INVARIANTS OF LINEAR EQUATIONS OF MOTION

N.Kazarinov ${ }^{\#}$, JINR, Dubna, Moscow Region 141980, Russia

Abstract

Invariants of linear equations of motion generated by second and higher order moments of a beam distribution function are presented in this report.

INTRODUCTION

Courant-Snyder invariant and Root Mean Square (RMS) beam emittance are well-known invariants of linear equation of motion. They are connected with the second order moments of a beam distribution function. Other invariants of linear equations of motion generated by second and higher order moments are presented in this report.

SECOND ORDER INVARIANTS

Considering 2D problem let us introduce the vector $Y^{T}=\left(x_{1}, x_{1}^{\prime}, x_{2}, x_{2}^{\prime}\right)=\left(Y_{1}^{T}, Y_{2}^{T}\right)$, where superscript T defines transpose vector or matrix, prime denotes derivative with respect to distance s along the beam trajectory. In the linear approximation the components of vector Y satisfies to matrix equations:

$$
Y_{1,2}^{\prime}=A_{1,2} Y_{1,2} \quad ; \quad A_{1,2}=\left(\begin{array}{cc}
0 & E_{1} \tag{1}\\
b_{1,2}(s) & 0
\end{array}\right)
$$

Here $E_{\mathrm{n}}(\mathrm{n}=1)$ is unit matrix of n -th order, $b_{1,2}$ are square matrix of n-th order defined by electromagnetic fields [1]. It should be noted that for motion in longitudinal magnetic field representation of the matrices $A_{1,2}$ in form (1) is valid in coordinate frame rotating with Larmor's frequency around the longitudinal axis.
The second order moments M of the beam distribution function f are defined in accordance with formula:

$$
\begin{equation*}
M=\overline{Y Y^{T}}=\frac{1}{N} \int Y Y^{T} f d y \tag{2}
\end{equation*}
$$

Here N is number of particle per unit beam length, integration in (2) is fulfilled over all phase space occupied by particles. In accordance with system (1) matrix M satisfy the equation [1]:

$$
M^{\prime}=A M+M A^{T} \quad ; \quad A=\left(\begin{array}{cc}
A_{1} & 0 \tag{3}\\
0 & A_{2}
\end{array}\right)
$$

The well-known invariants of the system (3) are RMSemittances $\varepsilon_{1,2} \quad[2,3]$ for both transverse degrees of

[^0]freedom:
\[

$$
\begin{equation*}
\varepsilon_{k}^{2}=\overline{x_{k}^{2}} \overline{x_{k}^{\prime 2}}-\left(\overline{x_{k} x_{k}^{\prime}}\right)^{2}=\mathrm{const} \quad ; \quad k=1,2 \tag{4}
\end{equation*}
$$

\]

The RMS-emittances (4) are the determinants of matrices $\overline{Y_{k} Y_{k}^{T}}$. It may be shown that the determinant Δ_{12} of matrix $\overline{Y_{1} Y_{2}^{T}}$ is also constant along the beam trajectory [4]:

$$
\begin{equation*}
\Delta_{12}=\overline{x_{1} x_{2}} \overline{x_{1}^{\prime} x_{2}^{\prime}}-\overline{x_{1} x_{2}^{\prime}} \overline{x_{1}^{\prime} x_{2}}=\text { const } \tag{5}
\end{equation*}
$$

Each vector Y_{k} defines the invariant I_{k} :

$$
\begin{equation*}
I_{k}=Y_{k}^{T}\left(\overline{Y_{k} Y_{k}^{T}}\right)^{-1} Y_{k}=\mathrm{const} \tag{6}
\end{equation*}
$$

Here superscript " -1 " denotes inverse matrix. The expression (6) is analog of Courant-Snyder invariant. Indeed, by introducing Twiss's parameters according to formula:

$$
\overline{Y_{k} Y_{k}^{T}}=\varepsilon_{k}\left(\begin{array}{cc}
\beta_{k} & -\alpha_{k} \tag{7}\\
-\alpha_{k} & \gamma_{k}
\end{array}\right)
$$

it can be reduced to standard form:

$$
\begin{equation*}
\beta_{k} x_{k}^{\prime 2}+2 \alpha_{k} x_{k} x_{k}^{\prime}+\gamma_{k} x_{k}^{2}=\text { const } \tag{8}
\end{equation*}
$$

