Keyword: storage-ring
Paper Title Other Keywords Page
MOPE11 Preliminary Active Vibration Elimination Study of the TPS Girder System ion, synchrotron, ion-source, alignment 26
 
  • T.C. Tseng, M.L. Chen, H.C. Ho, K.H. Hsu, D.-G. Huang, C.K. Kuan, W.Y. Lai, C.J. Lin, S.Y. Perng, C.W. Tsai, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) had delivered the first synchrotron light on the last day of 2014 and is to open to the users from September 2016 after one and half years of commissioning and insertion devices installation. However, the instability is still an obvious problem to the beam quality and the deviation amplification factor of the magnets to the electron beam plays an important contribution role. Since the magnets are firmly installed on the girders and the contribution is mainly transferred from the girder vibration. This study tries to eliminate the obvious vibration frequencies amplitude exerted on the girder from outside sources such as the utility system with the PZT actuators installed on the locking wedges between girder and pedestals. By the amplitude and inverse phase searching iteration, some vibration frequency peaks in phase domain can be eliminated and the instability is also reduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE11  
About • paper received ※ 11 September 2016       paper accepted ※ 20 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE28 Vacuum System of SESAME Storage Ring ion, vacuum, simulation, injection 71
 
  • M.A. Al-Najdawi, H. Al-Mohammad, E. Huttel, F. Makahleh, M.M. Shehab
    SESAME, Allan, Jordan
 
  Funding: N/A
SESAME* is a third-generation synchrotron light source under construction near Amman (Jordan). The storage ring has 16 Dipole arc chambers, 8 short and 8 long straight chambers. The general layout and detailed design of the vacuum chambers, crotch absorbers, RF bellows, injection and RF sections will be presented in this contribution, also the testing of the chambers prototype, bake out process and final installation.
* Synchrotron-light for Experimental Science and Applications in the Middle East
 
poster icon Poster MOPE28 [2.696 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE28  
About • paper received ※ 10 September 2016       paper accepted ※ 14 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE29 Vacuum System of HLS-II Storage Ring ion, vacuum, synchrotron, MMI 74
 
  • Y. Wang, L. Fan, Y.Z. Hong, X.T. Pei, W. Wei, B. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Hefei Light Source (HLS) has been operated for more than twenty-five years. From 2010 to 2014, the upgrading project of HLS has been carried out and the new machine is called HLS-II. The main improvement include: the emittance is reduced to 40 nm·rad, 3 new insertion devices (2 IVU and 1 EPU undulators) are added and the injection energy increases to 800 MeV. The typical life time is 300 mins at 300mA, 800 MeV. The average pressure of static and dynamic vacuum are below 2·108 Pa and 1.2·10-7 Pa respectively. The design, installing and commissioning of the vacuum system of the storage ring are detailed stated in in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE29  
About • paper received ※ 09 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE32 Preliminary Design and Analysis of the FODO Module Support System for the APS-U Storage Ring ion, alignment, experiment, damping 83
 
  • J. Nudell, H. Cease, J.T. Collins, Z. Liu, C.A. Preissner
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by: Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under con-tract DE-AC02-06CH11357.
The most technically challenging module of the planned APS Upgrade (APS-U) project is the Focusing-Defocusing (FODO) module. The girder for the FODO must support a ~6m long string of three Q-bend and four quadrupole mag-nets. The challenges which emanate from retrofitting the existing APS tunnel with new hardware along with the stringent requirements for alignment and vibrational stability * necessitate a unique engineering solution for the magnet support system. FEA is heavily relied upon in order to create an optimized solution and reduce the number of design iterations required to meet specifications. The prototype FODO magnet support design is presented from the ground up, along with FEA justification and the expected vibrational performance of the module.
* Glenn Decker (2014) Design Study of an MBA Lattice for the Advanced Photon Source, Synchrotron Radiation News, 27:6, 13-17, DOI: 10.1080/08940886.2014.970932
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE32  
About • paper received ※ 09 September 2016       paper accepted ※ 20 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE34 Preliminary Design of the Magnet Support and Alignment Systems for the Aps-U Storage Ring ion, alignment, lattice, MMI 87
 
