
DISTRIBUTED CONTROL ARCHITECTURE FOR AN INTEGRATED
ACCELERATOR AND EXPERIMENTAL SYSTEM∗

D. J. Gibson†, R. A. Marsh, B. Rusnak
Lawrence Livermore National Laboratory, Livermore, U.S.A.

Abstract
A neutron imaging demonstration system is under con-

struction at LLNL, integrating 4 MeV and 7 MeV deuteron

accelerators with gas-based neutron production target and

the associated supply and return systems. This requires

integrating a wide variety of control points from different

rooms and floors of the Livermore accelerator facility at

a single operator station. The control system adopted by

the commercial vendor of the accelerators relies on the Na-

tional Instruments cRIO platform, so that hardware system

has been extended across all the beamline and experimen-

tal components. Here we present the unified, class-based

framework that has been developed and implemented to con-

nect the operator station through the deployed Real Time

processors and FPGA interfaces to the hardware on the floor.

Connection between the deployed processors and the opera-

tor workstations is via a standard TCP/IP network and relies

on a publish/subscribe model for data distribution. This mea-

surement and control framework has been designed to be

extensible as additional control points are added, and to en-

able comprehensive, controllable logging of shot-correlated

data at up to 300 Hz.

INTRODUCTION
To enable efficient imaging of thick, dense objects, fast

neutrons are an ideal candidate because of their long scat-

tering length compared to photons and charged particles. A

lab-scale, fast-neutron imaging demonstrator is under con-

struction [1], relying on a commercial 7 MeV D+ accelerator

and an experimental high-pressure, high-volume flow D2

windowless gas cell, generating up to 10 MeV neutrons via

the D(d,n)3He reaction. While the accelerator is provided

with dedicated controls, the beamline to deliver the D+ beam

to the target, the gas delivery and recovery systems, and the

rotary valve are all custom and will require an integrated

control architecture to operate.

In order to make ongoing expansion of this experimen-

tal system as simple as possible, efforts have been made to

minimize the variety of control hardware and architectures

used, as well as to standardize the data pathways to and from

control points and monitoring points. Thus the National

Instruments Compact Reconfigurable Input/Output (cRIO)

hardware system has been selected as the baseline for all the

controls, and the LabView programming environment for

software development. This was driven by considerations

∗ This work performed under the auspices of the U.S. Department of Energy

by Lawrence Livermore National Laboratory under Contract DE-AC52-

07NA27344.
† gibson23@llnl.gov

such as the architecture of the commercial accelerator sys-

tems (which use cRIO hardware), the relative ease of use of

the language for the team and new workers, and the robust

support network available from the manufacturer, which

will be important when the technology is deployed to a pro-

duction environment. In this paper we present the basic

communication model of the control system which underlies

the development plan for the couple-dozen different control

point types, and few-hundred individual control points.

SYSTEM ARCHITECTURE
The general model of the control architecture is shown

in Fig. 1. The current design includes 4 real-time/FPGA

combo chassis plus two additonal FPGA-expansion chassis.

At the lowest communication level, custom software runs on

each FPGA unit to read the physical inputs (pressure, temper-

ature, and flow sensors, beam position and current monitors,

etc.) and control the physical outputs (electric and pneu-

matic valves, magnet currents, trigger signals, etc.) based

on the requests from higher level software. Critical machine

protection interlocking is provided at this level (e.g. “turn off

the quadrupole magnet if the water flow stops”). Command

requests and most recent measurements are exchanged by

reading and writing I/O Nodes in the FPGA software. For

shot-correlated, high speed data where lossless transmission

is required, First-In/First Out (FIFO) buffers are used, al-

lowing the higher-level system to collect the data when it’s

ready.

The next level up in the software chain is the embedded

controller. This is a microprocessor running either a Vx-

Works or Linux-based real-time operating system, which al-

lows for deterministic timing of control operations if needed.

This layer brings data from the device into the LabView

software environment to enable communication with the

outside world. The controller could also function as an

EPICS input-output controller [2] with appropriate configu-

ration, should that become necessary. Additional machine

protection (e.g. consolidating inputs from other subsystems),

signal preprocessing (e.g. converting raw bit counts to volt-

ages), or feedback loops are implemented at this level. A

single real-time controller talks to one or more FPGA in-

terfaces, and might also communicate with more sophis-

ticated controls via other protocols (RS-232, TCP/IP, etc.,

used for gaussmeters, turbomolecular pumps, the accelera-

tor controls, and other hardware with self-contained control

functions).

