Keyword: synchrotron
Paper Title Other Keywords Page
MOPE02 Studies on Flow-Induced Vibrations for the New High-Dynamics DCM for Sirius ion, experiment, controls, acceleration 8
 
  • R.M. Caliari, O.R. Bagnato, F.R. Francisco, R.R. Geraldes, R.L. Parise, M. Saveri Silva, D.O. Tavares, L.,Jr. de Souza
    LNLS, Campinas, Brazil
  • T.A.M. Ruijl
    MI-Partners, Eindhoven, The Netherlands
 
  The monochromator is known to be one of the most critical optical elements of a synchrotron beamline, since it directly affects the beam quality with respect to energy and position. Naturally, the new 4th generation machines, with their small emittances, start to bring about higher stability performance requirements, in spite of factors as high power loads, power load variation, and vibration sources. A new high-dynamics DCM (Double Crystal Monochromator) is under development at the Brazilian Light Source for the Sirius EMA beamline (Extreme Condition X-ray Methods of Analysis). The disturbances induced by the coolant flows are known to be among the most detrimental influences to a DCM performance, however, quantitative force numbers involved in such disturbances are not commonly investigated. According to the novel dynamic concept, these forces should be predictably translated into stability performance. Therefore, experimental setups that allow the indirect measurement of such forces in conditions close to those of operation were designed. The results comparing different indirect cooling profiles and manufacturing processes (brazing and additive manufacturing) are shown.  
poster icon Poster MOPE02 [3.064 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE02  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE07 Ground Motions Measurements for Synchrotron ion, ground-motion, experiment, operation 15
 
  • D.T. Ziemianski
    CUT, Kraków, Poland
  • M.P. Nowak
    Solaris, Kraków, Poland
 
  For more than two decades, ground vibration measurements were made by different teams for feasibility studies of linear accelerators. Recent measurements were performed in the SPS tunnel and at different CERN sites on the surface. The devices to measure vibrations of magnitude ranging in nanometres, the analysis techniques and the results are critically discussed and compared with the former measurements. The implication of the measured integrated R.M.S. displacements for the Crab cavities cavern is mentioned. The equipment used in this study consists of 2 state-of-the-art Guralp broadband triaxial seismometers. Models CMG-T60-0004 performed measurements in three directions V, N/S and E/W. The first analysis was to evaluate the power spectral density for each direction of sensors and event. The power spectral density is calculated from the auto power spectrum. The power spectral density shows a typical curve for the geophones with theμseismic peak between 0.2 and 0.4 [Hz]. It is import ant to point that ground vibrations should not be ignored in planning accelerator facility. Actually it is one of the limiting factor in the optimization of future accelerators.  
poster icon Poster MOPE07 [4.968 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE07  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE08 The LNLS Metrology Building ion, controls, SRF, instrumentation 17
 
  • H.G.P. de Oliveira, C. Esper Neto, P.T. Fonseca, R.R. Geraldes, B.C. Meyer, M.A. Pereira, G.L.M.P. Rodrigues, L. Sanfelici, L.G. da Silva
    LNLS, Campinas, Brazil
  • L. Buccianti, M.H.A. Costa
    Biotec Controle Ambiental, São José dos Campos, SP, Brazil
  • C. Prudente
    Prudente Engenharia Ltda., Uberlândia, Minas Gerais, Brazil
 
  Funding: Brazilian Ministry of Science, Technology, Innovation and Communication.
The increasing demands of instrumentation projects for SIRIUS require more sensitive equipment to be devel-oped and characterized in theμand nanometer scale. To achieve this level of precision it is necessary to work within a controlled environment, minimizing instabilities and disturbance effects such as temperature variation and vibrations. Based on metrology labs as those at BESSY, ESRF, DLS and others, a new facility is currently under final construction stage at the LNLS, which will be dedi-cated to high precision optical and mechanical metrolo-gies. This work describes in detail the project of the new LNLS Metrology Building.
 
poster icon Poster MOPE08 [2.829 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE08  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE10 Dynamic Analysis and Measurement of Ground Motion for the Solaris - National Synchrotron Radiation Centre in Cracow ion, experiment, ground-motion, synchrotron-radiation 24
 
  • D.T. Ziemianski
    CUT, Kraków, Poland
  • M.P. Nowak
    Solaris National Synchrotron Radiation Centre, Jagiellonian University, Kraków, Poland
 
