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Abstract
To achieve high focal spot intensities in ion-beam-driven

high energy density physics and heavy ion fusion applica-
tions, the ion beam must be compressed longitudinally by
factors of ten to one hundred before it is focused onto the
target. The longitudinal compression is achieved by im-
posing an initial velocity profile tilt on the drifting beam,
and allowing the beam to compress longitudinally until the
space-charge force or the internal thermal pressure stops
the longitudinal compression of the charge bunch. In this
paper, the problem of longitudinal drift compression of in-
tense charged particle beams is analyzed analytically us-
ing a one-dimensional warm-fluid model describing the
longitudinal beam dynamics. The hodograph transforma-
tion is used to transform the nonlinear fluid equations into
a single, second-order, linear partial differential equation
(PDE). The approximate general solution of this equation
describing the intense beam system with stagnation point
is obtained.

THEORETICAL MODEL
In the present analysis, we employ a one-dimensional

warm-fluid model [1, 2] with adiabatic equation of state
(ds/dt = 0, where s is the entropy per unit volume) to
describe the longitudinal nonlinear beam dynamics with
average electric field given by the g-factor model with
ebEz = −e2bg∂λ/∂x [3]. For example, for a transversely-
space-charge-dominated beam with flat-top density pro-
file in the transverse plane, g ' 2 ln(rw/rb) [4, 3]
while for a transversely-emittance-dominated beam g '
2 ln(rw/rb)+α where the numerical coefficient α depends
on the transverse beam-density profile. Here, λ(x, t) is
the line density, eb is the charge of a beam particle, rw
is the conducting wall radius, and rb is the beam radius.
Generally, the beam radius, and therefore the g-factor, are
functions of the line density and the external transverse
focusing, and can change during the beam compression.
Here we consider only the case of a transversely-emittance-
dominated beam when the beam radius, and therefore the
g-factor, remain constant during compression.

The macroscopic fluid equations for the line density
λ(x, t), the average longitudinal beam velocity v(x, t), and
the longitudinal line pressure p(x, t) are given by [1, 2]
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where p = (p0/λ
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0)λ3 for a triple-adiabatic equation-of-

state. Here we have introduced the effective potential w
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where c2g = e2bgλ0/mb and c2p = 3p0/mbλ0 are constants
with dimensions of (speed)2, mb is the mass of a beam
particle, and λ0 and p0 are constants with the dimensions
of line density and line pressure, respectively.

In the remainder of this section we summarize the well-
established theoretical technique developed in fluid me-
chanics [5] that can be used to solve the nonlinear fluid
equations (1) and (2). By introducing the velocity potential
φ, where v = ∂φ/∂x, we can rewrite Eq. (2) as
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dφ =
∂φ

∂x
dx+

∂φ

∂t
dt = vdx−

(
v2

2
+ w

)
dt. (5)

Introducing χ = φ − xv + t(w + v2/2), Eq. (5) can be
expressed as
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It follows from Eq. (6) that χ can be considered as a func-
tion of the new independent variables (v, λ), and that
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Therefore, if the function χ is known as a function of its
arguments (v, λ), then Eq. (7) gives (v, λ) as implicit func-
tions of (x, t).

Next we apply the same approach to solving the Eq. (1).
By introducing the potential φ̄, where λ = ∂φ̄/∂x, we can
rewrite Eq. (1) as

∂φ̄

∂t
+ vλ = 0. (8)

The full differential of φ̄ then becomes
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Introducing χ̄ = φ̄ − xλ + tvλ, it follows that dχ̄ can be
expressed as

dχ̄ = −xdλ+ td (vλ) = tλdv + (vt− x)dλ. (10)

It follows from Eq. (10) that χ̄ can be considered as a func-
tion of the new independent variables (v, λ), and that
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Therefore, if the function χ̄ is known as a function of its ar-
guments (v, λ), then Eq. (11) gives (v, λ) as implicit func-
tions of (x, t).

It follows from Eqs. (7) and (11) that the functions χ and
χ̄ are related as

∂
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Combining Eqs. (12), we obtain the equation for χ̄ [5]

λ
∂2

∂λ2
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Note that Eq. (13) is a linear partial differential equation for
the function χ̄(v, λ). Equation (13), together with Eq. (11)
can be used to obtain the solution to the system of equa-
tions (1) and (2) everywhere in the (x, t) plane except in
the regions corresponding to simple wave solutions where
v = v(λ) [5].

GENERAL SOLUTION
Next we obtain a general solution of Eq. (13). Introduc-

ing the scaled density variable λ̄ = λ/λ0, Eq. (13) can be
expressed as

λ̄
∂2
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χ̄ = (c2g + c2pλ̄)
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χ̄. (14)

To determine the general solution to Eq. (14), we first
Fourier transform with respect to the v dependence. This
gives

λ̄
d2χ̄k

dλ̄2
+ (c2g + c2pλ̄)k2χ̄k = 0. (15)

Equation (15) is linear differential equation with linear co-
efficients and can be solved using the Laplace method [6].
Using this method, the solution can be expressed as the
complex integral

χ̄k(λ̄) =

∫
C

dpVk(p), (16)

where the integration contourC connects two points p1 and
p2 in the complex plane p, and Vk(p1) = Vk(p2) where
function Vk(p) is defined by
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Using Eqs. (16) and (17) and performing the inverse
Fourier transform, the general solution to Eq. (14) can be
expressed as
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where f1 and f2 are arbitrary functions such that the in-
tegrals in Eq. (18) converge. Alternatively we can use
Eq. (12) to find the general solution for the function
χ(v, λ̄), i.e.,
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where q1 and q2 are arbitrary functions such that the inte-
grals in Eq. (19) converge.