  • J.T. Collins, H. Cease, S.J. Izzo, Z. Liu, J. Nudell, C.A. Preissner
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by: Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under con-tract DE-AC02-06CH11357.
As part of the Advanced Photon Source Upgrade pro-ject (APS-U), the storage ring will be upgraded to a multibend achromat (MBA) lattice [1]. This upgrade will provide dramatically enhanced hard x-ray brightness and coherent flux to beamline experiments in comparison to the present machine. The accelerator physics require-ments for the upgrade impose very stringent alignment, assembly and installation tolerances and tight vibrational tolerances on the magnet support and alignment system designs. The short installation duration dictates a need for transporting groups of fully assembled magnet mod-ules into the storage ring enclosure while preserving magnet-to-magnet alignment. The current magnet sup-port and alignment systems preliminary design status for the APS-U storage ring will be presented along with an overview of the R&D program required to validate design performance. Magnet module transportation and installa-tion logistics will also be discussed.
* Glenn Decker (2014) Design Study of an MBA Lattice for the Advanced Photon Source, Synchrotron Radiation News, 27:6, 13-17, DOI: 10.1080/08940886.2014.970932
 
poster icon Poster MOPE34 [0.975 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE34  
About • paper received ※ 07 September 2016       paper accepted ※ 14 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE37 Diamond Multi-Bend Achromats for Low Emittance and New Insertion Devices ion, vacuum, alignment, emittance 90
 
  • J. Kay, N.P. Hammond
    DLS, Oxfordshire, United Kingdom
 
  Diamond Light Source is pioneering the move to a Multi Bend Achromat storage ring lattice for low emittance combined with the creation of new straight sections available for Insertion Devices (ID). Diamond is at an advanced stage of replacing one Double Bend Achromat (DBA) cell of the existing storage ring with a Double Double Bend Achromat (DDBA). The DDBA cell which is to be installed in Autumn 2016 has 4 dipoles and has been designed with a new straight section in the middle. This allows a new ID source point to be installed on an existing Bending Magnet port in the shield wall for a new micro-focus protein crystallography beamline called VMX-m. This same principle will be applied to the proposed Diamond II project which will be based on a Double Triple Bend Achromat with 6 dipoles per cell achieving even lower emittance whilst providing many more IDs. This paper describes the engineering challenges of these projects.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE37  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCA06 The Girders System for the New ESRF Storage Ring ion, alignment, SRF, resonance 147
 
  • F. Cianciosi, T. Brochard, Y. Dabin, L. Goirand, M. Lesourd, P. Marion, L. Zhang
    ESRF, Grenoble, France
 
  The ESRF is proceeding with the design and procurement of its new low emittance storage ring (Extremely Brilliant Source project). This completely new storage ring requires a high performance support system, providing high stability (first resonance frequency about 50Hz) and a precise alignment capability (50µm, manual in transverse direction and motorized in the vertical one). In order to meet these requirements we decided to support the magnets of each of the 32 cells of the synchrotron with four identical girders that was considered the best compromise between cost, complexity and performances. Each of the resulting 128 girders is 5.1m long, carries about seven tons of magnets, and its weight including fixed basement and adjusting system is six tons. The adjustment system relies on modified commercial wedges; their stiffness was evaluated through laboratory tests. The FEA calculations carried out to optimize the design will be presented, together with the results obtained on a complete prototype girder system which was built and extensively tested and confirmed the modal calculations.  
slides icon Slides TUCA06 [17.229 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUCA06  
About • paper received ※ 07 September 2016       paper accepted ※ 19 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE06 Thermo-Fluid Numerical Simulation of the Crotch Absorbers’ Cooling Pinholes for ALBA Storage Ring ion, synchrotron, simulation, radiation 165
 
