Keyword: scattering
Paper Title Other Keywords Page
MOPE05 Mechanical Design of Secondary Source Slits for Hard X-ray Beamlines at Taiwan Photon Source ion, controls, site, photon 12
 
  • H.Y. Yan, C.H. Chang, S.H. Chang, C.Y. Chen, C.Y. Huang, J.M. Lin, D.G. Liu, D.-J. Wang
    NSRRC, Hsinchu, Taiwan
 
  The secondary source slits have been developed for specific hard X-ray beam-lines at Taiwan Photon Source. Especially for Coherent X-ray Scattering and X-ray Nanoprobe beam-lines, severe specifications of the slits are more necessary to define proper beam sizes in horizontal and vertical directions at sample. The opening size of each pair of slits assembled orthogonally is usually needed to range within several microns, so the UHV-compatible piezo-driven stages with closed-loop system were adopted for the purposes of fine adjustment, precise positional accuracy and repeatability. To reduce X-ray scattering effect, the rectangular single-crystal film was bonded on the edge of the slit blade. The machined rotary weak-link structure and piezo-driven actuators were used to slightly adjust parallelism of each pair of the blades with the method of single-slit diffraction. To enhance structural and thermal stability, the granite plinths with specified shape were designed and the precise temperature controlling system will be set up recently. The overall design, mechanical specifications and procedure of testing for secondary source slits will be introduced in this paper.  
poster icon Poster MOPE05 [0.795 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE05  
About • paper received ※ 09 September 2016       paper accepted ※ 14 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE16 Development of the RIXS Manipulator ion, vacuum, operation 35
 
  • H. Jöhri, C. Hess, L. Nue, L. Patthey, T. Schmitt
    PSI, Villigen PSI, Switzerland
 
  The RIXS Manipulator (RIXS = Resonant Inelastic X-ray Scattering) is a further development of the Carving Manipulator. The carving manipulator has six independent degree of freedom. (Three translations and three rotations). All three rotations are exactly in the middle of the sample surface. The head of the manipulator is in UHV and the sample can be cooled down to 10K. For the RIXS manipulator there is a new requirement to have a field of view from 0-180°. There are mainly two parts in the carving manipulator that set the probe in the shadow of the beam at small angles. - A bellow - The bearings To solve these problems we shifted the bellow behind the pivot point. This give some strange movements of the bellows and we had to analyse this in a separate test installation. For the bearings, we developed a goniometer bearing with ceramic bearing shells. Meanwhile the RIXS manipulator is implemented and in routine operation  
poster icon Poster MOPE16 [1.357 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE16  
About • paper received ※ 09 September 2016       paper accepted ※ 14 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE18 Design and FEA of a 3D Printed Detector Window Frame ion, detector, vacuum, experiment 201
 
  • W. Tizzano
    DLS, Oxfordshire, United Kingdom
 
  The purpose of the project was to design and simulate a window assembly to be used in GISAX/GIWAX experiments. The window lies between the sample and the WAXS** detector, a modified, in-vacuum detector, with modules removed to allow scattered radiation to pass through to a SAXS*** detector positioned downstream. The window uses 75um thick Kapton HN film and given the size, pressure and the short distance to the sensors, it was necessary to support it on a frame. To avoid any information loss from shadowing of the detector, a frame was designed so that shadows will be projected into the gaps between the detector modules. The geometry was such that DMLS**** was an effective way of producing the item. Given the slenderness of the structure and the forces it supports, the material approaches or exceeds its yield point, so a bilinear, isotropic, hardening material model was chosen; moreover, large deflections were enabled. Also, the contacts were modelled with augmented Lagrange frictional formulation. All these assumptions made the analysis strongly non-linear.
*Grazing Incidence Small/Wide Angle X-ray scattering
**Wide Angle X-ray Scattering
***Small Angle X-ray Scattering
****Digital Metal Laser Sintering
 
poster icon Poster TUPE18 [7.079 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE18  
About • paper received ※ 09 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEAA02 X-Ray Absorber Design and Calculations for the EBS Storage Ring ion, SRF, storage-ring, vacuum 257
 
  • F. Thomas, J.C. Biasci, D. Coulon, Y. Dabin, T. Ducoing, F. Ewald, E. Gagliardini, P. Marion
    ESRF, Grenoble, France
  • F. Thomas
    ILL, Grenoble, France
 