GENERAL SOLUTION OF THE INITIAL VALUE
PROBLEM

In this section we make use of Eq.(19) to solve the
initial-value problem for the case of beam expansion into
vacuum. The initial conditions for this problem are zero
flow velocity at every point, v0(x, 0) = 0, and prescribed
density profile λ(x, 0) = λ0(x), which expresses the ini-
tial line density as a function of x. At some later time
t = tf , the density and velocity profiles will be given
by the functions λ(x, tf ) and v(x, tf ) which are the so-
lutions to Eqs. (1) and (2). Since the equations of motion
[Eqs. (1) and (2)] are time-reversible, the flow described
by λ̄(x, t) = λ(x, tf − t) and v̄(x, t) = −v(x, tf − t)
are also solutions to these equations with initial conditions
v̄(x, 0) = −v(x, tf ) and λ̄(x, 0) = λ(x, tf ). At time
t = tf this flow has zero velocity profile (v̄ = 0) and the
density profile is given by the initial profile for the expan-
sion problem, i.e., λ̄(x, tf ) = λ0(x).

To solve the initial-value problem, we assume that the
density profile λ0(x) decreases monotonically to zero at
the beam boundary x = ±x0, is an even function of x, and
is an invertable function for x > 0 everywhere where the
density is non-zero. Therefore, we assume that at t = 0
the inverted profile x0(λ) is known. The condition that
λ0(x) decreases monotonically to zero at the beam bound-
ary means that no rarefaction wave is launched from the
boundary into the beam as it expands. Since we are in-
terested in the time-reversed problem of beam compres-
sion, we assume that multi-valued flow does not form as
the beam expands. This is equivalent to considering only
initial density profiles with first derivative decreasing con-
tinuously from the beam center to the beam edge. This
guarantees that the portions of the beam with smaller den-
sity accelerate faster than the portions with larger density,
and as a result, the flow is never multi-valued.

In general, there are four regions of flow, and each is sep-
arated from the others by two characteristics. The region
of flow in the (x, t) plane and its boundaries are illustrated
Ref. [7]. There are simple relations connecting flows in all
regions with the flow in region I, where v = 0 at t = 0 [7],
which will be analyzed here in more detail.

To satisfy the initial condition v = 0 at t = 0, we are
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required to choose
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Substituting Eq. (20) into Eq. (7) at t = 0, we obtain

x0(λ̄) = −
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0

dp

tanh(p)
q′
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. (21)

To invert equation (21), we introduce the new variable ξ =
n(y)/n(y∗), where the function n is to be specified later.
Here y = (c2g/cp)p+cpλ̄/ tanh(p), and y∗ = (c2g/cp)p∗+

cpλ̄/ tanh(p∗) is the minimum value of y(p) reached at
p = p∗, where sinh2(p∗) = (cp/cg)2λ̄.

The solutions in Eqs. (20) and 21) can be expressed as
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where x̄0(y∗) ≡ x0(λ̄), and the function S(ξ, y∗) is given
by
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where p̄ ≤ p∗ ≤ p is the root of the equation p +
(cp/cg)2λ̄/ tanh(p) = p̄ + (cp/cg)2λ̄/ tanh(p̄). Next, we
note that for a particular choice of function n(y), the func-
tion S(ξ, y∗) is a function of only one variable ξ, and is
independent on y∗. Here, we present only an approximate
solution by choosing n(y) = exp[(cp/c

2
g)y/2] − 1. For

this choice, the function S(ξ, y∗) is given approximately
by S(ξ, y∗) ≈ 2/

√
ξ2 − 1, with an accuracy of about 5%.

Equation (23) can now be inverted by using the integral
Abel transform. This gives
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In the limit of a cold beam with cp → 0, Eqs. (25) and (26)
reduce to

q(2c) =
1

π

∫ c0

c

c̄x0(c̄)dc̄√
c̄2 − c2

, (28)

and

χI(v, λ̄) =

∫ ∞
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dξ√
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{q [2ξc+ v]− q [2ξc− v]},

(29)
where c = cgλ̄

1/2 is the speed of sound in the limit cp → 0.
In the limit of negligible space charge with cg → 0,

Eqs. (25) and (26) reduce to

q(c) =

(
c2g
cp

)
x0(c), (30)

and

χI(v, λ̄) =
1
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∫ ∞
0

dη [x0(η + c+ v)− x0(η + c− v)]

=
1

2

∫ c−v

c+v

dc̄x0(c̄), (31)

where c = cpλ̄ is the speed of sound in the limit cg → 0.
Equations (28) and (29) for cp → 0, and Eq. (31) for

cg → 0, are identical to the equations obtained previously
in Ref. [7] for these two limiting cases.

CONCLUSIONS
To summarize, we have studied the longitudinal drift

compression of an intense charged particle beam using a
one-dimensional warm-fluid model. We have reformulated
the drift compression problem as the time-reversed expan-
sion problem of the beam with arbitrary line density profile
and zero velocity profile. We have obtained approximate
(within 5% accuracy) analytical solutions to the expansion
problem using a general formalism, which reduces the sys-
tem of warm-fluid equations to a linear second-order partial
differential equation.
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