Keyword: cryomodule
Paper Title Other Keywords Page
MOXGB2 Commissioning and Operation of 12 GeV CEBAF linac, operation, cavity, SRF 1
 
  • A. Freyberger
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177
The Continuous Electron Beam Accelerator Facility (CEBAF) located at the Thomas Jefferson National Accelerator Laboratory (JLab) has been recently upgraded to deliver continuous electron beams to the experimental users at a maximum energy of 12 GeV, three times the original design energy of 4 GeV. This paper will present an overview of the upgrade, referred to as the 12GeV upgrade, and highlights from recent beam commissioning results.
 
slides icon Slides MOXGB2 [4.359 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOXGB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOBB2 Fabrication of TESLA-shape 9-cell Cavities at KEK for Studies on Mass-Production in Collaboration with Industries cavity, SRF, status, controls 31
 
  • T. Saeki, H. Hayano
    KEK, Ibaraki, Japan
 
  The construction of the new Center-of-Innovation (COI) buiding started at KEK from 2014 for the studies of mass-production of Superconducting-RF accelerators in collaboration with industries. The COI buiding is sitting next to the existing KEK-STF building and will include various Superconducting-RF facilities like clean-room for cavity-string assembly, cryomodule-assembly facility, cryogenic system, vertical-test facility, cryomodule-test facility, input-coupler processing facility, cavity Electro-Polishing (EP) facility, and control-room/office-rooms in the dimension of 80 m x 30 m. The purpose of this new SRF facilities is to establish a close collaboration between SRF researchers and industries in order to prepare for the upcoming large-scale future SRF project, like ILC. This article reports the fabricaion of four TESLA-shape 9-cell cavities for the commisioning of these new facilities. Details of the fabrication of these four cavities will be presented.  
slides icon Slides MOBB2 [3.983 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOBB2  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWA046 Lattice and Beam Dynamics of the Energy Recovery Mode of the Mainz Energy-recovering Superconducting Accelerator MESA linac, lattice, experiment, simulation 220
 
  • D. Simon, K. Aulenbacher, R.G. Heine, F. Schlander
    IKP, Mainz, Germany
 
  Funding: Work supported by the German Federal Ministry of Education and Research (BMBF) and German Research Foundation (DFG) under the Cluster of Excellence PRISMA.
The mainz energy recovering superconducting accelerator (MESA) is a proposed multi-turn energy recovery linac for particle physics experiments. It will be built at the institute for nuclear physics (KPH) at Mainz University. Because of the multi-turn energy recovery mode there are particular demands at the beam dynamics. We present the current status of the lattice development.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWA056 Transverse Multi-Pass Beam Breakup Simulation for KEK ERL Light Source HOM, cavity, simulation, linac 248
 
  • S. Chen, N. Nakamura, M. Shimada, D. Zhou
    KEK, Ibaraki, Japan
  • S. Huang, K.X. Liu
    PKU, Beijing, People's Republic of China
 
  In this paper, the multi-pass BBU of such a high energy ERL is studied based on the simulation on a 3 GeV ERL light source proposed by KEK.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE016 Start-to-End Simulation for RAON Superconducting Linac linac, ion, lattice, emittance 311
 
  • H. Jang, J.-H. Jang, H. Jin
    IBS, Daejeon, Republic of Korea
 
  An ion accelerator, RAON is going to be built in Daejeon, Korea by Rare Isotope Science Project(RISP) team in Institute of Basic Science(IBS). The linac part of RAON consists of two low energy linacs, one high energy linac and two bending section for transporting accelerated low energy ions to high energy linac. It is planned to accelerate many diverse ions like proton, carbon, calcium, uranium, etc. which have different A/q values. Consequently the lattice design for each ion and to investigate beam dynamics issues for each case are one of the important topics for this project. For enhancement of beam acceleration a study to suppress emittance growth and to maximize the longitudinal acceptance is conducted while designing the RAON lattice. In this presentation the designed linac lattices for various ions and start-to-end simulation results will be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPJE058 FLUKA Modeling of the ESS Accelerator proton, target, linac, radiation 434
 
  • L. Lari, M. Eshraqi, L.S. Esposito, L. Tchelidze
    ESS, Lund, Sweden
  • F. Cerutti, L.S. Esposito, L. Lari, A. Mereghetti
    CERN, Geneva, Switzerland
 
  In order to evaluate the energy deposition and radiation issues concerning the ESS accelerator, a FLUKA model of the machine has been created. The geometry of the superconducting beam line is built according to the machine optics, described in the TraceWin file and the CATIA drawings of the beam elements, using the LineBuilder tool developed at CERN. The objective is to create a flexible FLUKA model that is able to be adapted to the optimization of the optics, design modifications and machine integration constraints. Preliminary results are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPJE058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPMA014 Design of Superconducting CW linac for PIP-II linac, beam-losses, optics, operation 565
 
  • A. Saini, V.A. Lebedev, J.-F. Ostiguy, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Proton Improvement Plan (PIP) -II is a proposed roadmap to upgrade existing proton accelerator complex at Fermilab. It is primarily based on construction of superconducting (SC) linear accelerator (linac) that would be capable to operate in continuous wave (CW) mode. This paper will present reference design of SC linac and discuss motivations and requirements resulting in this layout and beam optics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPHA052 Optimization of ILC Cryomodule Design Using Explosion Welding Technology niobium, cryogenics, neutron, cavity 913
 
  • A. Basti
    University of Pisa and INFN, Pisa, Italy
  • F. Bedeschi
    INFN-Pisa, Pisa, Italy
  • Ju. Boudagov, B.M. Sabirov, G. Shirkov, Yu.V. Taran
    JINR, Dubna, Moscow Region, Russia
  • A. Bryzgalin, L. Dobrushin, S. Illarionov, E. Pekar
    PWI, Kiev, Ukraine
  • P. Fabbricatore
    INFN Genova, Genova, Italy
 
  Optimization of ILC cryomodule design using explosion welding technology. B.Sabirov, J.Budagov, G.Shirkov - JINR, Dubna, Russia A.Basti, F.Bedeschi, P.Fabbricatore - INFN, Pisa/Genova, Italy A.Bryzgalin, L.Dobrushin, S.Illarionov, E.Pekar - EWI, Kiev, Ukraine JINR activity in the ILC Project is the development, in association with INFN, of techniques to simplify and make cheaper the construction of the ILC cryomodules. In the current ILC TDR design both the helium vessel shell and the connected pipes are made of expensive titanium, one of the few metals that can be welded to niobium by the electron beam technique. We describe the construction and performance of transition elements, obtained by explosion welding, that can couple the niobium cavity with a stainless steel helium vessel. Several designs for these transitions have been produced and studied showing varying levels of reliability. Based on this experience a new design, including a minimal titanium intermediate layer, has been built. Preliminary tests yield impressive results, indicating a very strong resistance of the bon  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPTY013 Control System for DC-SRF Photo-Injector at Peking University controls, laser, SRF, LLRF 962
 
