Keyword: ECR
Paper Title Other Keywords Page
MOPE01 Stabilization Methods for Force Actuators and Flexure Hinges ion, experiment, optics, site 1
 
  • C. Colldelram, J. Nicolás, C. Ruget
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  In the framework of the design of an adaptive optics for x-ray mirrors a stabilization system* for force actuators and flexure hinges have been conceived. This corrector allows to deform the mirror surface at nanometre level but for this purpose it requires resolutions better than 0.02, by using ultra-low constant springs, and to preserve the introduced deformation it is needed to be stable at the same level. The corrector needs to be insensitive when dismantling and remounting the mirror. In the other hand in order to support the corrector its structure is attached to the bender frame and the spring force is transmitted through a level arm by means a bearing articulation. This introduces a small friction but it is still preferably to eliminate it. A new method based -k spring-like constant principle is proposed. Based on this technique it is possible to stabilize the force exerted on the mirror below 0,02N for an error range more than 1 mm. In addition applying the principle to a flexure it allows to compensate it in an angular range in within the torque variation tend to be null, below 0,005 Nm, thus becoming a short range, frictionless and zero torque articulation.
* Patent Registered
 
poster icon Poster MOPE01 [1.046 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE01  
About • paper received ※ 15 September 2016       paper accepted ※ 08 May 2017       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE20 Ultra Stiffness And Ultra Low Wawing LM Guide ion, GUI, experiment 48
 
  • M. Miret
    THK GmbH Sucursal en España, Badalona, Spain
 
  The abstract porpoise is explain how is providing the LM Guide for high performance machine by realizing the waving of Nano-level and achieves super-low waving and ultra-high rigidity by adopting 8 rows of raceways in the LM Guide. These models adopt (1) 8 rows of raceways, (2) small-diameter balls and (3) super-long blocks, in order to realize super-low waving and ultra-high rigidity that surpass the conventional LM Guide. With this approach, the number of effective balls is substantially increased, and the amplitude of the rolling element in motion is minimized. The new models realize super-low waving comparable to hydrostatic guides. In addition, the deformation of the ball is minimized to achieve ultra-high rigidity that surpasses even roller guides. Primary applications Super-precision processing machines/High-precision machining centre/Lathe/Surface grinder/Semiconductor manufacturing equipment/FPD manufacturing machines/High-performance measuring machines. [Waving evaluation] The waving values are approximately 1/10 of that (100 to 300 nm) of conventional ordinary LM Guides.  
poster icon Poster MOPE20 [1.600 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE20  
About • paper received ※ 07 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCA03 Estimation of the Temperature Fluctuations Harshness Regarding Stability of Structures in the Nanometer Range ion, experiment, simulation, operation 133
 
  • N. Jobert, F. Alves, S.K. Kubsky
    SOLEIL, Gif-sur-Yvette, France
 
  Thermally induced distortions are a key contributor to the overall positional and pointing performance of high-stability systems. Though stability scales with temperature fluctuations, there is some hidden complexity is the subject. Firstly, not all temperature oscillations will distort the structure: fast variations will hardly propagate into the structure, little change in overall dimensions but primarily pointing errors. Conversely, slow variations will result in quasi uniform temperature fields that change dimensions, hence mainly positional errors. Secondly, there is randomness in temperature fluctuations which obscures the actual severity of a given environment: randomness occurs timewise, but also space-wise. For highly stable situations, random part of the temperature field becomes prominent, and discarding this component becomes questionable. No harshness indicator exists that could help quantifying the actual severity of a given thermal environment. It is the objective of this paper to provide some insight on the matter, and propose a simple yet efficient numerical method allowing the evaluation of actual structural response to any realistic thermal environment.  
slides icon Slides TUCA03 [7.080 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUCA03  
About • paper received ※ 01 September 2016       paper accepted ※ 20 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE05 Numerical Simulation of the ALBA Synchrotron Light Source Cooling System Response for Failure Prevention ion, simulation, synchrotron, operation 162
 
  • X. Escaler
    UPC, Barcelona, Spain
  • J.J. Casas, C. Colldelram, M. Prieto, M. Quispe
    ALBA-CELLS Synchrotron, Cerdanyola del Vallès, Spain
 