  The Extremely Brilliant Source (EBS) of the ESRF will hold new type of X-Ray absorbers: a new material will be used (CuCr1Zr suggested by *) together with a novel design integrating: - CF flange are machined in the absorber body. No weld, no braze. - Optimized toothed surface profile, reducing the induced thermal stresses. - Compton and Rayleigh scattering integrated blocking shapes. - Concentric cooling channels. A brief overview of the new design and concepts will be given. The presentation will then focus on thermo-mechanical absorber ANSYS calculations, combining both Computational Fluid Mechanics (CFD). The calculations and the calculation process will be discussed as well as the design criteria chosen by the team. The CFD calculations will show that an heat transfer coefficient between the water and the copper part can be estimated as well as the pressure drop through the absorber. Finally, the stress analysis will be emphasized. The type of stresses (tensile, compressive or shear) and their nature (primary or secondary) will be linked to the choice of design criteria.
* S. Sharma, "A Novel Design of High Power Masks and Slits", Proc. of MEDSI2014, Australia (2014).
 
slides icon Slides WEAA02 [1.968 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEAA02  
About • paper received ※ 11 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE30 Introduction to Neutron Scattering Instruments - How are they Different? neutron, ion, shielding, GUI 360
 
  • R.W. Connatser
    CLS, Saskatoon, Saskatchewan, Canada
 
  Funding: The Canadian Light Source is funded by the Canada Foundation for Innovation, Natural Sciences and Engineering Research Council of Canada, the Government of Saskatchewan, and other funding bodies.
Neutron scattering is a complementary technique to x-ray scattering scientifically, but while there are similari-ties, there are some unique challenges in the design, con-struction, and operations. This poster will provide a brief description of neutron scattering, describe the technical components of spallation neutron scattering instruments, and discuss the engineering challenges found in the design and construction of these instruments.
 
poster icon Poster WEPE30 [0.506 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE30  
About • paper received ※ 11 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE37 Upgrade of the Super Advanced X-Ray Spectrometer (SAXES) of the RIXS Endstation for Better Resolution and Larger Detector Size ion, vacuum, GUI, detector 367
 
  • St. Maag, P. Hirschi, L. Nue, T. Schmitt, X. Wang
    PSI, Villigen PSI, Switzerland
 
  The RIXS endstation of ADRESS beamline at Swiss Light Source (SLS) is equipped with an ultrahigh resolution X-ray spectrometer. The spectrometer with a length of 5 m is installed on a rotating girder platform and allows varying scattering angles from 30° to 130°. The position of the CCD detector is longitudinally adjustable on the girder and vertically adjustable on a moving frame to allow an angle between 2° to 15° in the vertical plane. In the scope of a CCD camera upgrade, the modification of the vertical alignment of the guiding structure and ultra-high vacuum tanks became necessary. The new camera with a higher resolution and larger detector size weights around 25 kg. It is required to have a vibration amplitude well below 2 micrometer. We will present the critical design parameters of the upgrade, and the effort to increase bending stiffness of vacuum guide structure while keeping major geometry parameters. In addition, kinematic overdeterminacy was removed. After the upgrade we performed vibration measurements verifying that dynamic stability of the camera is improved, and design goal is reached. The site acceptance test confirmed the proper operation of the new mechanism.  
poster icon Poster WEPE37 [7.016 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE37  
About • paper received ※ 09 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE38 The Mechanics of the Vekmag Experiment ion, detector, experiment, GUI 370
 
  • T. Noll
    MBI, Berlin, Germany
  • F. Radu
    HZB, Berlin, Germany
 
  For the experiments at synchrotron radiation source BESSY II synchrotron of the Helmholtz-Zentrum Berlin a new end station and a new beam-line were developed and are now in user operation. The end station contains a 9-2-1 Tesla vectorial magnet and a cryostat with manipulator for the sample cooling and positioning, an UHV deposition chamber, and an UHV detector chamber. We report here on the technical design of the detector chamber which is placed below the magnet chamber and is also connected to the deposition chamber. Because of various constrains a sophisticated mechanics had to be developed to provide integrated functionality for both the detector holder and the sample transfer units. The detector unit consists of a tubular holder of 5 cm diameter which travels more than 60 cm vertically and exhibits an unlimited rotation degree of freedom of 360 degrees within the magnet bore. The sample transfer unit consists of a telescopic movement mechanism allowing for the sample holder vertical travel within the detector tubular holder. The functionality challenges and their resolve were addressed in an innovative mechanical design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE38  
About • paper received ※ 09 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE40 Two-rotation Mechanism for an in Vacuum Beamstop ion, vacuum, detector, experiment 378
 