Control of the real-time operating software from the super-

visory system relies largely on the LabView shared variable

architecture, which is used to display current measured val-

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAL043

WEPAL043
2268

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 Accelerator/Storage Ring Control Systems



Operator
Workstation

Windows 7

Embedded
Controller

Linux or vxWorks

FPGA Device

Data on request
(Shared Variables)

Complete data set
(Data Streaming)

Streamed (lossless) Data
(Target-to-Host FIFOs) 

Controller Requested Data
(I/O Nodes)

Signals

Figure 1: Summary of command flow mechanisms of the neutron imaging control system architecture.

ues and to send command requests to the field devices. The

architecture also provides the Data Streaming System, where

the supervisor can register to receive broadcast messaged

from the real-time host, allowing a stream of data to be plot-

ted, logged, or otherwise processed without missing any

valves.

At the highest level of the software lay the operator work-

stations and supervisory system. This interface provides the

visual feedback to the operator of the current system status,

allows for command entry, and is also responsible for data

archiving. In general, there is a single operator workstation;

however, there is also a redundant “local” control station for

the gas compressor system collocated with that hardware.

There is also the possibility that for operational reasons in the

future a secondary workstation near the accelerator might be

desirable. Thus all the controls are designed to be replicated

across workstations so devices can be actuated from any

location.

DATA STREAMING SYSTEM
In addition to reporting current control values to the oper-

ator, the system is also capable of logging data values either

periodically or on every trigger. The real-time software runs

a data streaming engine over the TCP/IP network. Whenever

new data is acquired, the system, in addition to publishing

the value to the shared variable engine, will broadcast the

value to any registered listeners. This allows lossless data

flow to a remote machine that can then archive the data.

Built in buffering capabilities enable data collection at up to

300 Hz, delivered to the supervisory system when it is able

to receive it. An abstract model of this streaming service is

shown in Fig. 2.

Abstract Classes
LabView offers an object-oriented architecture known

as the “Actor Framework” to enable easy segmentation of

operations into semi-independent tasks. This provides the

base code necessary to reliably start up multiple tasks that

can run unsupervised, as well as a queue-based message

handling scheme to allow inter-task communications. This

architecture is the basis for the data distribution system.

The data distribution system relies on 4 abstract classes of

actors, which are subclassed to handle specific cases. This

allows, for example, the developer to select among different

message transmission methods (simple TCP messaging, the

zero-MQ protocol [3], or even a service that behaves like a

full EPICS implementation) without having to change the

hardware interface code. These abstract classes are:

• BroadcastingActor: A class that is used to spin up

processes that actually generate data that needs to be

transmitted. These subclasses are assigned to a trans-

mitter and automatically know what to do with their

data. This can either do all the interfacing with a con-

trol element directly, or it can use a ControlHandler

subclass to easily interface with multiple control points.

• Transmitter: A class that collects data from the

BroadcastingActors and sends it to Receivers that

have subscribed to that data. This is subclassed to de-

fine the method of data transmission. There is generally

one broadcaster per real-time system.

• Receiver: A mate class to the Transmitter that sends

subscription requests to the associated transmitter and

collects the data to pass on to a local Processor. There

is one receiver per processor and per broadcaster. Like

the Transmitter, this is subclassed to deal with the

specific mechanism of data transfer between the sys-

tems.

• Processor: The class that actually does something

with the data (e.g. logging it to a file or plotting in

a chart). The Processor is created and assigned a

Receiver to collect the data from the Transmitter.

The system also relies on two additional abstract classes for

support:

• Datagram: A class that actually carries the data

and metadata (e.g. names, timestamps, shot counts,

etc.) from the BroadcastingActor to the Processor.

These are the elements these streming classing can han-

dle, and subclasses are created to deal with specific

data.

• ControlHandler: A class that a broadcasting actor

can use to handle simple interfaces with FPGA hard-

ware. It knows how to interface between the shared

variables and the FPGA commands, and how to gener-

ate datagrams. An example would be the PolingActor

subclass of the BroadcastingActor, which takes an

array of ControlHandlers and periodically asks each

of them to update their values.

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAL043

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 Accelerator/Storage Ring Control Systems

WEPAL043
2269

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.



Supervisory System RealTime System

Datagrams
Broadcasting Actor

Broad-
casting
Actor

Receiver

Processor

Control
Handler

Transmitter

Receiver

Processor

Data to operator

Data to operator

Data to operator

Commands from operator
(c

ha
rt

s,
 lo

g 
fil

es
, e

tc
.)