  • L.W. Feng, J.K. Hao, S. Huang, L. Lin, K.X. Liu, S.W. Quan, F. Wang, B.C. Zhang
    PKU, Beijing, People's Republic of China
 
  A control system has been designed and constructed to full-fill the operation requirement of the DC-SRF photo injector developed at Peking University. The system includes FPGA based low level radio frequency (LLRF) control system, PLC based machine protection system, VME based magnet power control, and PC based EPICS IOC. All these systems were integrated to support the stable operation of the DC-SRF photo injector and has shown their robustness. The LLRF system was optimized and tuned for 2K CW/Pulse operation and the stability of amplitude and phase achieves 0.1% and 0.1° respectively.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPWI021 The LCLS-II LLRF System cavity, controls, LLRF, linac 1195
 
  • C. Hovater, R. Bachimanchi
    JLab, Newport News, Virginia, USA
  • S. Babel, B. Hong, D. Van Winkle
    SLAC, Menlo Park, California, USA
  • B.E. Chase, E. Cullerton, P. Varghese
    Fermilab, Batavia, Illinois, USA
  • L.R. Doolittle, G. Huang, A. Ratti, C. Serrano
    LBNL, Berkeley, California, USA
 
  Funding: This work was supported by the LCLS-II Project and the U.S. Department of Energy, Contract DE-AC02-76SF00515.
The SLAC National Accelerator Laboratory is planning an upgrade (LCLS-II) to the Linear Coherent Light Source with a 4 GeV CW superconducting (SCRF) linac. The SCRF linac consists of 35 ILC style cryomodules (eight cavities each) for a total of 280 cavities. Expected cavity gradients are 16 MV/m with a loaded QL of ~ 4x107. The RF system will have 3.8 kW solid state amplifiers driving single cavities. To ensure optimum field stability a single source single cavity control system has been chosen. It consists of a precision four channel cavity receiver and RF stations (Forward, Reflected and Drive signals). In order to regulate the resonant frequency variations of the cavities due to He pressure, the tuning of each cavity is controlled by a Piezo actuator and a slow stepper motor. In addition the system (LLRF-amplifier-cavity) is being modeled and cavity microphonic testing has started. This paper describes the LLRF system under consideration, including recent modeling and cavity tests.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWI021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAD3 LLRF Commissioning of the European XFEL RF Gun and Its First Linac RF Station LLRF, linac, gun, electronics 1377
 
  • J. Branlard, G. Ayvazyan, V. Ayvazyan, L. Butkowski, M.K. Grecki, M. Hoffmann, F. Ludwig, U. Mavrič, M. Omet, S. Pfeiffer, K.P. Przygoda, H. Schlarb, Ch. Schmidt, H.C. Weddig, B.Y. Yang
    DESY, Hamburg, Germany
  • S. Bou Habib, K. Czuba, M. Grzegrzółka, E. Janas, K. Oliwa, J. Piekarski, K.T. Pozniak, I. Rutkowski, R. Rybaniec, D. Sikora, W. Wierba, L.Z. Zembala, M. Żukociński
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • W. Cichalewski, D.R. Makowski, A. Mielczarek, P. Perek
    TUL-DMCS, Łódź, Poland
  • A. Piotrowski
    FastLogic Sp. z o.o., Łódź, Poland
 
  The European X-ray free electron laser (XFEL) at the Deutsches Elektronen-Synchrotron (DESY), Hamburg Germany is in its construction phase. Approximately a third of the super-conductive cryomodules have been produced and tested. The RF gun is installed since 2013; periods of commissioning are regularly scheduled between installation phases of the rest of the injector. The first linac, L1, consisting of 4 cryomodules powered by one 10 MW klystron is installed and being commissioned. This contribution reports on the installation and preparation work of the low-level radio frequency system (LLRF) to perform the commissioning of the XFEL first components. The commissioning plans, schedule and first results are presented.  
slides icon Slides TUAD3 [14.016 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUAD3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPJE080 First Beam and High-Gradient Cryomodule Commissioning Results of the Advanced Superconducting Test Accelerator at Fermilab cavity, dipole, accelerating-gradient, diagnostics 1831
 
  • D.J. Crawford, C.M. Baffes, D.R. Broemmelsiek, K. Carlson, B.E. Chase, E. Cullerton, J.S. Diamond, N. Eddy, D.R. Edstrom, E.R. Harms, A. Hocker, C.D. Joe, A.L. Klebaner, M.J. Kucera, J.R. Leibfritz, A.H. Lumpkin, J.N. Makara, S. Nagaitsev, O.A. Nezhevenko, D.J. Nicklaus, L.E. Nobrega, P. Piot, P.S. Prieto, J. Reid, J. Ruan, J.K. Santucci, W.M. Soyars, G. Stancari, D. Sun, R.M. Thurman-Keup, A. Valishev, A. Warner, S.J. Wesseln
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
The advanced superconducting test accelerator at Fermilab has accelerated electrons to 20 MeV and, separately, the International Linear Collider (ILC) style 8-cavity cryomodule has achieved the ILC performance milestone of 31.5 MV/m per cavity. When fully completed, the accelerator will consist of a photoinjector, one ILC-type cryomodule, multiple accelerator R&D beamlines, and a downstream beamline to inject 300 MeV electrons into the Integrable Optics Test Accelerator (IOTA). We report on the results of first beam, the achievement of our cryomodule to ILC gradient specifications, and near-term future plans for the facility.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPJE080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPMA037 Commissioning of the 123 MeV Injector for 12 GeV CEBAF optics, dipole, operation, injection 1920
 