  The ALBA Synchrotron Light Source cooling system is designed with a common return pipe that interconnects the four consumption rings. Such configuration is believed to compromise its optimal operation. To understand its thermo-fluid dynamic behaviour, a detailed 1D model has been built comprising all the components such as the pipes, fittings, bends, valves, pumping stations, heat exchangers and so on, and the various regulation mechanisms. Preliminarily, the model results in steady state operating conditions have been compared with experimental measurements and the maximum deviations have been found below 13%. Then, a series of transient numerical simulations have been carried out to determine the system response. Specifically, effects of the blockage and leakage of a consumption line as well as the increase and decrease of heat duty for the tunnel rings have been investigated. As a result, the stability of the system has been evaluated and the operational limits have been estimated in front of hydraulic and thermal load variations. Moreover, particular behaviors have been identified which can be used to design monitoring and control strategies to prevent unexpected failures.  
poster icon Poster TUPE05 [0.615 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE05  
About • paper received ※ 07 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE25 Metallurgical Evaluation of Dissimilar Metal Joints for Accelerator Vacuum Chamber Construction at the Advanced Photon Source Upgrade Project ion, vacuum, interface, laser 220
 
  • G. Navrotski, B. Brajuskovic
    ANL, Argonne, Illinois, USA
 
  Funding: Funding provided by the Advanced Photon Source, U.S. Department of Energy, Office of Science, Argonne National Laboratory under Contract No. DE-AC02-06CH11357.
Tubular vacuum chamber assemblies made of aluminum, copper and stainless steel alloys will be used in the new Multi Bend Achromat (MBA) storage ring that is being developed at Advanced Photon Source (APS). Details of the new lattice magnet system design and ring impedance considerations continue to drive these vacuum chambers to smaller dimensions and thinner walls with tighter geometric tolerances under higher thermal loads. It is important to carefully evaluate the methods used to join these dissimilar metal components looking for compromise in primary strength, permeability, electrical and thermal properties while still creating structures that are ultra-high vacuum compatible and leak-tight. This paper visually details the underlying metallurgical changes that occur when joining various combinations of aluminum, OFE copper, GlidCop® and stainless steel using brazing, bonding and welding techniques. Each of the techniques has its advantages and disadvantages with engineering and economic consequences.
 
poster icon Poster TUPE25 [2.312 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE25  
About • paper received ※ 07 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE44 Optimization for the APS-U Magnet Support Structure ion, alignment, photon, software 254
 
  • Z. Liu, H. Cease, J.T. Collins, J. Nudell, C.A. Preissner
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by: Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under contract DE-AC02-06CH11357.
The Advanced Photon Source Upgrade (APSU) is to replace the existing storage ring with a multi-bend achromats (MBA) accelerator lattice *. For the APS-U removal and installation, current planning calls for a 12-month shutdown and testing period, prior to resumption of operations. It calls for quick installation of the magnet support system with assembly and installation alignment tolerance. A three-point, semi-kinematic vertical mount for the magnet modules is the approach to reduce time for alignment. The longest section is the curved FODO section (four quads with three Q-bends interleaved, and a three-pole wiggler). All magnets of the FODO section sit on a single piece of support structure in order to have a good control over the magnet-to-magnet alignment tolerance. It brings challenge to minimize the top surface deflection and maximize the first mode frequency of the magnet support structure that is supported at three points. These constraints call for the need of optimizing the magnet support structures. Details of the optimization, including three-point positioning, material selection, and topology optimization, are reported in this study.
* Glenn Decker (2014) Design Study of an MBA Lattice for the Advanced Photon Source, Synchrotron Radiation News, 27:6, 13-17, DOI: 10.1080/08940886.2014.970932
 
poster icon Poster TUPE44 [1.889 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE44  
About • paper received ※ 07 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE02 Performance Evaluation of Fast Closing Shutter System at the SPring-8 Front-end ion, vacuum, experiment, storage-ring 312
 
  • S. Takahashi
    JASRI/SPring-8, Hyogo, Japan
  • M. Sano, A. Watanabe
    Japan Synchrotron Radiation Research Institute (JASRI/SPring-8), Hyogo, Japan
 
  The fast closing shutter (FCS) system plays an important role in protecting the ultra-high vacuum in the SPring-8 storage ring from a sudden vacuum accident in the beam-lines. In order to predict the transit time of the shock wave and the following pressure increase, a shock tube system with an inner diameter of 35 mm and a total length of 10 m was prepared to measure the shock Mach number. Experiments have been conducted that simulated an inrush of the atmosphere into the high-vacuum (~10-3 Pa) pipe by using a trigger system that combines of a thin cellophane diaphragm with a plunger. Special ionization gauges with a high-speed amplifier are distributed about every 1 m to detect the transit time of the shock wave and to measure the pressure in a low-pressure chamber after the actuation of the FCS system. By inserting vacuum components with various cross-sectional shapes including actual front-end components into the shock tube, the attenuation in the shock wave was systematically investigated.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE02  
About • paper received ※ 06 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)