(li
ve

di
sp

la
y)

FPGARS232,
TCP/IP,etc.

Real World

Control
Handler

Shared 
Variable
Engine

Shared
Variables

Figure 2: Heirarchy and data flow of the custom data stream-

ing service developed for system controls.

Transmitting and Receiving
Generally, Transmitter and Receiver are subclassed in

pairs for each communication protocol to be used. However,

single subclasses will sometimes be used for communica-

tion to a system that is transmitting data by a defined proto-

col outside the control system architecture (e.g. receiving

data streams from the accelerator, which are defined by the

manufacturer). A receiver is configured with a list of data-

gram channels to register for and given to a processor to be

launched. It is expected that the processor will only receive

the datagrams corresponding to registered control channels,

but how the broadcaster and receiver implement that will

vary with the protocols used; the filtering of data can occur at

either the broadcaster or the receiver, depending on whether

network bandwidth or broadcaster CPU resources are more

scarce.

Most data exchange in system is done using National In-

struments STM (Simple Messaging) capability. This suite

of VIs encapsulates TCP connections with a small amount

of metadata and allows for a variety of message types to be

exchanged between devices with minimal overhead. It also

provides basic connection management functionality which

makes designing a transmitter straightforward. The STM-

Receiver connects to a STMTransmitter and requests the

desired control channels. An EPICS-like “search” service,

to find a control channel without needing to know which

device owns it, is planned for a future upgrade.

Special Data Handling
Most datagrams are just that: packets of data to be stored,

plotted, or processed. However, there are two special types

of data that require different handling: error messages and

metadata.

Error Messages Many processes can encounter erro-

neous conditions: devices connected via serial or Ethernet

ports may be powered off or otherwise non-responsive, poor

code could put devices in unexpected states, or the system

may have difficultly loading and running the FPGA code.

During development, reporting these errors is important for

debugging. During operation, the operator should be in-

formed of any unexpected responses. Thus any code with

error-handling functionality transmits that error data via an

ErrorDatagram. A dedicated operator panel collects all

these error messages and displays them, one for each con-

trol channel. New errors are highlighted in red to catch the

operators attention. As long as the same error code keeps

getting generated on the same device (e.g. a gaussmeter

keeps timing out because it’s off), the error remains in the

display. Once that error stops being generated, the error in-

dicator changes to black or drops off the list at the operators

discretion. All errors are also logged to a file for later review.

MetaDatagrams In addition to the experimental data

they deliver, some control points have a set of metadata that

might be useful in evaluating or understanding the data at a

later time. This includes device serial numbers, calibration

factors, filter settings, scale ranges, etc. This metadata might

be gathered by querying the device in question or might be

manually recorded as sensors are installed in the system.

Like regular data, metadata is distributed in the form of

datagrams, using the GenericMetaDatagram subclass,

which provides key/value pairs of metadata in a 2D string

array. This datagram is sent to the transmitter via a special

“SetMetadata” message, which tells the transmitter to keep

a local copy of the datagram in addition to forwarding it to

subscribers. When a new receiver subscribed to that data

channel, the Transmitter will send the stored meta-datagram

as the first message so the receiver has a copy.

CONCLUSION
The framework developed here allows for integrated con-

trol and readout of a wide variety of devices and sensors,

gather data of various types at a variety of rates, including

shot-correlated performance parameters. Custom subclasses

of BroadcastingActors and ControlHandlers are be-

ing developed to interface with each control loop in the

system. With this readily extensible framework in place,

adding a new piece of hardware requires only writing the

interface code and wiring up the device, and data collection

then happens automatically.

REFERENCES
[1] B. Rusnak et al., “Advancement of an accelerator-driven high-

brightness source for fast neutron imaging” in Proc. of 8th Int.
Part. Accel. Conf. (IPAC ’17), Copenhagen, Denmark, May.
2017, paper WEOBB3, pp. 2533–2536.

[2] A. Veeramani, T. F. Debell, W. Blokland, R. Dickson, and

A. P. Zhukov, “Options for Interfacing EPICS to COTS Hard-

ware Through LabVIEW”’ in Proc. 12th Int. Conf. on Accel.
and Large Exp. Phys. Control Syst. (ICALEPCS ’09), Kobe,
Japan, October 2009, paper THD004, pp. 913–915.

[3] Distributed Messaging - zeroMQ, http://zeromq.org/

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAL043

WEPAL043
2270

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T04 Accelerator/Storage Ring Control Systems