  The paper presents the results of the ground motion measurements and dynamic analysis performed in the Polish synchrotron radiation facility Solaris. The analysis has been carried out within the framework of the installation experimental lines inside Solaris building and accelerator tunnel. The equipment used in this study consists of 4 seismic, high sensitivity, ceramic flexural ICP accelerometer Models 393B31 (PCB), which performed measurements in one vertical directions. The first analysis was to evaluate the power spectral density for each sensors and event. The power spectral density is calculated from the auto power spectrum. The power spectral density shows a typical curve with theμseismic peak between 0.2 and 0.4 Hz. It is important to point that ground vibrations should not be ignored in planning accelerator facility. All over the measurement, the RMS integrated level in the vertical direction at 1 Hz were calculated and presented in paper.  
poster icon Poster MOPE10 [2.916 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE10  
About • paper received ※ 09 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE11 Preliminary Active Vibration Elimination Study of the TPS Girder System ion, storage-ring, ion-source, alignment 26
 
  • T.C. Tseng, M.L. Chen, H.C. Ho, K.H. Hsu, D.-G. Huang, C.K. Kuan, W.Y. Lai, C.J. Lin, S.Y. Perng, C.W. Tsai, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  The Taiwan Photon Source (TPS) had delivered the first synchrotron light on the last day of 2014 and is to open to the users from September 2016 after one and half years of commissioning and insertion devices installation. However, the instability is still an obvious problem to the beam quality and the deviation amplification factor of the magnets to the electron beam plays an important contribution role. Since the magnets are firmly installed on the girders and the contribution is mainly transferred from the girder vibration. This study tries to eliminate the obvious vibration frequencies amplitude exerted on the girder from outside sources such as the utility system with the PZT actuators installed on the locking wedges between girder and pedestals. By the amplitude and inverse phase searching iteration, some vibration frequency peaks in phase domain can be eliminated and the instability is also reduced.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE11  
About • paper received ※ 11 September 2016       paper accepted ※ 20 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE17 OCTOGLIDE - Table Positioning Device for Diffraction Applications ion, controls, software, GUI 38
 
  • G. Olea, N. Huber
    HUBER Diffraktiontechnik GmbH&Co.KG, Rimsting, Germany
 
  A new Table Positioning Device(TPD) for high precision and heavy load manipulations has been developed. Conceived as an alternative to the precision hexapods it fulfils the gap of sample (and/or, instruments) positioning in small (height) available working spaces of synchrotron Diffractometers (Dm). The concept is based on a Redundant Parallel Kinematic Structure (Rd-PKS) with four (4) legs having 2 dof active joints (actuators). In this Proof of Functionality (PoF) step, a stacked solution has been adopted for actuators design using the existent XY translation Positioning Units (Pu). The symmetrically modular 6-4(PP)PS precision mechanism - OCTOGLIDE(OG) having eight (8) gliding actuators (P) is implying also a pair of wedges - Elevation (El) and socket/ball - Guiding (G) Pu, as passive joints (P and S) forming one of the Positioning modules (Pm). Spatial positions can be reached without any singularities and planar motions along/around X or Y axis are performed very intuitively with some of the actuators (decoupled) motion. The first tests of the prototype are revealing both, high accuracy (straightness, flatness, etc) and stiffness capabilities.
* Merlet JP, Parallel robots, Springer, 2006
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE17  
About • paper received ※ 09 September 2016       paper accepted ※ 19 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE19 Mechatronics Concepts for the New High-Dynamics DCM for Sirius ion, controls, alignment, resonance 44
 
  • R.R. Geraldes, R.M. Caliari, G.B.Z.L. Moreno
    LNLS, Campinas, Brazil
  • M.J.C. Ronde, T.A.M. Ruijl, R.M. Schneider
    MI-Partners, Eindhoven, The Netherlands
 
  Funding: Brazilian Ministry of Science, Technology, Innovation and Communication
The monochromator is known to be one of the most critical optical elements of a synchrotron beamline. The new 4th generation machines, with emittances in the range of order of 100 pm rad, require even higher stability performances, in spite of the still conflicting factors such as high power loads, power load variation, and vibration sources. A new high-dynamics DCM is under development at LNLS for the future X-ray undulator and superbend beamlines of Sirius. Aiming at inter-crystal stability of a few tens of nrad and considering the limitations of the current DCM implementations, several aspects of DCM engineering are being revisited. The system concept is chosen such that a control bandwidth in the order of 200 to 300 Hz can be achieved. This requires well-designed system dynamics, which can be realized by applying a fundamentally different architecture than that used in common DCM designs, based on principles used in ultra-precision systems for semiconductor manufacturing. As a result, known disturbances can be attenuated or suppressed, and internally excited modes can be effectively handled. The mechatronics concepts and analyses, including the metrological details, are shown.
 