  • J.B. González Fernández, C. Colldelram, A. Fontserè Recuenco, G. Jover-Mañas, J. Ladrera Fernández, M. Malfois, J.C. Martínez Guil
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  At Small-angle X-ray Scattering beamlines (SAXS), beamstops are needed to block the intense primary beam that has not been scattered by the sample in order to protect the detector from any damage. Beamstops are usually confined inside a vacuum tube minimizing air space between the sample and the detector. For certain experiments, a motorized beamstop is required to achieve a precise positioning in different regions of the detector active area. ALBA has developed a new motorized beamstop* consisting of a two-rotation mechanism inside vacuum that composes a movement able to cover all range of the active area of the detector. The presented solution involves a main rotation reached by a gear and a worm drive actuated by a stepper motor and a second rotation relative to the main one produced by a piezo rotation stage. For each position appears two different solutions. This characteristic permits take two equivalent images in the detector with the same beamstop position but different orientation in the beamstop support; thus permitting the compensation of the support shadow on the active area of the detector.
* Patent Registered
 
poster icon Poster WEPE40 [2.217 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE40  
About • paper received ※ 08 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAA03 Mechanical Design of New Dual Pinhole Mini-Beam Collimator With Motorized Pitch and Yaw Adjuster Provides Lower Background for X-Ray Crystallography at GMCA@APS ion, background, photon, software 387
 
  • S. Xu, R. Fischetti, O. Makarov, S.A. Stepanov, N. Venugopalan
    ANL, Argonne, Illinois, USA
 
  Funding: GM/CA@APS has been funded in whole or in part with Federal funds from the National Cancer Institute (ACB-12002) and the National Institute of General Medical Sciences (AGM-12006).
The GM/CA developed, quad-mini-beam collimator[*,**], advanced rastering and vector data-collection software tools[***], have enabled successful data collection on some of the most challenging problems in structural biology. There are two main sources of X-ray scattering (besides the sample) that reach the detector, contribute to back-ground and limit data resolution. These are scattering within the collimator that escapes the exit aperture and air-scattering of the direct beam before it terminates in the beamstop. Scattering from the collimator can be reduced by decreasing the exit aperture size. A quad mini-beam collimator was built consisting of 5/50, 10/70, 20/100 and 150/300 µm beam defining/exit aperture combination, respectively. Previous collimators were positioned in the X-ray beam by two motorized translational motions and two manual angular adjustments via a kinematic mount. Due to reduced tolerance in the new design, aligning each of the pin-hole combinations to high-precision required motorizing both translational and angular motions. Design and con-struction of the improved mini-beam collimator and the extent of background reduction will be discussed.
* Fischetti, et al.,JSR 16, 217-225 PMCID 2725011
** S. Xu, et al, AIP 1234, 897 - 900 (2010)
*** Hilgart, et al, J Synchr. Radiat. 2011:717-22. doi: 10.1107/S0909049511029918. Epub 2011 Jul 29
 
slides icon Slides THAA03 [6.682 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-THAA03  
About • paper received ※ 10 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THAA04 Upgrading a Transmission SAX/WAX Beamline to Allow High Quality GISAX/GIWAX Experiments for Soft Matter Thin Films ion, detector, vacuum, alignment 390
 
  • A.R. Marshall
    DLS, Oxfordshire, United Kingdom
 
  The project required a sample environment to deliver experiments in vacuum or helium, with high humidity, including capacity to use aggressive solvents. The compact, transportable system incorporates a high precision in-vacuum manipulator/ positioning stage (with repeatability better than1 µm/ 1 mdeg) allowing for multiple sample configurations. Current sample mounts include in-situ film formation (Doctor Blade), thermal annealing/drying heater stage, sample cooling and multiple sample stages; the system has been designed to accommodate many sample substrate formats. The existing end station camera system has been upgraded to include two, in-vacuum, WAXS and SAXS area detectors, which are custom builds based on the Pilatus 6M. The SAX detector module includes three in vacuum, independent ,configurable SAXS beam stop manipulators to block GISAXS transmitted, reflected and specular flare as well as isotropic and anisotropic SAX, a photon sensitive detector shutter plate is included. The 4 mm diameter tungsten beamstops each include a miniature photodiode to measure beam intensity and can be positioned to within 10 µm precision in X and Y over 300 mm x 250 mm motion range.  
slides icon Slides THAA04 [6.245 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-THAA04  
About • paper received ※ 09 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THBA01 An Endstation with Cryogenic Coils Contributing to a 0.5 Tesla Field and 30-400k Sample Thermal Control ion, controls, hardware, vacuum 396
 
  • G.A. Scharfstein, D. Arbelaez, J.-Y. Jung
    LBNL, Berkeley, California, USA
 
  The Engineering Division of Lawrence Berkeley National Laboratory presents a design for an End Station to enable X-ray Photon Correlation Spectroscopy (XPCS), which is a method to study temperature-induced fluctuation in hard and soft condensed matter systems. XPCS, when applied to a magnetic system, can yield information about how domains fluctuate as the system goes through a phase transition; these phase transitions can occur at low temperatures (< 100K) and at an applied magnetic field. Therefore, requirements for the End Station include a 0.5 Tesla field at the sample and temperature control of the sample from 30K to 400K.  
slides icon Slides THBA01 [10.200 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-THBA01  
About • paper received ※ 13 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)