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Abstract

Octupole magnets can be used as a passive cure against
transverse collective instabilities. The octupole field
creates a betatron frequency spread due to amplitude-
dependent tune shift and thus enhances Landau damping.
The drawback is the reduction of the dynamic aperture
(DA). Ultimately, a balance between collective damping
and DA must be found. Here we analyse the transverse co-
herent instability thresholds in SIS100 [1] with octupoles
and nonlinear space-charge taken into account. As the ma-
jor impedance source at low frequencies, the resistive wall
is considered. A coasting beam is assumed, which results
in a conservative stability estimation. On the other hand,
we simulate the DA of the SIS100 lattice using the MADX
code, with systematic multipole errors, random multipole
errors, and closed-orbit errors taken into account.

COHERENT STABILITY

Landau damping due to the momentum spread [2] can
be characterized by the efficient betatron tune spread,

δQξ = |η(n − Q0) + Q0ξ| δp ,

for the slow waves f = (n − Q0)f0, which describe the
unstable spectrum in a coasting beam. Here f0 = ω0/2π
is the revolution frequency, Q0 is the bare betatron tune,
ξ = d ln Q/d ln p is the chromaticity, η is the slip factor
and δp = δp/p is the rms momentum spread.

Beam stability can be enhanced by other sources of the
betatron tune spread, which can be of an intrinsic origin
(space charge) or external (as octupoles). In both of these
cases an amplitude-dependent tune shift is induced. In this
situation, the following dispersion relation [3] for coherent
oscillations in the vertical plane (y) can be used,

∫
ΔQcoh − ΔQsc

Ω/ω0 + ΔQex + ΔQsc
Jy

∂ψ⊥
∂Jy

ψpdJxdJydp̂ = 1 (1)

Here ΔQsc(Jx, Jy) is the space-charge tune shift, the fre-
quency shift we define as ω = (n−Q0)ω0 + Ω, Jx and Jy

are the transverse action variables, y =
√

2Jyβy cosφy ,
ψ⊥(Jx, Jy) is the transverse distribution, p̂ = Δp/p is the
momentum offset and ψp(p̂) is the corresponding distribu-
tion, the normalization is

∫
ψ⊥ψpdJxdJydp̂ = 1. ΔQcoh

is the coherent tune shift which is induced by a facility
impedance. ΔQex includes external incoherent tune shifts,

in our case due to octupole lenses and due to the chromatic-
ity effect,

ΔQex(Jx, Jy, p̂) = ΔQoct(Jx, Jy) + ΔQξ(p̂) . (2)

Beam stability with nonlinear space charge was also stud-
ied in [4, 5], applicability of Eq. (1) was discussed in [6, 7],
a comparison with numerical simulations was made in [6].

In this work we assume a Gaussian profile for the
transverse beam distribution and take into account a two-
dimensional tune shift dependence [7, 8]. For the SIS100
U28+ beam [9] at the injection energy, the space charge
tune shift of the rms-equivalent K-V beam is ΔQ lin =
−0.033, the strongest tune shift for the Gaussian distribu-
tion is ΔQmax = 2ΔQlin.
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Figure 1: Stability diagrams for a combination of δp with
nonlinear space charge for a SIS100 coasting beam.

Solutions of Eq. (1) are presented in the form of stabil-
ity diagrams which show the contour level for Im(Ω) =
0 in the normalized impedance plane V + iU =
−iΔQcoh/δQξ. The stable areas are the regions enclosed
by the curves and by the U−axis. Figure 1 presents sta-
bility diagrams for a combination of the momentum spread
with space charge. The black line corresponds to a con-
stant space-charge tune shift, while the red and the blue
lines compare beam stability for truncations at 2σ and at
3σ of the transverse distribution. The star indicates the
impedance in SIS100 [9] at Q = 1 − Qf , where Qf is the
fractional part of Q0. At this low frequency the impedance
is dominated by the resistive wall impedance [9] and by the
image charges.
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From Fig. 1 we conclude that, firstly, Landau damping
due to the momentum spread does not provide transverse
stability in SIS100. This is due to the loss of Landau damp-
ing given by space charge, the nonlinear part of which en-
hances stability though. Secondly, for a transverse Gaus-
sian profile, tails of the distribution are important for a sta-
bility analysis, which is then sensitive to the truncation. We
choose a truncation at 2.5σ in the following analysis.

The field of an octupole with the strength K3 = g/Bρ is

Bx =
g

6
(−y3 + 3x2y), By =

g

6
(x3 − 3x2y) ,

the resulting vertical tune shift is given by

ΔQoct =
(∫

K3β
2
y

16π
ds

)
Jy −

(∫
K3βxβy

8π
ds

)
Jx , (3)

and for the horizontal plane correspondingly. As a result
of taking into account octupole magnets in the configura-
tion [10] which is foreseen in the SIS100 lattice, we ob-
tain stability diagrams shown in Fig. 2. Three different oc-
tupole strengths are presented, for K3 = 50 m−4 the stabil-
ity boundary reaches the impedance. Note that the polarity
K3 < 0 is disadvantageous for beam stability [6].
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Figure 2: Stability diagrams as given by Eq. (1) for a com-
bination of octupoles with δp and with nonlinear space
charge for a SIS100 coasting beam.