poster icon Poster MOPE19 [5.423 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE19  
About • paper received ※ 11 September 2016       paper accepted ※ 19 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE29 Vacuum System of HLS-II Storage Ring ion, storage-ring, vacuum, MMI 74
 
  • Y. Wang, L. Fan, Y.Z. Hong, X.T. Pei, W. Wei, B. Zhang
    USTC/NSRL, Hefei, Anhui, People’s Republic of China
 
  Hefei Light Source (HLS) has been operated for more than twenty-five years. From 2010 to 2014, the upgrading project of HLS has been carried out and the new machine is called HLS-II. The main improvement include: the emittance is reduced to 40 nm·rad, 3 new insertion devices (2 IVU and 1 EPU undulators) are added and the injection energy increases to 800 MeV. The typical life time is 300 mins at 300mA, 800 MeV. The average pressure of static and dynamic vacuum are below 2·108 Pa and 1.2·10-7 Pa respectively. The design, installing and commissioning of the vacuum system of the storage ring are detailed stated in in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE29  
About • paper received ※ 09 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE30 The Development of CuCrZr High Heat Load Absorber in TPS ion, vacuum, radiation, synchrotron-radiation 77
 
  • I.C. Sheng, C.K. Chan, C.-C. Chang, C. Shueh, L.H. Wu
    NSRRC, Hsinchu, Taiwan
  • S.K. Sharma
    BNL, Upton, Long Island, New York, USA
 
  TPS project in National Synchrotron Radiation Research Center (NSRRC) in Taiwan has reached 500mA design goal. Several upgrades and design enhancements is also under development. CuCrZr copper alloy material has been selected to examine its UHV compatibility, machinability and high heat load sustainability. Most importantly, the absorber is made entirely by CuCrZr (including two end flanges) and installed in the mid-section of double minimum of tandem EPU48 undulators to shadow beam miss-steered synchrotron radiation from upstream EPU. Both the result and fabrication time (without brazing) are promising.  
poster icon Poster MOPE30 [0.547 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE30  
About • paper received ※ 06 September 2016       paper accepted ※ 19 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE38 Milliprobe Scanner Station ion, detector, alignment, controls 93
 
  • J. Divitcos, M. De Jonge, D. Howard, J. McKinlay
    ANSTO, Menai, New South Wales, Australia
 
  The research team at the Commonwealth Scientific & Industrial Research Organisation, Clayton CSIRO) have developed a high energy detector referred to as the Maia. The rapid scanning, high resolution detector offers technological advances, including non-invasive technical study of highly valued artworks. A vital application of the Maia detector is scanning x-ray fluorescence microscopy for obtaining the elemental composition of a large number of materials. The innovative detector allows connection between scientists & art communities to increase their understanding of historical artworks, broadening the field of authentication and potentially aiding the fight against art forgery as well as historical information. We have designed a new dedicated station that offers improvements in high stability, motion control and mounting. It is designed to support & scan various samples in size as well as shape powered by X & Y stages. A slide & hold clamping concept has been implemented which provides easy & rapid assembling of samples. This arrangement provides excellent interchangeability, supporting a variety of planar & non-planar samples for scanning.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE38  
About • paper received ※ 07 September 2016       paper accepted ※ 29 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUAA01 Precision Mechanical Design of a Miniature Dynamic Mirror Bender for the SSRF Beamline Upgrade Project ion, controls, SRF, synchrotron-radiation 108
 
  • D. Shu, J.W.J. Anton, S.P. Kearney
    ANL, Argonne, Illinois, USA
  • J.W.J. Anton
    University of Illinois at Chicago, Chicago, USA
  • A. Li, C. Mao, Y. Pan
    SINAP, Shanghai, People’s Republic of China
 
  Funding: Work supported by the U.S. Department of Energy, Office of Science, under Contract No. DE-AC02-06CH11357 and Argonne SPP project 85·1077. Work at SINAP supported by NNSF of China No. U1332120.
Dynamic mirror benders which enable high precision figuring of planar substrates for x-ray focusing are widely used as conventional optical equipment in various synchrotron radiation beamlines. Especially, in cases for x-ray focusing optics coated with multilayers in a Kirkpatrick-Baez configuration as the final focusing elements immediately upstream of the sample, the dynamic mirror benders provide high precision figuring to allow the mirror figure to be tuned to optimize the focusing at different incidence angles to cover a wide energy range *. Recently, collaboration between Argonne National Laboratory and Shanghai Institute of Applied Physics (SINAP) has produced designs of a new miniature dynamic mirror bender with Argonne’s laminar nanopositioning flexure technique ** for beamline upgrade project at the Shanghai Synchrotron Radiation Facility (SSRF). The mechanical design and finite element analyses of the miniature dynamic mirror bender, as well as its initial mechanical test results with laser interferometer are described in this paper.
* R. Barrett, J. Härtwig, C. Morawe et al, Synchrotron Radiation News, 23, No.1, 36-42(2010)
** U.S. Patent granted No. 6,984, 335, D. Shu, T. S. Toellner, and E. E. Alp, 2006.
 