The pair of vectors (Y_{1}, Y_{2}) produce the "coupling" invariant:

$$
\begin{equation*}
\left.\left.I_{12}=Y_{1}^{T} \overline{\left(Y_{1} Y_{1}^{T}\right.}\right)^{-1} \overline{Y_{1} Y_{2}^{T}} \overline{\left(Y_{2} Y_{2}^{T}\right.}\right)^{-1} Y_{2}=\mathrm{const} \tag{9}
\end{equation*}
$$

which coincides with (6) in the case $Y_{2}=Y_{1}$.

HIGHER ORDER INVARIANTS

Higher moments of the distribution function $M_{i_{n} i_{n-1} \cdots i_{1}}^{(n)}$, where indices i_{k} vary from 1 to N_{p}, are introduced according to the definition (2):
$M_{i_{n} i_{n-1} \cdots i_{1}}^{(n)}=\overline{y_{i_{1}} y_{i_{2}} \cdots y_{n}} \quad ; \quad N_{p} \geq i_{1}, \cdots, i_{n} \geq 1$,

Here N_{p} - is the phase space dimension. In accordance with the formula (10) the total number of moments of
order n is N_{p}^{n}. Not all of them are independent, since the product $Z_{i_{1} i_{2} \cdots i_{n}}^{(n)}$:

$$
\begin{equation*}
Z_{i_{1} i_{2} \cdots i_{n}}^{(n)}=y_{i_{1}} y_{i_{2}} \cdots y_{i_{n}} \tag{11}
\end{equation*}
$$

is symmetric with respect to any permutation of indices i_{k}.

To resolve this uncertainty, only the independent products $Z_{i_{1} i_{2} \cdots i_{n}}^{(n)}$ of order n are taken into account. This means that the product $Z_{i_{1} i_{2} \cdots i_{n}}^{(n)}$ can not be obtained from the other by any permutation of indices. To fulfil these conditions indices i_{k} must satisfy the system of inequalities:

$$
\begin{equation*}
N_{p} \geq i_{n} \geq i_{n-1} \geq \cdots \geq i_{2} \geq i_{1} \geq 1 \tag{12}
\end{equation*}
$$

Each product $Z_{i_{1} i_{2} \cdots i_{n}}^{(n)}$ of order n with the sequence of indices satisfying the inequalities (12) can be put in one-to-one correspondence with the number i :

$$
\begin{equation*}
i=i_{1}+\sum_{k=2}^{n}\binom{i_{k}+k-2}{k} \tag{13}
\end{equation*}
$$

where $\binom{m}{k}=\frac{m!}{k!(m-k)!}-$ are binomial coefficients.
The number N_{n} of independent products of order n and, therefore, of the moments $M_{i_{n^{\prime}-1} i_{n-i_{1}}^{(n)}}^{(n)}$ of order n in accordance with the formula (13) is:

$$
\begin{equation*}
N_{n}=N_{p}+\sum_{k=2}^{n}\binom{N_{p}+k-2}{k}=\binom{N_{p}+n-1}{n} \tag{14}
\end{equation*}
$$

The last formula may be proved by induction. The number N_{n} of moments of order n for the different dimensions of the phase space N_{p} is given in Table 1.

Table 1: Number of moments of order n

n	$N_{p}=2$	$N_{p}=4$	$N_{p}=6$
1	2	4	6
2	3	10	21
3	4	20	126
4	5	35	252
5	6	56	462
6	7	84	792

The dependence of components of tensor $Z_{i_{i} i_{2} \cdots i_{n}}^{(n)}$ on distance s can also be studied by means of matrix
formalism. Let us introduce the vector Y_{n} of dimension N_{n} :

$$
Y_{n}=\left(\begin{array}{c}
y_{1}^{n} \tag{15}\\
y_{1}^{n-1} y_{2} \\
\vdots \\
y_{N_{p}}^{n}
\end{array}\right)
$$

which components are independent products $(11,12)$. In the case of linear equation of motion vector Y_{n} satisfies the system of equations:

$$
\begin{equation*}
Y_{n}^{\prime}=A_{n} Y_{n} \tag{16}
\end{equation*}
$$

where elements of $\left(N_{n} \times N_{n}\right)$ matrix A_{n} are linear combination of elements of matrix A (3). For example, when $N_{p}=2$ matrix A_{n} has the following form:

$$
A_{n}=\left(\begin{array}{ccccc}
0 & n & 0 & \cdots & 0 \tag{17}\\
-k^{2}(s) & 0 & n-1 & \cdots & 0 \\
\vdots & \vdots & \vdots & \vdots & \vdots \\
0 & \cdots & -(n-1) k^{2}(s) & 0 & 1 \\
0 & \cdots & 0 & -n k^{2}(s) & 0
\end{array}\right)
$$

In this case A_{1} coincides with (1).
The moments $M_{i_{n} i_{n-1} \cdots i_{1}}^{(n)}$ of order n are equal to:

$$
\begin{equation*}
M_{i_{n} i_{n-1} \cdots i_{1}}^{(n)}=\overline{Y_{n}} \tag{18}
\end{equation*}
$$

and the equations for them coincide with the system (16).
Each pair of vectors Y_{n}, Y_{m} define invariant $I_{n m}$:

$$
\begin{equation*}
I_{n m}=Y_{n}^{T}\left(\overline{Y_{n} Y_{n}^{T}}\right)^{-1} \overline{Y_{n} Y_{m}}\left(\overline{Y_{m} Y_{m}^{T}}\right)^{-1} Y_{m}=\text { const } \tag{19}
\end{equation*}
$$

Indeed, the moments of ($\mathrm{n}+\mathrm{m}$) order $\overline{Y_{n} Y_{m}}$ in accordance with the system (7) satisfies the following equations:

$$
\begin{equation*}
\left.\overline{\left(Y_{n} Y_{m}^{T}\right.}\right)^{\prime}=A_{n} \overline{Y_{n} Y_{m}^{T}}+\overline{Y_{n} Y_{m}^{T}} A_{m}^{T} \tag{20}
\end{equation*}
$$

Using equations $(16,20)$ is easy to show compliance of equality:

$$
\begin{equation*}
I_{n m}^{\prime}=0 \tag{21}
\end{equation*}
$$

which implies the invariance of $I_{n m}$. For $\mathrm{n}=\mathrm{m}=1$ formula (19) coincides with the Courant-Snyder invariant (6).

In the absence of damping in addition to the invariants (19) the values of the determinants Δ_{n} of matrices $Y_{n} Y_{m}^{T}$ are integrals of motion. The value of Δ_{n} varies along s according to the equation:

$$
\begin{equation*}
\frac{1}{\Delta_{n}} \Delta_{n}^{\prime}=2 \operatorname{Tr}\left(A_{n}\right) \tag{22}
\end{equation*}
$$

where $\operatorname{Tr}\left(A_{n}\right)$ - is trace of matrix A_{n}. In the absence of damping $\left(\operatorname{Tr}\left(A_{n}\right)=0\right)$ one can get:

$$
\begin{equation*}
\Delta_{n}=\text { const } \tag{23}
\end{equation*}
$$

For $n=1$ last formula defines conservation of beam RMS emittance.

REFERENCES

[1] N.Kazarinov. Transfer Matrix of Linear Focusing System in the Presence of Self Field of Intense Charged Particle Beam. In: Proceeding of the 10th European Particle Accelerator Conference EPAC2006, Edinburgh, 26-30 June 2006, p.p. 28172819.
[2] F.J.Sacherer RMS Envelope Equations with Space Charge. In: Proceedings of the 1971 Particle Accelerators Conference, Chicago, IL, IEEE Transaction, NS-18, 3,1971.
[3] P.M.Lapostolle. Possible Emittance Increase Through Filamentation Due to Space Charge in Continuous Beam. In: Proceedings of the 1971 Particle Accelerators Conference, Chicago, IL, IEEE Transaction, NS-18, 3,1971.
[4] N.Kazarinov. Coupling Resonance $\mathrm{Qx}-\mathrm{Qy}=0$ and Its Correction in Axial Injection Channel of the Cyclotron. In: Proceedings of the 2009 Particle Accelerator conference PAC09, May 04-08, Vancouver, Canada.

[^0]: \#nyk@lnr.jinr.ru