  • X. Escaler, V. Arbo Sangüesa
    UPC, Barcelona, Spain
  • J.J. Casas, C. Colldelram, M. Prieto, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA Synchrotron Light Facility crotch absorbers, that remove the unused storage ring radiation, incorporate an internal cooling system composed by a number of parallel pinholes and by the corresponding stainless steel inner tubes inserted into each of them. Water flows in the resulting annular sections to evacuate the total heat power. Around each inner tube, a spiral wire is fixed along the whole length with a given pitch height in order to enhance the convection heat transfer. The influence of several design parameters on the absorber thermo-fluid behavior has been evaluated by means of the CFD software ANSYS CFX. In particular, the wall heat transfer coefficients and the pressure losses through a single pinhole have been evaluated for a range of different flow rates and pitch heights. Moreover, some modifications of the end wall geometry have been simulated as well as the effect of reversing the flow direction inside the channels. Finally, the critical crotch absorber type 3 has also been simulated and the limiting pitch height-flow rate combinations have been found based on the available driving pressure of the cooling system.  
poster icon Poster TUPE06 [1.546 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE06  
About • paper received ※ 07 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE19 Application of a NEG Coated Chamber at the Canadian Light Source ion, vacuum, undulator, survey 205
 
  • S.Y. Chen, D. Bertwistle, K. Kei, C. Murray, T.M. Pedersen
    CLS, Saskatoon, Saskatchewan, Canada
 
  In the Fall of 2015 a 4800 mm long NEG coated chamber was installed in the Canadian Light Source in cell 9 straight section. The chamber will occupy to majority of the straight length. The chambers vacuum has been monitored for +1 year and no obvious issues has been found. The chamber body is 10 mm thick and the aperture is an ellipse with a 8 mm height and a 65 mm width. A design feature of the chamber is a lack of support in-between the ends of the chamber. The lack of support space is due to the double elliptically polarizing undulator (54 mm, and 180 mm period). This proceeding details the following: a.The structure design and Finite Element Analysis for the deflection and strength; b.Heat loads and cooling calculation; c.Supports design; d.Deflection and correction with the supports; e.Current strips installation f.Activation;  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE19  
About • paper received ※ 15 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE32 A Girder-Free Magnet Support System Design ion, alignment, vacuum, brightness 236
 
  • S.K. Sharma
    BNL, Upton, Long Island, New York, USA
 
  Magnet support systems for the new light sources are required to satisfy several rigorous performance specifications. The support system must be rigid so that its static deflection under its own weight and the combined weight of the magnets is small and repeatable. For vibration stability the lowest natural frequency of the magnet-support assembly should be greater than 50 Hz. To meet thermal stability requirements it is desirable to minimize bending deformation of the support system when subjected to temperature changes. In addition, the magnet support system should be easy to transport, easy to align, and cost effective. Altogether these requirements are difficult to satisfy, especially if the main structural component of the support system is a girder of length greater than 3 meters. In this paper we propose a magnet support system design consisting of column-type supports joined by removable C-beams. The column-type supports provide a superior stability performance without compromising the alignment capability. Analysis results are presented to characterize the performance of this support system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE32  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE33 NSLS-II Beam Aperture Slit Vibration Studies ion, controls, vacuum, alignment 239
 
  • C.J. Spataro, C. Amundsen, H. Bassan, S.K. Sharma
    BNL, Upton, Long Island, New York, USA
 
  Beam aperture slits mounted on stepper-motor driven X-Y stages are used in NSLS-II frontends to define the beam size and to limit thermal loads on downstream optical components. The X-Y stages have positional and resolution requirements of 1 µm and 0.1 µm, respectively. This is achieved by micro-stepping the stepper motor by a Delta-Tau GeoBrick-LV-NSLS-II controller. During the initial operation of the X-Y stages unacceptable levels of vibration when the stages were in motion, and an intermittent sharp squealing when they were at rest, were discovered. In this paper we present the studies that were undertaken to investigate these issues and the solutions that were implemented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE33  
About • paper received ※ 09 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE40 Cryo-Ready Undulator U15: Passing SOLEIL’s 2 Meters Threshold in Useful Magnetic Length ion, undulator, electron, FEL 249
 
  • M. Tilmont, F. Briquez, N. Béchu, L. Chapuis, M.-E. Couprie, J.M. Dubuisson, J.P. Duval, C. Herbeaux, A. Lestrade, J.L. Marlats, M. Sebdaoui, K.T. Tavakoli, C. de Olivera
    SOLEIL, Gif-sur-Yvette, France
 