slides icon Slides TUAA01 [7.411 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUAA01  
About • paper received ※ 10 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCA05 The New High Dynamics DCM for Sirius ion, controls, GUI, feedback 141
 
  • R.R. Geraldes, R.M. Caliari, G.B.Z.L. Moreno, L. Sanfelici, M. Saveri Silva, N.M. Souza Neto, H.C.N. Tolentino, H. Westfahl Jr.
    LNLS, Campinas, Brazil
  • T.A.M. Ruijl, R.M. Schneider
    MI-Partners, Eindhoven, The Netherlands
 
  Funding: Brazilian Ministry of Science, Technology, Innovation and Communication
The monochromator is known to be one of the most critical optical elements of a synchrotron beamline, since it directly affects the beam quality with respect to energy and position. The new 4th generation machines, with emittances in the range of order of 100 pm rad, require even higher stability performances, in spite of the still conflicting factors such as high power loads, power load variation, and vibration sources. A new high-dynamics DCM (Double Crystal Monochromator) is under development at the Brazilian Synchrotron Light Laboratory for the future X-ray undulator and superbend beamlines of Sirius. Aiming at an inter-crystal stability of a few tens of nrad (even during the Bragg angle motion for flyscans) and considering the limitations of current DCM implementations, several aspects of the DCM engineering are being revisited. In order to achieve a highly repeatable dynamic system, with a servocontrol bandwidth in the range of 200 Hz to 300 Hz, solutions are proposed for a few topics, including: actuators and guides, metrology and feedback, LN2 indirect cooling, crystal clamping, thermal management and shielding. The concept of this high-dynamics DCM will be presented.
 
slides icon Slides TUCA05 [2.254 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUCA05  
About • paper received ※ 11 September 2016       paper accepted ※ 20 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE04 Coherent Soft X-Ray EPU Vacuum Chamber Thermal Analysis for Synchrotron Radiation Protection ion, vacuum, synchrotron-radiation, radiation 159
 
  • H.C. Fernandes, P.L. Cappadoro, D.A. Harder, D.A. Hidas, C.A. Kitégi, M. Musardo, J. Rank, T. Tanabe
    BNL, Upton, Long Island, New York, USA
 
  Funding: Department of Energy
The purpose of this study was to determine the effect of beam mis-steering, on the temperature of the vacuum chamber. The chamber used for this study was for the Coherent Soft X-Ray (CSX) Elliptically Polarizing Undulator (EPU). Finite Element Analysis was conducted on the vacuum chamber to determine the temperature distribution on the chamber for set values of beam mis-steer, for NSLS-II. These results were then compared with on-site temperature measurements taken using RTD¿s, as well as thermal sensitive cameras. The accuracy of these results was analyzed and further FEA studies were proposed for steeper beam mis-steers and beam offsets.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE04  
About • paper received ※ 09 September 2016       paper accepted ※ 20 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE05 Numerical Simulation of the ALBA Synchrotron Light Source Cooling System Response for Failure Prevention ion, ECR, simulation, operation 162
 
  • X. Escaler
    UPC, Barcelona, Spain
  • J.J. Casas, C. Colldelram, M. Prieto, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA Synchrotron Light Source cooling system is designed with a common return pipe that interconnects the four consumption rings. Such configuration is believed to compromise its optimal operation. To understand its thermo-fluid dynamic behaviour, a detailed 1D model has been built comprising all the components such as the pipes, fittings, bends, valves, pumping stations, heat exchangers and so on, and the various regulation mechanisms. Preliminarily, the model results in steady state operating conditions have been compared with experimental measurements and the maximum deviations have been found below 13%. Then, a series of transient numerical simulations have been carried out to determine the system response. Specifically, effects of the blockage and leakage of a consumption line as well as the increase and decrease of heat duty for the tunnel rings have been investigated. As a result, the stability of the system has been evaluated and the operational limits have been estimated in front of hydraulic and thermal load variations. Moreover, particular behaviors have been identified which can be used to design monitoring and control strategies to prevent unexpected failures.  
poster icon Poster TUPE05 [0.615 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE05  
About • paper received ※ 07 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE06 Thermo-Fluid Numerical Simulation of the Crotch Absorbers’ Cooling Pinholes for ALBA Storage Ring ion, storage-ring, simulation, radiation 165
 
