUX
USING DPDK

MOPHA044

 In the last decade Ethernet has become the most popular way to interface hardware devices and instruments to the control system. Lower cost per connection, reuse of existing
network infrastructures, very high data rates, good noise rejection over long cables and finally an easier maintainability of the software in the long term are the main reasons of
its success. In addition, the need of low latency systems of the High Frequency Trading community has boosted the development of new strategies, such as CPU isolation, to run
real-time applications in plain Linux with a determinism of the order of microseconds. DPDK (Data Plane Development Kit), an open source software solution mainly sponsored
by Intel, addresses the request of high determinism over Ethernet by bypassing the network stack of Linux and providing a more friendly framework to develop tasks which are
even able to saturate a 100 Gbit connection. Benchmarks regarding the real-time performance and preliminary results of employing DPDK in the acquisition of beam position
monitors for the fast orbit feedback of the Elettra storage ring will be presented.

G. Gaio*, G. Scalamera, Elettra-Sincrotrone Trieste S.C.p.A., Trieste, Italy
* giulio.gaio@elettra.eu

The Linux network stack is unsuitable for developing
time sensitive network applications.

•The POSIX socket operations (system calls), which transfer
control from the application layer to the kernel have significant
overheads (e.g. data copy, context switch and CPU cache
pollution).

•The network performance has grown faster than the one of
the CPUs due the stagnation in the single thread performance.

DPDK App

DPDK Layer (PMD)

User Space

System Call

Stack

Driver

Applications

NIC

Copy

IRQ

DMA

Kernel Space

Software solutions provided by:
•HW vendors: VMA by Mellanox, OpenLoad by SolarFlare/Xilinx
•Open source: NetMap, PF_Ring, DPDK.

DPDK Bypass Scheme

2 - Bypassing Linux network stack

1 - Motivation
DPDK, initially developed by Intel in 2010,
supported directly by the Linux Foundation
and sponsored by market leaders as ARM,
Red Hat, AT&T and Ericsson.

•The user has to assign to DPDK a pool of
network interface cards (NIC) and CPU
cores which become unavailable to the
Linux kernel.

•User code spins (PMD) on a dedicated
core waiting for incoming packets. Once
the packets are available, data processing
and retransmission can be managed by the
same core or executed on other reserved
cores.

3 - DPDK description

Switch 2

CPU 2

8 BPM
S11

4 7

Switch 1

CPU 1

0 1

2 3

Xeon 2637 server

5 6

1 x 10GbE

Switch 4 Switch 3

24 x 1GbE

1 x 10GbE

8 BPM
S12

8 BPM
S1

8 BPM
S2

8 BPM
S3

8 BPM
S4

8 BPM
S5

8 BPM
S7

24 x 1GbE

1 x 10GbE 1 x 10GbE

8 BPM
S6

24 x 1GbE

8 BPM
S8

8 BPM
S10

8 BPM
S9

24 x 1GbE

4 - Official test reports (no information on jitter)

At the Elettra synchrotron light source the most jitter-sensitive
real-time application based on Ethernet is the fast orbit
feedback:
•96 Beam position monitors (BPM) transmitting UDP packets
at 10kHz
•Twelve VME-PowerPC systems receiving data, performing
calculation and setting 164 magnet power supplies

Duplicated and forwarded 1 milion of UDP
packets per sec. to a single rackmount server
(dual socket Xeon 2637) by means of 4 10Gbit
fibre optic links (4 10GbE Intel X710 ports).

5 – Measuring jitter (HW setup)

Achieved 100Gbit line rate in roundtrip configuration between
Mellanox ConnectX5 and a Traffic Generator (Ixia) – 12 CPU cores –
148 Mpss (64 bytes UDP packet). Mpss=milions of packets per second

•Linux Ubuntu 18.04 + Kernel 4.15.0 + DPDK 18.04
•Optimized BIOS and Linux for max performance (no RT patch)
•CPU core 0 reserved to Linux loaded with “stress”
•CPU cores 2,3,5,6 reserved to four user space DPDK processes
to acquire each one 10GbE port

The difference between the feedback repetition period and
the measured time between the arrival of two consecutive
bunches of 24 packets (belonging to one fourth of the BPMs)
on a single 10GbE port is a realistic estimation of the jitter per
cycle of the system

Data flow during DPDK test Jitter Core 2 Core 3 Core 5 Core 6

 < 1 μs 0% 0% 0% 0%

 < 2 μs 99.91% 99.88% 99.98% 99.98%

 < 3 μs 0.049% 0.05% 0.015% 0.013%

 < 4 μs 0% 0% 0% 0%

 < 5 μs 0.032% 0.0598% 0.0018% 0.0023%

 < 10 μs 0.026% 0.0038% 0.0004% 0.0006%

 < 20 μs 0% 0% 0% 0%

 < 30 μs 0% 0.0006% 0.0002% 0.0002%

 <40 μs 0.006% 0% 0% 0%

 > 40 μs 0% 0% 0% 0%

6 – Measuring jitter (SW setup)

100.2 μs 100.2 μs

 Jitter

 = 24 UDP packets

 Time

10GbE port

7 – DPDK test results

•In 99.95% of cycles jitter less then
3 μs
•Worst case < 40 μs (cache misses)
•Estimated max. throughput: 33
Mpss -> 8 Mpss per core

POSIX socket connection running on
isolated core 2 acquiring one 10 GbE
port:
•88 % of packets received in less
then 10 μs
•10 % of the packets received in less
then 100 μs
•Worst case: 12.1 ms

https://www.arm.com/
http://about.att.com/innovation/labs
https://www.ericsson.com/
https://f5.com/
http://intel.com/go/dpdk
https://www.marvell.com/
http://www.mellanox.com/
https://www.nxp.com/
https://www.redhat.com/
https://www.zte.com.cn/
http://6wind.com/products/6windgate-software-modules
https://www.broadcom.com/
http://www.huawei.com/

