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Abstract 
Peta-scalable software packages for beam dynamic 

simulations are being developed and used at Argonne 
national laboratory. The standard Particle-In-Cell (PIC) 
method and direct Vlasov solvers in up to 4 dimensions 
have been developed and benchmarked with respect to 
each other. Both of them have successfully run on 32 
thousands processors on BG/P at Argonne Leadership 
Computing Facility. Peta-scale computing facility at ANL 
provides suitable environment for simulating beams in 
large scale. We have simulated charged beams through 
traditional PIC method as well as direct solving of the 
Vlasov equation in higher dimensions. Several scalable 
Poisson solvers have been developed and incorporated 
with these methods. High-order numerical methods have 
been adopted for solving the Poisson and Vlasov 
equations. Preliminary results on direct Vlasov solvers 
have been obtained in up to 4 dimensions. Domain 
decomposition method has been used for the 
parallelization in these software packages, and good 
scaling has been achieved. These packages have been 
successfully applied in end-to-end simulation of linear 
accelerators and large scale accelerator design 
optimizations. There are still lots of places can be 
improved for the PIC method and lots of challenges exist 
in the direct Vlasov solvers, therefore, more efforts are 
needed in both algorithms and applications. 

  
INTRODUCTION 

Plasma and charged beams are of great importance in 
modern science and technology. Their researches become 
more and more rely on the simulations. Simulating 
plasma and charged beams has three different methods:  
microscopic model, kinetic model and fluid model. In the 
microscopic model, each charged particle is described by 
6 variables (x, y, z, zyx vvv ,, ). Therefore, for N particles, 
there are 6N variables in total. This requires solving the 
Vlasov equation in 6N dimensions, which exceeds the 
capability of current supercomputers for large N. On the 
other end is the fluid model which is the simplest model, 
because it treats the plasma as a conducting fluid with 
electromagnetic forces exerted on it. This leads to solving 
the Magneto-hydrodynamics (MHD) equations in 3D (x, 
y and z). MHD solves for the average quantities, such as 
density and charge, which makes it difficult to describe 
the fine structure in the plasma. Between these two 
models is the kinetic model, which solves for the charge 

density function by solving the Boltzmann or Vlasov 
equations in 6 dimensions (x, y, z, zyx vvv ,, ). The Vlasov 
equation describes the evolution of a system of particles 
under the effects of self-consistent electromagnetic fields. 
The model been used in current beam dynamics 
simulations is the kinetic model. There are two different 
ways to solve it. The dominant one is the so called 
Particle-In-Cell (PIC) method, which utilizes the motion 
of the particles along the characteristics of the Vlasov 
equation using a Lagrange-Euler approach [1, 2]. The PIC 
method has the advantages of fast speed and easy 
implementation, but similar to MHD, it is hard to capture 
the fine structures in the plasma. Furthermore, there is 
noise associated with the finite number of particles in the 
simulations. With petascale computing, one-to-one 
simulation can be realized for 910  particles. But for more 
intense beams, PIC method still uses macro particles. The 
other way to solve the kinetic model is to solve the 
Vlasov equation directly. But the challenge is the high 
dimensions. For example, in order to simulate beam in 
3D, Vlasov equation has to be solved in 6D. This clearly 
needs peta-scale computing, and the peta-scalable 
algorithms are critical to the success. During the past 5 
years, we have developed several software packages to 
meet these demands. This paper presents our efforts on 
developing peta-scalable algorithms to simulate charged 
beams in linear accelerators.  

PARALLEL POISSON SOLVERS 
In both approaches, Poisson’s equation has to be solved 

in 2D or 3D to account for the space charge effect. In 
designing peta-scalable algorithms, it is usually the most 
challenging part. Therefore, we present our work on this 
first. Several different methods have been adopted and are 
given in following: 

Fourier Method 
 
 
 
 
 
This is the most standard method for solving the 

Poisson’s equation in box region with Cartesian 
coordinate system. The potential has been expanded in 
Fourier series in all three directions. Periodic and 
Dirichlet zero boundary conditions have been applied in 
all three directions. 
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Three different domain decomposition methods have 
been implemented as shown in Fig.1. Using model C, it is 
easy to use tens of thousands of processors with relatively 
small grid for space charge calculation. For example, 
solving the Poisson’s equation on 332 mesh can use 32 
thousands processors with model C, while only one 
thousand with model B and 32 processors with model A. 
This makes it possible to use small mesh for the space 
charge calculation. Since relatively small grid can be used 
for space charge calculation, good scaling has been 
obtained and can be found in [3, 4]. 

Fourier hp-Finite Element Method 
This solver is developed for cylinder coordinate system. 

The potential is expanded in Fourier series in the axial 
and circumferential directions, while it uses hp-finite 
element expansion in the radial direction. 

 
 
 
 
 
 
 
 
 
 
 
Domain decomposition in the radial and circumferential 

directions has been implemented as shown in the Fig. 
1(4). Periodic B.C. has been applied in the axial and 
circumferential directions and zero Dirichlet B.C. have 
been applied in the cylinder wall. Detailed method and 
benchmark results can be found in [2]. 