DYNAMIC APERTURE SIMULATIONS

Twelve identical octupoles in the SIS100 lattice are con-
sidered. One half of them is located near the maxima of
βx, the other half is intended for the vertical plane. The
maximum gradient in lenses is 2000 T/m3 and the effective
length is 0.75 m, at the injection energy for U28+ ions this
corresponds to the octupole coefficient K3 = 109 m−4.
In this work, MAD-X [11] simulations for four configu-
rations K3 = ±100m−4 and K3 = ±50m−4 are made
for comparisons. Firstly, we check the tune spread due to
octupoles. The linear SIS100 lattice with the octupoles is
considered. Figure 3 shows the footprints obtained for the

octupole strength K3 = 50 m−4 and maximum emittances
εx = εy = 48 mm mrad. The footprint calculated using
Eq. (3) is given in the upper plot, while the lower plot shows
a result of a MAD-X simulation.
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Figure 3: Tune footprint for a SIS100 lattice with octupoles
obtained analytically (upper plot) and in a MAD-X simula-
tion (lower plot).

Multipole coefficients for SIS100 superconducting
dipoles and quadrupoles from [10, 12] have been assumed
for the systematic errors. The random errors are simu-
lated according to the Gaussian distribution at the level
±30% of the systematic errors. For the closed orbit dis-
tortion, misalignment errors of quadrupoles are assumed to
be the main error source [12]. A set of SIS100 lattices with
the rms closed orbit distortion close to 〈xCO〉=1.4 mm and
〈yCO〉=1 mm has been generated.

To evaluate the dynamic aperture (DA), particles with
different xin, yin but x′

in = y′
in = 0 are tracked for

a number of turns. Normally, 103 turns correspond to
the so-called short-term DA. According to the applied
DA-algorithm, the minimum value for the invariant sum
(εx+εy) is calculated for every boundary trajectory over all
turns. The intersection of every parental ray (εy/εx)in with
the line (εx + εy)min provides a DA-boundary point on the
corresponding parental ray. The ensemble of such points
forms the DA-boundary curve on the emittance plane. De-
tails of this DA-algorithm are given in [10]. In order to
quantify a DA boundary, the minimum εmin

r and average
〈εr〉 radii for these DA curves are used.

An example for our DA simulations with the MAD-X
code is shown in Fig. 4. Here, a lattice with the systematic
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Figure 4: DA simulations: boundary of the stability domain
for a SIS100 lattice with systematic errors and random er-
rors for different octupole strengths.

errors and with the random errors is considered. Stability
boundaries are shown on the (x, y) plane (upper plot) and
on the emittance plane (lower plot). For K3 = ±100m−4,
the average and the minimal DA-emittances essentially re-
duced by approximately 40%, while for the moderate oc-
tupole K3 = ±50 m−4 this reduction is about 15%.

CONCLUSIONS

Transverse stability of a SIS100 coasting beams as a
conservative estimation has been evaluated, with nonlin-
ear space charge, momentum spread, and realistic SIS100
octupoles taken into account. Landau damping due to mo-
mentum spread does not provide transverse stability. Our
analysis suggests that the octupole magnets at strength
K3 = 50m−4 should make an important contribution into
beam stability.

Results of our DA simulations summarized in Fig. 5,
where average emittances for the different cases are pre-
sented. Nonlinearities are denoted as following: “Sys” is
for the lattice with the systematic errors only, “Ran” in-
dicates random multipole errors, and “CO” is the label for
the closed-orbit errors. These results suggest that octupoles
at the maximum strength can significantly (up to approx.
40% related to other nonlinearity sources) reduce the dy-
namic aperture in SIS100, while K3 = 50 m−4 octupoles

 0
 20
 40
 60
 80

 100
 120
 140
 160

[Sys+Ran+CO][Sys+Ran][Sys]

D
A

no
 o

ct
  (

m
m

 m
ra

d)

 0

 0.2

 0.4

 0.6

 0.8

 1

[Oct+Sys+Ran+CO][Oct+Sys+Ran][Oct+Sys]

D
A

w
ith

 o
ct

 / 
D

A
no

 o
ct

K3=+50
K3=-50

 0

 0.2

 0.4

 0.6

 0.8

 1

[Oct+Sys+Ran+CO][Oct+Sys+Ran][Oct+Sys]

D
A

w
ith

 o
ct

 / 
D

A
no

 o
ct

K3=+100
K3=-100

Figure 5: Summary for DA simulations: 〈εr〉 for different
lattices and octupole strengths.

can cause an approx. 20% reduction. The role of the oc-
tupole nonlinearity seems to decrease if one includes more
error sources and thus makes the analysis more realistic.
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