  • Y.W. Wang, A.S. Hofler, R. Kazimi
    JLab, Newport News, Virginia, USA
 
  The injector energy needed to be raised from 67.5 MeV to 123 MeV to meet the energy requirement of the CEBAF 12 GeV upgrade. The ratio of the injector energy to the linac energy must remain 0.11284 at all times. Consequently, the injector was partially upgraded. The early injector, transport and acceleration from 130 keV to 6 MeV, is unchanged, but the downstream boost from 6 MeV to the final 123 MeV energy drove several changes. One of the two original CEBAF 25 MeV type cryomodules in the injector was upgraded to a 100 MeV capable one to provide more energy. Some trim magnets at the end of the injector were upgraded to compensate for the higher energy. The chicane region was expanded, and the full energy injector spectrometer was relocated to make room for the newly added Hall D line. Experience from the 6 GeV era indicated that the stray fields from the higher energy beam transport recombiners near the injection chicane adversely affect the injector orbit, so a study to understand and mitigate stray fields from the transport arc box supplies upgraded for 12 GeV led to shielding modifications for the beamline in the chicane region.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-TUPMA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEYC3 Commissioning and Operation of the ARIEL Electron Linac at TRIUMF linac, cavity, electron, TRIUMF 2444
 
  • M. Marchetto, F. Ames, Z.T. Ang, R.A. Baartman, I.V. Bylinskii, Y.-C. Chao, D. Dale, K. Fong, R. Iranmanesh, F.W. Jones, D. Kaltchev, J. Kavarskas, P. Kolb, S.R. Koscielniak, A. Koveshnikov, M.P. Laverty, R.E. Laxdal, L. Merminga, N. Muller, R.R. Nagimov, R.B. Nussbaumer, T. Planche, M. Rowe, S. Saminathan, V.A. Verzilov, Z.Y. Yao, Q. Zheng, V. Zvyagintsev
    TRIUMF, Vancouver, Canada
 
  Funding: Funded under a contribution agreement with NRC (National Research Council Canada). Capital funding from CFI (Canada Foundation for Innovation).
ARIEL is the new TRIUMF facility for production of radioactive ion beams that will enable the delivery of three simultaneous RIB beams to the ISAC experimental stations. Two additional target stations will produce beams by using either a 50 kW proton or from 500 kW electrons via photo-fission. The electron beam driver is going to be a 50 MeV 10 mA CW superconducting electron linac. The first stage of the e-linac installation is completed and commissioning is underway. The paper will present the e-linac design characteristics, installation, commissioning strategy and current results.
 
slides icon Slides WEYC3 [13.765 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEYC3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA005 Particularities of the ARIEL e-Linac Cryogenic System linac, cryogenics, radiation, TRIUMF 2750
 
  • I.V. Bylinskii, G.W. Hodgson, D. Kishi, S.R. Koscielniak, A. Koveshnikov, R.E. Laxdal, R.R. Nagimov, D. Yosifov
    TRIUMF, Vancouver, Canada
 
  Funding: Canada Foundation for Innovation, British Columbia Knowledge Development Fund, and National Research Council Canada.
The Advanced Rare IsotopE Laboratory (ARIEL) is a major expansion of the Isotope Separation and Acceleration (ISAC) facility at TRIUMF [1]. A key part of the ARIEL project is a 10 mA 50 MeV continuous-wave superconducting radiofrequency (SRF) electron linear accelerator (e-linac). The 1.3 GHz SRF cavities are cooled by liquid helium (LHe) at 2 K [2]. The 4 K 2 K LHe transition is achieved onboard of each cryomodule by the cryoinsert containing counterflow heat exchanger augmented with JT valve [3]. Air Liquide LHe cryoplant provides 4 K LHe to cryomodules. After successful commissioning of the cryoplant, 2 K sub-atmospheric (SA) system and cryomodules, the ultimate integration test confirmed stable operation of two cryomodules comprising two 9 cell SRF cavities. Particularities of this cryogenic system include conservative design of the oil removal system, original design heat exchanger in the SA pumping system, hermetic SA pumps, inline full SA flow purifier, multipurpose recovery/purification compressor, modular LHe distribution system, top-loaded design cryomodules, and overall radiation resistant design. The paper presents details of these features as well as integration tests results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA010 First Test Results of the BERLinPro 2-cell Booster Cavities cavity, booster, SRF, linac 2765
 
  • A. Burrill, W. Anders, A. Frahm, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • G. Ciovati, W.A. Clemens, P. Kneisel, L. Turlington
    JLab, Newport News, Virginia, USA
 
  The BERLinPro Energy Recovery Linac (ERL) is currently being built at Helmholtz-Zentrum Berlin in order to study the physics of operating a high current, a 100 mA, 50 MeV ERL utilizing all SRF cavity technology. This machine will utilize three unique SRF cryomodules for the photoinjector, booster and linac cryomodules respectively. The focus of this paper will be on the cavities contained within the booster cryomodule. Here there will be three 2-cell SRF cavities, based on the original design by Cornell University, but optimized to meet the needs of the project. All of the cavity fabrication, processing and testing was carried out at Jefferson Laboratory where 4 cavities were produced and the 3 cavities with the best RF performance were fitted with helium vessels for installation in the cryomodule. This paper will report on the test results of the cavities as measured in the vertical testing dewar at JLab after fabrication and again after outfitting with the helium vessels.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA011 First Horizontal Test Results of the HZB SRF Photoinjector for BERLinPro cavity, SRF, operation, gun 2768
 
  • A. Burrill, W. Anders, A. Frahm, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • G. Ciovati, W.A. Clemens, P. Kneisel, L. Turlington
    JLab, Newport News, Virginia, USA
 
  The BERLinPro project, a small superconducting RF (SRF) c.w. energy recovery linac (ERL) is being built at Helmholtz-Zentrum Berlin in order to develop the technology required for operation of a high current, 100 mA, 50 MeV ERL. The electron source for the accelerator is a 1.4 cell SRF photoinjector fitted with a multi-alkali photocathode. As part of the HZB photoinjector development program three different SRF photoinjectors will be fabricated and tested. The photoinjector described herein is the second cavity that has been fabricated, and the first photoinjector designed for use with a multi-alkali photocathode. The photoinjector has been built and tested at JLab and subsequently shipped to HZB for testing in the horizontal test cryostat HoBiCaT prior to installation in the photoinjector cryomodule. This cryomodule will be used to measure the photocathode operation in a dedicated experiment called GunLab, the precursor to installation in the BERLinPro hall. This paper will report on the final results of the cavity installed in the helium vessel in the vertical testing dewar at Jefferson Lab as well as the first horizontal test in HoBiCaT  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA041 1.3 GHz SRF Cryomodules for the Mainz Energy-recovering Superconducting Accelerator MESA SRF, linac, lattice, controls 2853
 