 

Hp-Finite Element Method on Structured Grid 
In our Vlasov solvers, a parallel Poisson solver based 

on hp-FEM on structured grid has been constructed. 2D 
bases have been shown on the left of the Fig. 2(1). The 
2D structured mesh is shown in Fig. 2(2). Continuous 
Galerkin (CG) method has been used and zero Dirichlet 
B.C. has been imposed. The potential distribution is 
shown in Fig. 2(3). Due to the memory limitation, only 
the iterative solver can be used for solving boundary 
modes of the 2D Poisson’s equation when the mesh is 
large. Interior modes in each element have been solved 
directly according to the Shur complement. The discrete 
system of Poisson’s equation can be written as: (b and i 
correspond to boundary and interior variables) 
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Hp-Finite Element Method on Unstructured Grid 
In order to solve Poisson’s equation in complex 

geometries, a parallel Poisson solver using hp-FEM on an 
unstructured grid has been developed recently. Since 
finite element method (FEM) can handle complex 
geometry easily, and spectral method can achieve high 
order accuracy. Combine these two, hp-FEM can handle 
the complex geometry and also achieve high order 
accuracy at the same time. The 2D unstructured mesh is 
shown in Fig. 2(4). 

The potential is expressed as 
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Figure 2: 2D expansion functions (1), 2D structured mesh (2), potential in 2D (3) and 2D structured mesh (4). 
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            Model A                      Model B                              Model C                             Cylinder 
Figure 1: Domain decomposition method for solving Poisson’s equation in Cartesian (1, 2 and 3) and Cylinder (4) 
coordinate systems  
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The continuous Galerkin formula for solving the 
Poisson’s equation is 
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BEAM DYNAMIC SIMULATION  
WITH PIC METHOD 

 
In the last several years, we have developed a parallel 

PIC solver based on the serial version, TRACK, which 
was developed in physics division at ANL. Particles have 
been distributed evenly over all processors, and parallel 
Poisson solvers described above have been used for the 
space charge effect. Parallel algorithm and detailed 
benchmark results can be found in [2, 3 and 4]. As small 
mesh can be used for calculating space charge effect, 
PTRACK has achieved good scaling as shown in Table 1. 
Recently PTRACK has been used for end-to-end 
simulation of full LINAC system. It can also be used for 
one-to-one simulation for some beams such as that in 
FNAL proton driver. Totally 865M charged particles have 
been simulated from 50 keV to 2.5 MeV in 325 Mhz radio 
frequency quadrupole of a proton driver at FNAL. Figure 
3 shows the comparison of contour in ( WW /, Δφ ) plane 
with 1M, 10M, 100m and 865M particles. As can be seen, 
using large number of particles provides much more 
accurate information and this is useful to the accelerator 
design and optimizations. Now PTRACK has been used 
as workhorse for large scale optimizations. 

 
BEAM DYNAMIC SIMULATION BY  

DIRECT SOLVING VLASOV EQUATION 
In order to overcome the shortcoming of the PIC 

solvers, we have developed direct Vlasov solvers. The  

 
 

Table 1: Weak scaling of PTRACK 
CPU Time/cell Particle # Parallel Efficiency 

256 384 55M 100% 

512 384 220M 100% 

1024 388.7 220M 98.8% 

2048 400.6 440M 95.8% 

4096 385 880M 99% 

distribution function ),,( tvxf rr  in phase space is 
governed by the Vlasov equation. 

Vlasov equation in 1P1V phase space 
In 1P1V phase space, the non-dimensional Vlasov 

equation can be written as following: 
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Vlasov equation in 2P2V phase space 
In beam dynamics, a simplified model can be deduced 

in 2P2V form as a paraxial model based on the following 
assumptions: 

• The beam is in a steady-state: All partial derivatives 
with respect to time vanish; 

• The beam is sufficiently long so that the longitudinal 
self-consistent forces can be neglected; 

• The beam is propagating at a constant velocity 
bv

 

along the propagation axis z; 
• Electromagnetic self-forces are included; 
•  , and ~ ),,,( byxbzzyx ppppppppp <<=r

  where bb mvp γ= is the beam momentum. It follows in 
particular that 

2/122 )1(  ,)/( −−=≈=≈ bbbb cv βγγββ  
• The beam is narrow: the transverse dimensions of 

the beam are small compared to the characteristic 
longitudinal dimension. The paraxial model can be 
written as: 

 

 
Figure3: ( ΔW/Wφ, ) plane contour with 1M(1), 10M(2), 100M(3) and 865M(4) particles   
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,where sΦ  is the self-consistent electric potential due to 
charges. eE

r
 and eB

r
 are external electric and magnetic 

fields. bv  is the reference beam velocity. 