  • X. Escaler, V. Arbo Sangüesa
    UPC, Barcelona, Spain
  • J.J. Casas, C. Colldelram, M. Prieto, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA Synchrotron Light Facility crotch absorbers, that remove the unused storage ring radiation, incorporate an internal cooling system composed by a number of parallel pinholes and by the corresponding stainless steel inner tubes inserted into each of them. Water flows in the resulting annular sections to evacuate the total heat power. Around each inner tube, a spiral wire is fixed along the whole length with a given pitch height in order to enhance the convection heat transfer. The influence of several design parameters on the absorber thermo-fluid behavior has been evaluated by means of the CFD software ANSYS CFX. In particular, the wall heat transfer coefficients and the pressure losses through a single pinhole have been evaluated for a range of different flow rates and pitch heights. Moreover, some modifications of the end wall geometry have been simulated as well as the effect of reversing the flow direction inside the channels. Finally, the critical crotch absorber type 3 has also been simulated and the limiting pitch height-flow rate combinations have been found based on the available driving pressure of the cooling system.  
poster icon Poster TUPE06 [1.546 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE06  
About • paper received ※ 07 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE10 A Thermal Exploration of Different Monochromator Crystal Designs ion, lattice, cryogenics, synchrotron-radiation 176
 
  • J.S. Stimson, M.C.L. Ward
    BCU, Birmingham, United Kingdom
  • S. Diaz-Moreno, P. Docker, J. Kay, J. Sutter
    DLS, Oxfordshire, United Kingdom
 
  Eight potential monochromator crystal designs were subjected to a combination of three different beam powers on two different footprints. The temperature and thermal deformation were determined for each. It was found that thermal deformation of the lattice is negligible compared to the surface curvature, and that while the thinnest crystal wafer showed the smallest temperature increase, crystals cooled from the bottom alone demonstrated a far more uniform thermal deformation and a larger radius of curvature.  
poster icon Poster TUPE10 [3.411 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE10  
About • paper received ※ 10 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE11 Study on Thermal Mechanical Design and Optimization Analysis for the ALBA Infrared Microspectroscopy Beamline (MIRAS) Extraction Mirror Based on Finite Element Analysis ion, extraction, radiation, dipole 179
 
  • M. Quispe, A. Carballedo, J.J. Casas, C. Colldelram, A. Crisol, G. Peña, L. Ribó, I. Sics, I. Yousef
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  This paper reports design, modelling, simulation and optimization results for the ALBA MIRAS infrared radiation extraction mirror. Finite element analysis (FEA) was used to simulate the thermal mechanical behaviour of the device. With the aim to ensure a good thermal performance, conservative assumptions were applied: all of the incident Bending Magnet (BM) radiation is absorbed at the mirror surface, constant bending magnetic field and low thermal contact between the mirror Al 6061 and the OFHC copper arm. A novel solution has been implemented in order to provide an effective cooling by a natural convection on the in-air part of extraction mirror assembly. This has voided the necessity for a water cooling that often causes problems due to the associated vibrations. The power conditions were calculated by using SynRad+. The main ALBA Storage Ring design parameters are: 3 GeV, 400 mA and 1.42 T. According to these conditions, the mirror absorbs 15 W with a peak power density of 0.51 W/mm2. The peak temperature calculated was 63.2 °C. The real measurements reported during the commissioning stage showed a good thermal performance, in agreement with the results predicted by FEA.  
poster icon Poster TUPE11 [0.881 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE11  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE13 Numerical Simulation of the ALBA Synchrotron Light Source Cooling System Response to Pump Start-Up and Shut-Down ion, controls, simulation, network 187
 
  • X. Escaler, D. Juan Garcia
    UPC, Barcelona, Spain
  • J.J. Casas, C. Colldelram, M. Prieto, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA Synchrotron Light Source cooling system is submitted to regular pump start-ups and shut-downs. Moreover, pumps can trip due to motor power failures. As a result, the piping system can be subjected to surges and pressure oscillations. The 1D thermo-fluid simulation software Flowmaster has been used to predict these transient conditions taking into account the fluid compressibility, the pipe elasticity, the characteristic time response of the check valves and the pump/motors moments of inertia. During pump start-ups, significant pressure rises are detected that can be reduced by readjusting the PID controller parameters. Unexpected pump shut-downs do not appear to provoke significant water hammer conditions. However, pressure fluctuations are generated mainly in the same pumping line but also in the rest of the system due to the particular common return configuration. In all the cases the pressure regulation mechanisms acting on the pump rotating speeds serve to attenuate the consequences of these transients. Finally, the feasibility of the model to simulate the effect on the system response of trapped air inside the pipes has also been evaluated.  
poster icon Poster TUPE13 [0.743 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE13  
About • paper received ※ 07 September 2016       paper accepted ※ 22 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE15 Thermal Management and Crystal Clamping Concepts for the New High-Dynamics DCM for Sirius ion, radiation, simulation, undulator 194
 