  The U15 is an in-vacuum undulator designed to operate at room temperature and at 70K. It is the first in-vacuum undulator designed, assembled and which will be used in SOLEIL’s storage ring that have support beams for magnets longer than 2 meters. A clear gap is felt in the technologies used for manufacturing and assembling compared to our standard 2m length in-vacuum undulators. This is due, in part, to the tolerances imposed by the maximum phase error admissible in SOLEIL’s storage ring. The poster will shine lights on those difficulties from a design and manufacturing point of view.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE40  
About • paper received ※ 11 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAA02 X-Ray Absorber Design and Calculations for the EBS Storage Ring ion, SRF, vacuum, scattering 257
 
  • F. Thomas, J.C. Biasci, D. Coulon, Y. Dabin, T. Ducoing, F. Ewald, E. Gagliardini, P. Marion
    ESRF, Grenoble, France
  • F. Thomas
    ILL, Grenoble, France
 
  The Extremely Brilliant Source (EBS) of the ESRF will hold new type of X-Ray absorbers: a new material will be used (CuCr1Zr suggested by *) together with a novel design integrating: - CF flange are machined in the absorber body. No weld, no braze. - Optimized toothed surface profile, reducing the induced thermal stresses. - Compton and Rayleigh scattering integrated blocking shapes. - Concentric cooling channels. A brief overview of the new design and concepts will be given. The presentation will then focus on thermo-mechanical absorber ANSYS calculations, combining both Computational Fluid Mechanics (CFD). The calculations and the calculation process will be discussed as well as the design criteria chosen by the team. The CFD calculations will show that an heat transfer coefficient between the water and the copper part can be estimated as well as the pressure drop through the absorber. Finally, the stress analysis will be emphasized. The type of stresses (tensile, compressive or shear) and their nature (primary or secondary) will be linked to the choice of design criteria.
* S. Sharma, "A Novel Design of High Power Masks and Slits", Proc. of MEDSI2014, Australia (2014).
 
slides icon Slides WEAA02 [1.968 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEAA02  
About • paper received ※ 11 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAA03 Thermal Stability of the New ESRF Extremely Brilliant Source ion, quadrupole, coupling, experiment 262
 
  • B. Tampigny, J.C. Biasci, J-F.B. Bouteille, Y. Dabin, M. Diot, L. Farvacque, F. Favier, A. Flaven-Bois, T. Marchial, D. Martin, P. Raimondi, P. Roux-Buisson
    ESRF, Grenoble, France
  • F. Thomas
    ILL, Grenoble, France
 
  In the frame of the Extremely Brilliant Source project (EBS), studies dedicated to disturbances have been more intensively investigated. Engineering instabilities have two origins: mechanical and thermal. Major thermal issues are: - air conditioning presents a temperature ramp up of 2°C along the sector - storage ring requires a warm up period of 4 days for reaching a stable orbit These effects have been observed and corrected for 20 years. With EBS requirements, we need to identify these thermal effects in order to reduce the disturbances, thus improving more systematically the source stability. The study is lead by the comparison between the present and the new thermal system. To do so, it is necessary to evaluate the heat balance in this system, as well as to identify the thermal time constant of each component. FEA models have been performed to reveal sensitivity of these thermal issues. A full scale mock-up cell equipped with a prototype girder is measured with power cables inside. A FEA model was also developed for the present storage ring to analyse the air stream. Although investigations have already been developed, some others remain to be achieved by the end of 2016.  
slides icon Slides WEAA03 [4.824 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEAA03  
About • paper received ※ 10 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WECA05 Superconducting RF System Plans at CLS ion, cavity, cryomodule, SRF 293
 
  • C.N. Regier
    CLS, Saskatoon, Saskatchewan, Canada
 
  Canadian Light Source (CLS) in Saskatoon, Canada has several cryogenic systems. One of the most critical is a 4.4 K liquid helium system for a superconducting RF cavity. This system consists of a Linde TCF-50 liquid helium plant coupled to a Cornell-designed CESR-B 500 MHz cavity and cryomodule via a 52 metre multi-channel transfer line. Over the years CLS has evaluated failures on the system as well as risks for downtime, and has come up with plans for a major upgrade to the superconducting RF system to improve reliability. An overview of performance and issues to date is presented. Some of the specifics of the risk analysis and upgrade plan will be examined, and details of the process flow discussed.  
slides icon Slides WECA05 [5.622 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WECA05  
About • paper received ※ 11 September 2016       paper accepted ※ 19 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE02 Performance Evaluation of Fast Closing Shutter System at the SPring-8 Front-end ion, vacuum, experiment, ECR 312
 