Numerical Algorithm 
The Semi-Lagrangian Method (SLM) [9] has been used 

for time integration. A plot explains the idea has been 
shown on the left of Fig. 4(1). The time splitting scheme 
has been used for time integration as proposed by Cheng 
and Knorr [10].  4D domain decomposition has been 
adopted as shown in Fig. 4(2). 

Benchmarks and Simulation Results 
The code comprises two major parts: interpolation and 

space charge (SC) calculation. The SLM performs back 
tracking and interpolation respectively in the physical and 
velocity spaces. Each processor has only part of the 
global mesh for the space charge calculations. The field 
mesh and space charge mesh are different. This scheme 

has the advantage of easy implementation and no 
communication for particle tracking is required. However, 
this method requires large memory in each processor and 
intense communication for the parallel Poisson solver.  

Good scaling has been achieved. The right plot in Fig. 
5(left) shows the strong scaling results for both the 
Poisson and Vlasov solvers in 2P2V simulations. It shows 
that the Vlasov solver can have good scaling because the 
most time consuming part is the interpolation. And since 
the interpolations are local on each processor, there is no 
communication between different processors. So even 
when the scaling of the Poisson solver becomes worse 
with 4k processors, the overall scaling is still good. 

Figures (3 and 4) in Fig. 4 show the time history of 
log(Ex) for linear and strong Landau damping. The initial 
particle distribution function and the related parameters 
are shown in following: 

 
 
 
 
 
 
 
For the linear Landau damping, alpha=0.01, and for the 

strong Landau damping, alpha is 0.5. Clearly they 
represent different dynamics. The decreasing and 
increasing rate can be measured and are consistent with 
theoretical predictions and other researchers.    

2P2V Simulations 
In 2P2V simulations, a proton beam has been simulated 

through alternating hard edge electric quadruple channel. 
The initial emittance is πε 200= mm mrad, and the 
energy is W=0.2 MeV. The current of the beam is 0.1 A, 
and the reference velocity is 61019.6 ×=bv m/s. The 
transverse physical space is [-0.12, 0.12] by [-0.12, 0.12], 
and the velocity space is ]108,108[ 55 ××−  by 

]108,108[ 55 ××−  m/s. The alternating electric quadruple 
field is defined as ))(- ,)((),,( 00 yzkxzkzyxEe =

r
 and 

shown in Fig. 5(right).  
Figure 6 shows the comparison of TRACK (solid) and 

Vlasov (dotted) simulations using a Gaussian beam: 
Xrms(left upper), Yrms(lower−le ft), X′rms(upper right), 
Yr′ms(lower right) for a 100 mA proton beam. As can be 
seen, they match each other quite well. Figure 7 shows 
the beam contours in (x, y), (x, x’), (y, y’) and (x’, y’) 
phase planes at t=0 and 1 time period. More detailed 
information on 1P1V and 2P2V Vlasov simulations can 
be found in [2]. 

 
SUMMARY 

This paper presents our researches on developing 
peta-scalable algorithms for large scale beam dynamic 
simulations. Both PIC method and direct Vlasov 
method have been used. Different parallel Poisson 
solvers have been developed to satisfy the requirement 
of counting space charge effect in various solvers. 
Domain decomposition has been adopted for 
parallelization of TRACK code. PTRACK has now 
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Figure 4: Semi-Lagrange Scheme (1), 4D domain decomposition (2), Linear Landau Damping (3), Strong Landau 
Damping (4) 
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Figure 5: Scaling of 2P2V Vlasov solver (left) and 
alternating electric focusing force (right) 
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been used for large scale beam dynamic optimization 
and real accelerator simulations. These Poisson solvers 
adopted different numerical techniques in different 
conditions, such as using Cartesian and Cylindrical 
coordinate systems, using structure and unstructured 
grids, etc.  Direct Vlasov solvers have been developed 
for 2D and 4D. A high-order hp-FEM has been used. 
The advantages and effectiveness of the hp-FEM have 
been demonstrated. The Vlasov solvers have adopted 
the Semi-Lagrangian method. Similarly domain 
decomposition has been used for parallelization of 
these solvers. Scalable Poisson solvers have been 
developed with hp-FEM. Linear and strong Landau 
damping have been studied with direct 2D Vlasov 
solver, and results clearly captured the physics of these 
phenomena. Direct 2D Vlasov solver can be applied to 
study more problems in plasma and charged beams 
later. Benchmarks of the parallel models have shown 
good scaling on BlueGene/P at ANL with up to 32k 
processors. The hp-FEM shows its advantages in these 
direct Vlasov solvers, such as local interpolation, easy 
parallelization and long time integration. These 
explorations are encouraging, and more investigation 
will be done.  
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Figure 7: From top to bottom are contours in the (x, 
y), (x, x’), (y, y’) and (x’, y’) planes, from left to right 
correspond to t=0 and 1 time period.

           
Figure 6: Comparison of TRACK (solid) and 
Vlasov (dotted) simulations using a Gaussian 
beam: Xrms(left-upper), Yrms(lower-left), 
X’rms(upper-right), Y’rms(lower-right) for a 100 
mA proton beam. 
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