  • M. Saveri Silva, R.R. Geraldes, A. Gilmour
    LNLS, Campinas, Brazil
  • T.A.M. Ruijl, R.M. Schneider
    MI-Partners, Eindhoven, The Netherlands
 
  Funding: Brazilian Ministry of Science, Technology and Inovation
The monochromator is known to be one of the most critical optical elements of a synchrotron beamline, since it directly affects the beam quality with respect to energy and position. Naturally, the new 4th generation machines, with their small emittances, start to bring about higher stability performance requirements, in spite of factors as high power loads, power load variation, and vibration sources. A new high-dynamics DCM (Double Crystal Monochromator) is under development at the Brazilian Light Source for the Sirius EMA beamline (Extreme Condition X-ray Methods of Analysis). In order to achieve high-bandwidth control and stability of a few nrad, as well as to prevent unpredicted mounting and clamping distortions, new solutions are proposed for crystal fixation and thermal management. Since the design is based on flexural elements, it should be indeed highly predictable, so that the work was developed using mechanical and thermal FEA, including CFD. Efforts were made to predict thermal boundaries associated with the synchrotron beam, including incident, diffracted and scattered power, for which the undulator spectrum was employed in the Monte Carlo simulation package - FLUKA *.
* "FLUKA: a multi-particle transport code", A. Ferrari, P.R. Sala, A. Fasso‘, and J. Ranft, CERN-2005-10 (2005), INFN/TC05/11, SLAC-R-773
 
poster icon Poster TUPE15 [2.630 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE15  
About • paper received ※ 08 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE16 Design of A Leaf Spring Bender for Double Laue Crystal Monochromator at SSRF ion, SRF, focusing, optics 198
 
  • H.L. Qin, K. Yang
    SSRF, Shanghai, People’s Republic of China
  • L. Jin, H. Zhang, W. Zhu
    SINAP, Shanghai, People’s Republic of China
 
  A leaf spring bender geometry for water-cooled double Laue crystal monochromator (DLM) is presented. The DLM will be employed to acquire high energy mono-chromatic X-ray (60keV to 120keV) on the ultra-hard applications beamline at SSRF. A compact bending mechanism is designed in order to get horizontally fo-cused high energy monochromatic X-ray as small as 0.5mm. The bender applies a piece of thin asymmetric crystal and a pair of leaf springs which push the crystal to a sagittally bent radius as small as 1 meter by a pair of symmetry moments. An optimized crystal geometry is achieved by taking into account the meridional and sagit-tal bendings coupled and defined by the anisotropic elas-ticity of the asymmetric crystal. Furthermore, thermal slope error and structural stress of the bent crystal are analyzed by finite element method (FEA).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE16  
About • paper received ※ 09 September 2016       paper accepted ※ 22 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE23 Glidcop Brazing in Sirius’ High Heat Load Front-End Components ion, vacuum, operation, photon 216
 
  • G.V. Claudiano, O.R. Bagnato, P.T. Fonseca, F.R. Francisco, R.L. Parise, L.M. Volpe
    LNLS, Campinas, Brazil
 
  Sirius is a 4th generation synchrotron light source in project. Some of Sirius’ beamlines will have a very high power density, more than 50 kW/mrad², to be dissipated in components that have a limited space condition. Thus, the refrigeration of these components is complex when one has in mind that the coolant flow cannot be too turbulent in order to not induce much vibration in the components. Oxygen Free Electrolytic Cu (OFEC) has been replaced by the Glidcop, on 4th generation synchrotron applications, due to its good thermal conductivity and preservation of mechanical properties after heating cycles. However, as this material is not very workable in terms of union with other materials, which led to the development of a brazing process for Glidcop and stainless steel union. Glidcop samples were submitted to a Cu-electroplating process and a silver base alloy (BVAg-8) was used to join the parts in a high vacuum furnace. Electroplating was used to improve the filler metal wettability. The results were very satisfactory, ensuring water and vacuum tightness. A desirable characteristic not yet proved is the virtual leak property. This paper will discourse about this brazing method.  
poster icon Poster TUPE23 [1.553 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE23  
About • paper received ※ 09 September 2016       paper accepted ※ 22 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE29 Integration of a Stripline Kicker Prototype for CLIC Project Into ALBA Storage Ring ion, kicker, vacuum, distributed 230
 