  • S. Takahashi
    JASRI/SPring-8, Hyogo, Japan
  • M. Sano, A. Watanabe
    Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Hyogo, Japan
 
  The fast closing shutter (FCS) system plays an important role in protecting the ultra-high vacuum in the SPring-8 storage ring from a sudden vacuum accident in the beam-lines. In order to predict the transit time of the shock wave and the following pressure increase, a shock tube system with an inner diameter of 35 mm and a total length of 10 m was prepared to measure the shock Mach number. Experiments have been conducted that simulated an inrush of the atmosphere into the high-vacuum (~10-3 Pa) pipe by using a trigger system that combines of a thin cellophane diaphragm with a plunger. Special ionization gauges with a high-speed amplifier are distributed about every 1 m to detect the transit time of the shock wave and to measure the pressure in a low-pressure chamber after the actuation of the FCS system. By inserting vacuum components with various cross-sectional shapes including actual front-end components into the shock tube, the attenuation in the shock wave was systematically investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE02  
About • paper received ※ 06 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE03 Beamline Front Ends at the 2.5-GeV Photon Factory Storage Ring photon, ion, wiggler, undulator 315
 
  • H. Miyauchi, S. Asaoka, T. Tahara
    KEK, Ibaraki, Japan
 
  Since the first commissioning in 1982, the 2.5-GeV Photon Factory storage ring has been upgraded three times in 1986, 1997 and 2005, in order to reduce the beam emittance and to create new four short straight sections for in-vacuum short period undulators. To satisfy the new boundary conditions of the upgrades, the beamline front ends were re-designed. We look back on the history of the beamline front-end components at the Photon Factory.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE03  
About • paper received ※ 15 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE05 Innovative Design of Radiation Shielding for Synchrotron Light Sources ion, radiation, shielding, synchrotron 321
 
  • M.G. Breitfeller, S.L. Kramer
    BNL, Upton, Long Island, New York, USA
 
  Over the course of decades, the shape of the bulk shielding walls for synchrotron light sources has developed into a standard configuration, including a ratchet shape of the outer storage ring wall, to accommodate the clearance needs for front end and first optical enclosure assemblies. New state of the art light sources will have low emittance, high energy beams, which will give potential for higher beam losses. These losses will yield higher radiation dose rates at the downstream wall and stricter safety requirements in the first optical enclosure. Throughout the installation of local shields at NSLS-II, verification dose rate studies of various shielding configurations were performed. Analysis of these studies revealed that a circular outer bulk shield wall could greatly reduce the dose rate to the users who work near the front end optical components. This presentation discusses the benefits of this circular bulk shield wall verses the challenges of component installation near the wall and ways to mitigate them.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE05  
About • paper received ※ 09 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE06 High Heat Load Front Ends for Sirius ion, photon, vacuum, radiation 324
 
  • L.M. Volpe, H.F. Canova, P.T. Fonseca, P.P.S. Freitas, A. Gilmour, A.S. Rocha, G.L.M.P. Rodrigues, L. Sanfelici, M. Saveri Silva, H. Westfahl Jr., H.G.P. de Oliveira
    LNLS, Campinas, Brazil
 
  Funding: Brazilian Ministry of Science, Technology, Innovation and Communication (MCTIC)
Currently under construction on Brazilian Synchrotron Light Laboratory Campus, Campinas/SP, Sirius is a 3GeV, 4th Generation Synchrotron Light Source. In this paper we describe the Front End that has been designed to transmit the intense synchrotron radiation generated by the insertion devices that will generate the most critical thermal stress, with a peak power density of 55.7 kW/mrad² and a total power of 9.3kW at 500mA in the storage ring. The functions of the main components and their location in the layout are described. Computational fluid dynamics (CFD) and structural simulations, that have been carried out to verify the performance under the high heat loads generated by Sirius, are also detailed along with the limits of temperature and stress that have been employed in the design.
 
poster icon Poster WEPE06 [1.415 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE06  
About • paper received ※ 11 September 2016       paper accepted ※ 19 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)