  • F. Schlander, K. Aulenbacher, R.G. Heine, D. Simon, T. Stengler
    IKP, Mainz, Germany
 
  Funding: Work supported by the German Federal Ministery of Education and Research (BMBF) and German Research Foundation (DFG) under the Cluster of Excellence "PRISMA"
The Mainz Energy-recovering Superconducting Accelerator MESA requires superconducting RF systems that provide sufficient energy of 50 MeV per turn to an electron beam. The ordering process of two Rossendorf-type cryomodules, containing two 9-cell 1.3 GHz XFEL-like cavities each, is in progress. Besides an overview of the adaptations required for the multipass and high current beam operation of the cryomodules, details about challenges regarding the installation of the cryomodules on the premises of the Institut für Kernphysik at Universität Mainz are given.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMA048 Development for Mass Production of Superconducting Cavity by MHI cavity, niobium, superconducting-RF, linac 2876
 
  • T. Yanagisawa, H. Hara, K. Kanaoka, K. Okihira, K. Sennyu
    MHI, Hiroshima, Japan
 
  Mitsubishi Heavy Industries (MHI) have developed manufacturing process of superconducting cavitis for a long time. In this presentation, recent progress will be reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN030 Testing Procedures for Fast Frequency Tuners of XFEL Cavities cavity, controls, LLRF, operation 2991
 
  • K.P. Przygoda, W. Cichalewski, T. Pożniak
    TUL-DMCS, Łódź, Poland
  • J. Branlard, O. Hensler, H. Schlarb, Ch. Schmidt
    DESY, Hamburg, Germany
  • K. Kasprzak
    IFJ-PAN, Kraków, Poland
 
  The XFEL accelerator will be equipped with 100 accelerating modules. Each accelerating module will host 8 superconducting cavities. Every single cavity will be equipped with a mechanical tuner. Coarse tuning will be supported by a step motor; fine tuning will be handled by double piezoelectric elements installed inside a single mechanical support, providing actuator and sensor functionality or redundancy. Before the main linac installation, all its subcomponents need to be tested and verified. The AMTF (Accelerator Module Test Facility) has been built at DESY to test all XFEL cryomodules. In total 1600 piezos need to be tested. Test procedures for fast frequency tuners have been developed to check their basic performance in cryogenic conditions (tuning range, polarity, acting and sensing abilities). High level applications perform fully automated tests including report generation. After the successful completion of the acceptance tests, the cryomodules will be prepared for tunnel installation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN031 Automated Quench Limit Test Procedure for Serial Production of XFEL RF Cavities cavity, software, flattop, operation 2994
 
  • K. Kasprzak, D. Konwisorz, K. Krzysik, S. Myalski, J. Świerbleski, K. Turaj, M. Wiencek, A. Zwozniak
    IFJ-PAN, Kraków, Poland
  • D. Kostin, K.P. Przygoda
    DESY, Hamburg, Germany
 
  In the Accelerator Module Test Facility (AMTF) at DESY in Hamburg RF cavities and accelerating cryomodules are tested for the European X-ray Free Electron Laser (XFEL). Measurements are done by a team of physicists, engineers and technicians from The Henryk Niewodniczanski Institute of Nuclear Physics Polish Academy of Sciences in Kraków, Poland, as a part of Polish in-kind contribution to the XFEL. The testing procedures providing information about maximum available gradient and heat loads measurement are performed for the high gradients (up to 31MV/m). During these tests the cavity deformation caused by the Lorentz force is compensated by piezo (fast) tuners. For this purpose automated high level software was developed. This paper describes a method used to tune automatically the cavities during the RF tests. It was validated with the XFEL cryomodules. This improvement was implemented into the testing software and it is successfully used for testing of serial production cavities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN035 QWR and HWR Cryomodules for Heavy Ion Accelerator RAON cavity, alignment, vacuum, radiation 3006
 
  • W.K. Kim, H.J. Cha, H. Kim, H.J. Kim, Y. Kim, M. Lee, G.-T. Park
    IBS, Daejeon, Republic of Korea
 
  The accelerator called RAON has five kinds of cryomodules such as QWR, HWR1, HWR2, SSR1 and SSR2. The QWR and HWR1 cryomodules are designed and fabricated. The cryomodules will be operated at 2 K and 4 K in order to operate the superconducting cavities. The static heat load of the system was analytically computed for each configuration. The functional requirement of the cryomodules and the static heat load measurement of the QWR and HWR1 cryomodules are presented in this research.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPMN042 400 mA Beam Store with Superconducting RF Cavities at PLS-II cavity, vacuum, SRF, operation 3021
 
  • Y.U. Sohn, M.-H. Chun, T. Ha, M.S. Hong, Y.D. Joo, H.-S. Kang, H.-G. Kim, K.R. Kim, T.-Y. Lee, C.D. Park, H.J. Park, I.S. Park, S. Shin, I.H. Yu, J.C. Yun
    PAL, Pohang, Kyungbuk, Republic of Korea
 
  Funding: Minister of Science, ICT and Future Planning
Three superconducting RF cavities were commissioned with electron beam in way of one by one during the last 3 years, and now PLS-II is in user service on the way of beam current to 400mA, the target of PLS-II. The cavities and cryomodules were prepared with SRF standard technology and procedures, then vertical test, windows conditioning, cryogenic test in each cryomodule, horizontal power test, conditioning, and commissioning without and with beam at PLS-II tunnel by collaboration with industries. All the cavities showed stable performances as good as not-observing any RF instability from cavities, couplers and windows up to 400 mA beam store, but observing several cavity quenches and minor vacuum bursts by abrupt power with control and human errors. The initial beam current for user run were recorded as 150 mA with one cavity, 280 mA with two cavities and 320 mA with three cavities. The 400 mA beam was also achieved with two cavities by decay mode and also with three cavities by top-up mode. The stabilities of RF amplitude and phase are good enough not to induce beam instabilities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMN042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPHA021 Status of HIE-ISOLDE SC Linac Upgrade cavity, linac, vacuum, niobium 3151
 
  • A. Sublet, L. Alberty, K. Artoos, S. Calatroni, O. Capatina, M.A. Fraser, N.M. Jecklin, Y. Kadi, P. Maesen, G.J. Rosaz, K.M. Schirm, M. Taborelli, M. Therasse, W. Venturini Delsolaro, P. Zhang
    CERN, Geneva, Switzerland
 