  • R. Monge, J.C. Giraldo, J. Ladrera Fernández, M.L. Llonch, L. Nikitina, M. Pont, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The Compact Linear Collider (CLIC) project is an international collaboration with CERN for developing a high-energy and high-luminosity machine which accelerates and collides electrons and positrons at energies up to several tera-electron volts. The extraction system for the Damping Rings of the CLIC shall follow very tight requirements in order to maintain the ultra-low emittance of the extracted bunches. A first prototype of the extraction kicker based on stripline technologies has been built and characterized at CERN without beam. The stripline chamber will be shortly installed in the ALBA Synchrotron to be tested under beam. In situ measurements of the impedance, transversal field homogeneity and flat-top ripple aims to complete its characterization. This contribution presents the design of the set up for the integration of the stripline chamber in one of the medium straight sections of ALBA storage ring.  
poster icon Poster TUPE29 [4.469 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE29  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE31 Manufacturing of Photon Beam-Intercepting Components from CuCrZr ion, vacuum, photon, operation 233
 
  • F.A. DePaola, C. Amundsen, S.K. Sharma
    BNL, Upton, Long Island, New York, USA
 
  Photon beam-intercepting components in synchrotron light sources have usually been made as water-cooled Glidcop bodies brazed to stainless steel conflate flanges. This fabrication method involves many manufacturing steps which result in increased cost, long procurement time and lower manufacturing reliability. A new design approach was recently proposed which simplifies fabrication by eliminating brazing and utilizes a readily available copper alloy, CuCrZr. This paper describes the manufacturing experience gained at NSLS-II from fabricating many components of this new design. Results of an investigation of various techniques for joining CuCrZr to itself and to SS304 and AL-6061 are also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE31  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBA01 Nostradamus and the Synchrotron Engineer: Key Aspects of Predicting Accelerator Structural Response ion, damping, experiment, simulation 272
 
  • C.A. Preissner, H. Cease, J.T. Collins, Z. Liu, J. Nudell
    ANL, Argonne, Illinois, USA
  • B.N. Jensen
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Funding: Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under contract DE-AC02-06CH11357.
MBA designs are placing stringent mechanical tolerances on the magnet support systems. At the APS-U the mag-net-to-magnet vibration tolerances are about 10 nm *. Timelines, installation requirements, and budgets constrain the resources available for prototyping and physical testing. Reliance on FEA to predict dynamic response is para-mount in insuring the tolerances are met. However, obtaining accurate results from a magnet support structure FEA is not as simple as analysing the CAD model of the structure. The 16th century author Nostradamus published a collection of prophecies that since his time, have been held up as predictions of various world events. While it is attractive to think his collection of short poems can be used to foretell the future, in reality it is only the vagueness and absence of any dates that make them easy to apply in a posthoc basis. Arguably, a similar statement can be made about the use of FEA in predicting accelerator support response. In this presentation the important contributors to FEA dynamic modelling will be discussed along with techniques that can be used to generate necessary data for models that can accurately predict response.
* APS-Upgrade, Functional Requirements Document, Advanced Photon Source, Argonne, IL, USA, APSU 1695659, May 2016.
 
slides icon Slides WEBA01 [14.136 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEBA01  
About • paper received ※ 10 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE05 Innovative Design of Radiation Shielding for Synchrotron Light Sources ion, radiation, shielding, storage-ring 321
 
  • M.G. Breitfeller, S.L. Kramer
    BNL, Upton, Long Island, New York, USA
 
  Over the course of decades, the shape of the bulk shielding walls for synchrotron light sources has developed into a standard configuration, including a ratchet shape of the outer storage ring wall, to accommodate the clearance needs for front end and first optical enclosure assemblies. New state of the art light sources will have low emittance, high energy beams, which will give potential for higher beam losses. These losses will yield higher radiation dose rates at the downstream wall and stricter safety requirements in the first optical enclosure. Throughout the installation of local shields at NSLS-II, verification dose rate studies of various shielding configurations were performed. Analysis of these studies revealed that a circular outer bulk shield wall could greatly reduce the dose rate to the users who work near the front end optical components. This presentation discusses the benefits of this circular bulk shield wall verses the challenges of component installation near the wall and ways to mitigate them.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE05  
About • paper received ※ 09 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE18 APS 2-ID Beamline, Upgrade to Canted Configuration ion, radiation, photon, undulator 342
 