  The HIE-ISOLDE upgrade project at CERN aims at increasing the energy of radioactive beams from 3MeV/u up to 10 MeV/u with mass-to-charge ratio in the range 2.5-4.5. The objective is obtained by replacing part of the existing normal conducting linac with superconducting Nb/Cu cavities. The new accelerator requires the production of 32 superconducting cavities in three phases: 10 high-beta cavities for phase 1 (2016), 10 high-beta cavities for phase 2 (2017) and possibly 12 low-beta cavities for phase 3 (2020). Half of the phase 1 production is completed with 5 quarter-wave superconducting cavities ready to be installed in the first cryomodule. The status of the cavity production and the RF performance are presented. The optimal linac working configuration to minimize cryogenic load and maximize accelerating gradient is discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPHA021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY008 Superconducting Harmonic Cavity for the Advanced Photon Source Upgrade cavity, HOM, photon, SRF 3267
 
  • M.P. Kelly, A. Barcikowski, J. Carwardine, Z.A. Conway, D. Horan, S.H. Kim, P.N. Ostroumov, G.J. Waldschmidt
    ANL, Argonne, Illinois, USA
  • J. Rathke, T. Schultheiss
    AES, Medford, New York, USA
 
  A new bunch lengthening cryomodule using a single-cell ‘higher-harmonic’ superconducting cavity (HHC) based on the TESLA shape and operating at the 4th harmonic (1408 MHz) of the main RF is under development at Argonne. The system will be used to improve the Touschek lifetime and increase the single-bunch current limit in the upgraded multibend achromat lattice of the Advanced Photon Source electron storage ring. The 4 K cryomodule will fit within one half of a straight section, ~2.5 meters, of the ring. The system will use a pair of moveable 20 kW (each) CW RF power couplers to adjust the loaded Q and extract power from the beam. This will provide the flexibility to adjust the impedance presented to the beam and run at various beam currents. Higher-order modes (HOMs) induced by the circulating electron beam will be extracted along the beam axis and damped using a pair of room temperature beam line absorbers. Engineering designs and the prototyping status for the cavity, power couplers and HOM absorbers are discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY008  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY009 Preservation of Quality Factor of Half Wave Resonator during Quenching in the Presence of Solenoid Field solenoid, cavity, niobium, dipole 3270
 
  • S.H. Kim, D.M. Caldwell, Z.A. Conway, S.M. Gerbick, M. Kedzie, M.P. Kelly, S.W.T. MacDonald, P.N. Ostroumov, T. Reid
    ANL, Argonne, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of energy, Offices of High-Energy Physics and Nuclear Physics, under Contract No. DE-AC02-76-CH03000 and DE-AC02-06CH11357.
The Proton Improvement Plan II at FNAL relies upon a 162.5 MHz superconducting half-wave resonator cryomodule to accelerate H beams from 2.1 to 10 MeV. This cryomodule contains 8 resonators with 8 superconducting solenoid magnets interspersed between them. X-Y steering coils are integrated with a package of the superconducting solenoid magnets. The center of the solenoids is located within ~50 cm of the high surface magnetic field of the half-wave resonators and in this study we assess whether or not magnetic flux generated by this magnet is trapped into the half-wave resonators niobium surface and increases the RF losses to liquid helium. To test this we assembled a solenoid with a 162.5 MHz half-wave resonator spaced as they will be in the cryomodule. We measured the quality factor of the cavity before and after the cavity quenched as a function of field level in the coils. No measurable change in the quality factor was observed. In this paper, we will present details of the measurements and discuss the magnetic field map.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY021 Origin of Trapped Flux Caused by Quench in Superconducting Niobium Cavities cavity, superconductivity, niobium, cryogenics 3309
 
  • M. Checchin, A. Grassellino, M. Martinello, O.S. Melnychuk, A. Romanenko, D.A. Sergatskov
    Fermilab, Batavia, Illinois, USA
  • M. Checchin, M. Martinello
    Illinois Institute of Technology, Chicago, Illlinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
In this study we prove that the mechanism at the basis of quality factor degradation due to quench involves the entrapment of ambient magnetic field. The cavity quench in the absence of magnetic field does not introduce any extra losses, and a clear trend between the external field and the extra losses introduced by the quench was observed. It is demonstrated that the quality factor can be totally recovered by quenching in zero applied magnetic field. A dependence of the amount of quality factor degradation on the orientation of the magnetic field with respect to the cavity was also found.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY021  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY031 Estimation of Cryogenic Heat Loads in Cryomodule due to Thermal Radiation niobium, radiation, cavity, cryogenics 3338
 
  • A. Saini, V.A. Lebedev, N. Solyak, V.P. Yakovlev
    Fermilab, Batavia, Illinois, USA
 
  Cryogenic system is one of major cost drivers in high intensity superconducting (SC) continuous wave (CW) accelerators. Thermal radiations coming through the warm-ends of cryomodule and room temperature parts of the power coupler result in additional cryogenic heat loads. Excessive heat load in 2K environment may degrade overall performance of the cavity. In this paper we present studies performed to estimate additional heat load at 2K due to thermal radiation in 650 MHz cavity cryomodule in high energy section of PIP-II SC linac.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY069 Complection of the Cornell High Q CW Full Linac Cryo-module linac, HOM, cavity, alignment 3440
 
  • R.G. Eichhorn, B. Bullock, B. Clasby, J.V. Conway, B. Elmore, F. Furuta, G.M. Ge, G.H. Hoffstaetter, M. Liepe, T.I. O'Connel, P. Quigley, D.M. Sabol, J. Sears, E.N. Smith, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • Y. He
    Fermilab, Batavia, Illinois, USA
 
  Cornell University has finished building a 10 m long superconducting accelerator module as a prototype of the main linac of a proposed ERL facility. This module houses 6 superconducting cavities- operated at 1.8 K in continuous wave (CW) mode - with individual HOM absorbers and one magnet/ BPM section. In pushing the limits, a high quality factor of the cavities (2x1010) and high beam currents (100 mA accelerated plus 100 mA decelerated) were targeted. We will review the design shortly and present the results of the components tested before the assembly. This includes data of the quality-factors of all 6 cavities that we produced and treated in-house, the HOM absorber performance measured with beam on a test set-up as well as testing of the couplers and the tuners.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY069  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY072 Update on Nitrogen-doped 9-cell Cavity Performance in the Cornell Horizontal Test Cryomodule cavity, linac, SRF, operation 3446
 
  • D. Gonnella, R.G. Eichhorn, F. Furuta, G.M. Ge, D.L. Hall, Y. He, K.M.V. Ho, G.H. Hoffstaetter, M. Liepe, J.T. Maniscalco, T.I. O'Connel, S. Posen, P. Quigley, J. Sears, V. Veshcherevich
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • A. Grassellino, C.J. Grimm, O.S. Melnychuk, A. Romanenko
    Fermilab, Batavia, Illinois, USA
 
  Funding: U.S. Department of Energy
The Linac Coherent Light Source-II (LCLS-II) is a new x-ray source that is planned to be constructed in the existing SLAC tunnel. To meet the quality factor specifications (2.7x 1010 at 2.0 K and 16 MV/m), nitrogen-doping has been proposed as a preparation method for the SRF cavities. In order to demonstrate the feasibility of these goals, four 9-cell cavity tests have been completed in the Cornell Horizontal Test Cryomodule (HTC), which serves as a test bench for the full LCLS-II cryomodule. Here we report on the most recent two cavity tests in the HTC: one cavity nitrogen-doped at Cornell and tested with high Q input coupler and then again tested with high power LCLS-II input coupler. Transition to test in horizontal cryomodule resulted in no degradation in Q0 from vertical test. Additionally, increased dissipated power due to the high power input coupler was small and in good agreement with simulations. These results represent a crucial step on the way to demonstrating technical readiness for LCLS-II.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY072  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPTY074 Recent Studies on the Current Limitations of State-of-the-Art Nb3Sn Cavities cavity, niobium, controls, accelerating-gradient 3454
 
  • D.L. Hall, M. Liepe, J.T. Maniscalco, S. Posen
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • Th. Proslier
    ANL, Argonne, Illinois, USA
 
  Funding: NSF PHY-1305500 PHY-14116318 DOE ER41802
Recent advances in the study of Nb3Sn at Cornell University have yielded single-cell cavities that show excellent performance without the limiting Q-slope seen in previous work. This performance has been shown to be repeatable across multiple cavities. However, they are still limited by a quench field of approximately 16 MV/m, as well as residual resistance. In this work we present results quantifying the impact of ambient magnetic fields on Nb3Sn cavities, as well as discuss the impact of cavity cooldown procedures on cavity performance. Finally, we will briefly discuss XRD results that shed light on the composition of the Nb3Sn layer and how this relates to the current limits of these cavities.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI012 First Attempt of At-cavity X-ray Detection in a CEBAF Cryomodule for Field Emission Monitoring cavity, cryogenics, electron, ion 3515
 
  • R.L. Geng, E. Daly, M.A. Drury, A.D. Palczewski
    JLab, Newport News, Virginia, USA
 
  We report on the first result of at-cavity X-ray detection in a CEBAF cryomodule for field emission monitoring. In the 8-cavity cryomodule F100, two silicon diodes were installed near the end flange of each cavity. Each cavity was individually tested during the cryomodule test in JLab’s cryomodule test facility. The behaviors of these at-cavity cryogenic X-ray detectors were compared with those of the standard “in air” Geiger-Muller tubes. Our initial experiments establish correlation between X-ray response of near diodes and the field emission source cavity in the 8-cavity string. For two out of these eight cavities, we also carried out at-cavity X-ray detection experiment during their vertical testing. The aim is to track field emission behavior uniquely from vertical cavity testing to horizontal cavity testing in the cryomodule.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI019 Quench Studies of Six High Temperature Nitrogen Doped 9 Cell Cavities for Use in the LCLS-II Baseline Prototype Cryo-module at Jefferson Laboratory cavity, SRF, niobium, injection 3528
 
  • A.D. Palczewski, G.V. Eremeev, R.L. Geng, C.E. Reece
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
Jefferson Lab (JLab) processed six nine-cell cavities as part of a small-scale production for LCLS-II cavity processing development utilizing the promising nitrogen-doping process. [1] Various nitrogen-doping recipes have been scrutinized to optimize process parameters with the aim to guarantee an unloaded quality factor (Q 0) of 2.7·1010 at an accelerating field (Eacc) of 16 MV/m at 2.0 K in the cryomodule. During the R&D phase the characteristic Q0 vs. Eacc performance curve of the cavities has been measured in JLab’s vertical test area at 2 K. The findings showed the characteristic rise of the Q0 with Eacc as expected from nitrogen-doping. Initially, five cavities achieved an average Q0 of 3.3·1010 at the limiting Eacc averaging to 16.8 MV/m, while one cavity experienced an early quench accompanied by an unusual Q 0 vs. Eacc curve. The project accounts for a cavity performance loss from the vertical dewar test (with or without the helium vessel) to the horizontal performance in a cryomodule, such that these results leave no save margin to the cryomodule specification. Consequently, a refinement of the nitrogen-doping has been initiated to guarantee an average quench field above 20 MV/m without impeding the Q 0. This paper covers the refinement work performed for each cavity, which depends on the initial results, as well as a quench analysis carried out before and after the rework during the vertical RF tests as far as applicable.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI019  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI030 Injector Cavities Fabrication, Vertical Test Performance and Primary Cryomodule Design cavity, HOM, dipole, impedance 3551
 
  • H. Wang, G. Cheng, W.A. Clemens, G.K. Davis, K. Macha, R.B. Overton, D. Spell
    JLab, Newport News, Virginia, USA
 
  Funding: Authored by Jefferson Science Associates, LLC under U.S. DOE Contract No. DE-AC05-06OR23177.
After the electromagnetic design * and the mechanical design ** of a β=0.6, 2-cell elliptical SRF cavity, the cavity has been fabricated. Then both 2-cell and 7-cell cavities have been bench tuned to the target values of frequency, coupling external Q and field flatness. After buffer chemistry polishing (BCP) and high pressure rinses (HPR), Vertical 2K cavity test results have been satisfied the specifications and ready for the string assembly. We will report the cavity performance including Lorenz Force Detuning (LFD) and Higher Order Modes (HOM) damping data. Its integration with cavity tuners to the cryomodule design will be reported.
* H. Wang, etc., Proceeding of IPAC2013, Shanghai, China, WEPWO073.
** G. Cheng, etc., Proceeding of PAC2013, Pasadena, CA, WEPAC47.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI036 Design and Prototyping of a 400 MHz RF-dipole Crabbing Cavity for the LHC High-Luminosity Upgrade cavity, dipole, luminosity, HOM 3568
 