  • D. Capatina, M.A. Beno, M.V. Fisher, J.J. Knopp, B. Lai, E.R. Moog, C. Roehrig, S. Vogt
    ANL, Argonne, Illinois, USA
 
  Funding: Work at the Advanced Photon Source is supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357.
To provide independent operation of the two 2-ID beamline experimental stations, a new canted beamline design is being developed. The constraint of keeping the existing front end limits the canting angle. The optimal canting angle was determined to be 400 urad and is achieved by using a permanent magnet. A coil is added to the canting magnet to provide a steering adjustment of maxi-mum 40 to 50 urad. In order to increase the beam separation as well as to provide power filtering and higher harmonics rejection for the downstream optics, a dual mirror system with focusing capability is used as the first optic at approximately 28 m from the center of the straight section. The inboard mirror (2.6 mrad) reflects the inboard beam outboard while the outboard mirror (4.1 mrad) reflects the outboard beam inboard. The beam presented to the dual mirror system is defined by two 1 mm x 1 mm apertures. The maximum power absorbed by each mirror is 200 W. Two vertically deflecting monochromators with minimum offset of 17 mm are located in the First Optical Enclosure on the outboard branch. The monochromator for the inboard branch is located in the corresponding experimental station.
 
poster icon Poster WEPE18 [3.357 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE18  
About • paper received ※ 07 September 2016       paper accepted ※ 19 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE24 Live Animal Imaging Program at Bio-Medical Imaging and Therapy Facility at the Canadian Light Source ion, experiment, controls, radiation 348
 
  • M.A. Webb, G. Belev, C.D. Miller, T.W. Wysokinski, N. Zhu
    CLS, Saskatoon, Saskatchewan, Canada
  • M. Gibbons
    University of Saskatchewan, Saskatoon, Canada
 
  The live animal imaging program at the Bio-Medical Imaging and Therapy (BMIT) facility at the Canadian Light Source has been developing for the last 5 years and continues to grow. It is expected to become a large portion of the user activity as numerous groups work towards the goal of live animal studies. Synchrotron-based imaging of live animals is an opportunity for great science that also brings challenges and specific requirements for the experimental end-station. The beamline currently provides basic support and has been improving the facilities available. For example, there have been changes to the lab to allow for longer rodent housing and improved housing during measurements. Remote control of heat lamps and of flow rate for gas anaesthesia allow a veterinarian or animal care worker to make adjustments without interrupting the imaging. Integration of user equipment such as heart/breathing monitoring and ultrasound equipment with the beamline systems can be used for gating control of imaging. Future improvements will be done with consultation with university veterinarians and the user groups.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE24  
About • paper received ※ 10 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE36 Design, Construction and Commissioning of Two Highly Integrated Experimental Stations for Micro-Focusing Macromolecular Crystallography Beamlines at NSLS-II ion, experiment, focusing, diagnostics 363
 
  • D.K. Bhogadi, B.A. Andi, L. Berman, M. Carlucci-Dayton, M.R. Fuchs, J. Jakoncic, T. Langdon, J. Lara, B.S. Martins, S. McSweeney, S.F. Myers, D.K. Schneider, R.M. Sweet
    BNL, Upton, Long Island, New York, USA
 
  Funding: This work is supported by the US National Institutes of Health and the US Department of Energy.
We present the final engineering design and first commissioning results of two highly integrated experimental stations for the micro-focusing (FMX) and the highly automated (AMX) MX beamlines at the NSLS-II. These beamlines will support a broad range of biomedical structure determination methods. The experimental stations are designed and fabricated in-house to meet the challenging requirements resulting from the small beam size of 1 µm and the extremely short working distance of only 190 mm from the beam exit window to the FMX focal spot. The compact beam conditioning unit contains, within 140 mm, a beam position monitor, an attenuator, primary slits, an intensity monitor, a sub-millisecond shutter, and secondary slits. The diffractometers consist of an interchangeable dual axis air bearing-based goniometers with a target sphere of confusion of 100 nm, an on-axis microscope, an x-ray fluorescence detector and dynamic beam shaping slits. The end stations are integrated in a compact space on a granite machine bed with high modularity for future upgrades and extensions. Real-time autonomous robotic systems are being implemented for high through-put cryogenic sample handling.
 
poster icon Poster WEPE36 [2.369 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE36  
About • paper received ※ 11 September 2016       paper accepted ※ 05 October 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)