  • S.U. De Silva, J.R. Delayen, H. Park
    ODU, Norfolk, Virginia, USA
  • Z. Li
    SLAC, Menlo Park, California, USA
  • T.H. Nicol
    Fermilab, Batavia, Illinois, USA
 
  LHC High Luminosity Upgrade is in need of two crabbing systems that deflects the beam in both horizontal and vertical planes. The 400 MHz rf-dipole crabbing cavity system is capable of crabbing the proton beam in both planes. At present we are focusing our efforts on a complete crabbing system in the horizontal plane. Prior to LHC installation the crabbing system will be installed for beam test at SPS. The crabbing system consists of two rf-dipole cavities in the cryomodule. This paper discusses the electromagnetic design and mechanical properties of the rf-dipole crabbing system for SPS beam test.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPWI051 Update on the CeC POP 704 MHz 5-Cell Cavity Cryomodule Design and Fabrication cavity, SRF, electron, linac 3603
 
  • J.C. Brutus, S.A. Belomestnykh, I. Ben-Zvi, V. Litvinenko, I. Pinayev, J. Skaritka, L. Snydstrup, R. Than, J.E. Tuozzolo, W. Xu
    BNL, Upton, Long Island, New York, USA
  • S.M. Gerbick, M.P. Kelly, T. Reid
    ANL, Argonne, USA
  • T.L. Grimm, R. Jecks, J.A. Yancey
    Niowave, Inc., Lansing, Michigan, USA
  • Y. Huang
    Fermilab, Batavia, Illinois, USA
 
  Funding: Work is supported by Brookhaven Science Associates, LLC under contract No. DE-AC02-98CH10886 with the US DOE.
A 5-cell SRF cavity operating at 704 MHz will be used for the Coherent Electron Cooling Proof of Principle (CeC PoP) system currently under development for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The CeC PoP experiment will demonstrate the ability of relativistic electrons to cool a single bunch of heavy ions in RHIC. The cavity will accelerate 2 MeV electrons from a 112 MHz SRF gun up to 22 MeV. Novel mechanical designs, including the helium vessel, vacuum vessel, tuner mechanism, and FPC are presented. This paper provides an overview of the design, the project status and schedule of the 704 MHz 5-cell SRF for the CeC PoP experiment.
.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWI051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXB1 CEBAF SRF Performance during Initial 12 GeV Commissioning controls, cavity, klystron, operation 3638
 
  • R. Bachimanchi, T.L. Allison, E. Daly, M.A. Drury, C. Hovater, G.E. Lahti, C.I. Mounts, R.M. Nelson, T. E. Plawski
    JLab, Newport News, Virginia, USA
 
  The Continuous Electron Beam Accelerator Facility (CEBAF) energy upgrade from 6 GeV to 12 GeV includes the installation of eleven new 100 MV cryomodules (88 cavities). The superconducting RF cavities are designed to operate CW at an accelerating gradient of 19.3 MV/m with a QL of 3×107. Not all the cavities were operated at the minimum gradient of 19.3 MV/m with the beam. Though the initial 12 GeV milestones were achieved during the initial commissioning of CEBAF, there are still some issues to be addressed for long term reliable operation of these modules. This paper reports the operational experiences during the initial commissioning and the path forward to improve the performance of C100 (100 MV) modules.  
slides icon Slides THXB1 [5.595 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THXB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF005 The SARAF-LINAC Project for SARAF-Phase 2 linac, rfq, solenoid, proton 3683
 
  • N. Pichoff
    CEA/DSM/IRFU, France
  • D. Berkovits, J. Luner, J. Rodnizki
    Soreq NRC, Yavne, Israel
  • P. Bertrand, M. Di Giacomo, R. Ferdinand
    GANIL, Caen, France
  • P. Brédy, G. Ferrand, P. Girardot, F. Gougnaud, M. Jacquemet, A. Mosnier
    CEA/IRFU, Gif-sur-Yvette, France
 
  SNRC and CEA collaborate to the upgrade of the SARAF Accelerator to 5 mA CW 40 MeV deuteron and proton beams (Phase 2). This paper presents the reference design of the SARAF-LINAC Project including a four-vane 176 MHz RFQ, a MEBT and a superconducting linac made of four five-meter cryomodules housing 26 superconducting HWR cavities and 20 superconducting solenoids. The first two identical cryomodules house low-beta (βopt = 0.091), 280 mm long (flange to flange), 176 MHz HWR cavities, the two identical last cryomodules house high-beta (βopt = 0.181), 410 mm long, 176 MHz, HWR cavities. The beam is focused with superconducting solenoids located between cavities housing steering coils. A BPM is placed upstream each solenoid.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF006 Design and Manufacturing Status of the IFMIF-LIPAC SRF LINAC vacuum, cavity, linac, solenoid 3686
 
  • H. Dzitko
    CEA, Pontfaverger-Moronvilliers, France
  • N. Bazin, A. Bruniquel, P. Charon, P. Gastinel, P. Hardy, H. Jenhani, J. Neyret, O. Piquet, J. Relland, N. Sellami
    CEA/IRFU, Gif-sur-Yvette, France
  • S. Chel, G. Devanz, G. Disset, V.M. Hennion, B. Renard
    CEA/DSM/IRFU, France
  • D. Gex, G. Phillips
    F4E, Germany
  • D. Regidor, F. Toral
    CIEMAT, Madrid, Spain
 
  The IFMIF accelerator aims to provide an accelerator-based D-Li neutron source to produce high intensity high energy neutron flux for testing of candidate materials for use in fusion energy reactors. The first phase of the project, called EVEDA (Engineering Validation and Engineering Design Activities) aims at validating the technical options by constructing an accelerator prototype, called LIPAc (Linear IFMIF Prototype Accelerator) whose construction has begun. It is a full scale of one of the IFMIF accelerator from the injector to the first cryomodule. The cryomodule contains all the necessary equipment to transport and accelerate a 125 mA deuteron beam from an input energy of 5 MeV up to output energy of 9 MeV. It consists of a horizontal vacuum tank approximately 6 m long, 3 m high and 2.0 m wide, and includes 8 superconducting HWRs working at 175 MHz and at 4.45 K for beam acceleration. 8 Power Couplers provide RF power to the cavities up to 70 kW CW in the LIPAc case and 200 kW CW in the IFMIF case, with 8 Solenoid Packages acting as focusing elements. This paper gives an overview of the progress, achievements and status of the IFMIF SRF LINAC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF033 The First Operation of 56 MHz SRF Cavity in RHIC cavity, HOM, operation, SRF 3767
 
  • Q. Wu, S.A. Belomestnykh, I. Ben-Zvi, M. Blaskiewicz, L. DeSanto, D. Goldberg, M. Harvey, T. Hayes, G.T. McIntyre, K. Mernick, P. Orfin, S.K. Seberg, F. Severino, K.S. Smith, R. Than, A. Zaltsman
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A 56 MHz superconducting RF cavity has been designed, fabricated and installed in the Relativistic Heavy Ion Collider (RHIC). The cavity operated at 4.4 K with a “quiet helium source” to isolate the cavity from environmental acoustic noise. The cavity is a beam driven quarter wave resonator. It is detuned and damped during injection and acceleration cycles and is brought to operation only at store energy. For a first test operation, the cavity voltage was stabilized at 300 kV with full beam current. Within both Au + Au and asymmetrical Au + He3 collisions, luminosity improvement was detected from direct measurement, and the hourglass effect was reduced. One higher order mode (HOM) coupler was installed on the cavity. We report in this paper on our measurement of a broadband HOM spectrum excited by the Au beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF033  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF073 Progress of the RAON Heavy Ion Accelerator Project ion, ECR, rfq, ion-source 3848
 
  • D. Jeon
    IBS, Daejeon, Republic of Korea
 
  Construction of the RAON heavy ion accelerator facility is under way in Korea that includes both the In-flight Fragment (IF) and Isotope Separation On-Line (ISOL) facilities to support cutting-edge researches in various science fields. Prototyping and testing of major components are proceeding including 28 GHz ECR ion source, RFQ, superconducting cavities, cryomodules, superconducting magnets. Superconducting magnets of 28 GHz ECR ion source are fabricated and tested. First article of prototype superconducting cavities are delivered that were fabricated through domestic vendors and tested at TRIUMF. Prototype HTS(High Tc Superconducting) magnets is in progress. Progress report of the RAON accelerator systems is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF073  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF074 Progress on Superconducting Linac for the RAON Heavy Ion Accelerator cavity, linac, ion, electron 3851
 
  • H.J. Kim, H.C. Jung, W.K. Kim
    IBS, Daejeon, Republic of Korea
 
  The RISP (Rare Isotope Science Project) has been proposed as a multi-purpose accelerator facility for providing beams of exotic rare isotopes of various energies. It can deliver ions from proton to Uranium. Proton and Uranium beams are accelerated upto 600 MeV and 200 MeV/u respectively. The facility consists of three superconducting linacs of which superconducting cavities are independently phased. Requirement of the linac design is especially high for acceleration of multiple charge beams. In this paper, we present the RISP linac design, the prototyping of superconducting cavity and cryomodule.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF074  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF079 A Planning and Scheduling System for the ESS Accelerator Project controls, neutron, linac, project-management 3867
 
  • L. Lari, M.J. Conlon, H. Danared, L. Gunnarsson, G. Jacobsson, M. Jakobsson, M. Lindroos, E. Tanke, J.G. Weisend
    ESS, Lund, Sweden
  • P. Bonnal, L. Lari
    CERN, Geneva, Switzerland
 
  Constructing a large, international research infrastructure is a complex task, especially when a large fraction of the equipment is delivered as in-kind contributions. A mature project management approach is essential to lead the planning and construction to deliver scientifically and technically. The purpose of this paper is to present how the ESS accelerator project is managed in terms of planning and scheduling from the design phase until commissioning, keeping time, budgets and resources constraints, as well as creating and maintaining a strong and trust-based partnership with the external contributors.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPF136 Beam Dynamics Optimization of FRIB Folding Segment 1 with Single-type Re-buncher Cryomodule lattice, cavity, emittance, quadrupole 4042
 
  • Z.Q. He, M. Ikegami, F. Marti, T. Xu, Y. Zhang, Q. Zhao
    FRIB, East Lansing, Michigan, USA
 
  Funding: The work is supported by the U.S. National Science Foundation under Grant No. PHY-11-02511, and the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661.
FRIB is using a charge stripper in folding segment 1 to increase the number of charge states of particles to enhance the acceleration efficiency. To control possible emittance growth after the charge stripper, the 3-dimensional on-stripper beam size should be as small as possible. The original 2-cavity-HWR (HWR stands for half wave resonator) rebuncher cryomodule is responsible for the longitudinal focusing before stripper. In order to accept and transport the beam downstream to linac segment 2, another kind of 3-cavity-QWR (QWR stands for quarter wave resonator) rebuncher cryomodule is baselined after the stripper. However, two kinds of cryomodules would increase the cost in design, therefore would be quite inefficient. In this paper, the FRIB lattice with only single-type 4-cavity-QWR rebuncher cryomodule in folding segment 1 is discussed. Positions of lattice elements are adjusted to accommodate the new type of cryomodule. Beam dynamics is optimized to meet the on-stripper beam requirement. The lattice is then adjusted and rematches.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF136  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
FRXB3 Advances in CW Ion Linacs linac, rfq, cavity, ion 4085
 
  • P.N. Ostroumov
    ANL, Argonne, Illinois, USA
 
  Funding: This work was supported by the U.S. Department of Energy, Office of High Energy Physics and Nuclear Physics, under Contracts DE-AC02-76CH03000 and DE-AC02-06CH11357.
Substantial research and development related to CW proton and ion accelerators are being performed at ANL. A normal conducting CW RFQ and a 4K cryomodule with seven quarter-wave resonators (QWR) and SC solenoids have been developed, built, commissioned and operated as an upgrade of the CW ion linac, ATLAS, to achieve higher efficiency and beam intensities. The new CW RFQ and cryomodule were fully integrated into ATLAS and have been in routine operation for more than a year. Currently we are engaged in development of the first cryomodule for a CW H linac being built at FNAL. This work is well aligned with the development of a 1 GeV 25 MW linac as the driver of a sub-critical assembly for near-term spent nuclear fuel disposal. A 2K cryomodule with eight 162.5-MHz SC half wave resonators (HWR) and eight SC solenoids is being developed for FNAL and scheduled for commissioning in 2017. The testing of the first 2 HWRs demonstrated remarkable performance. Experience with the development and reliable operation of new copper and superconducting accelerating structures is an essential precursor for advanced, reliable future large scale high power CW accelerators.
 
slides icon Slides FRXB3 [4.963 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-FRXB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)