Keyword: FEL
Paper Title Other Keywords Page
MOPE22 Mechanical Design of the MID Split-and-Delay Line at the European XFEL ion, alignment, controls, laser 50
 
  • B. Friedrich, S. Eisebitt, T. Noll
    MBI, Berlin, Germany
  • S. Eisebitt, B. Friedrich
    Technische Universität Berlin, Berlin, Germany
  • W. Lu, T. Roth
    European XFEL, Schenefeld, Germany
  • A. Madsen
    XFEL. EU, Hamburg, Germany
 
  A new split-and-delay line (SDL) is under development for the Materials Imaging and Dynamics (MID) end station at the European XFEL.* The device utilises Bragg reflection to provide pairs of X-ray pulses with an energy of (5 - 10) keV and a continuously tunable time delay of (-10 - 800) ps - thus allowing zero-crossing of the time delay. The mechanical concept features separate positioning stages for each optical element. Those are based on a serial combination of coarse motion axes and a fine alignment 6 DoF Cartesian parallel kinematics**. That allows to meet the contradictory demands of a fast long-range travel of up to 1000 mm and in the same time a precise alignment with a resolution in the nanometer range. Multiple laser interferometers monitor the position of the optical elements and allow an active control of their alignment. All optical elements and mechanics will be installed inside an UHV chamber, including the interferometer and about 100 stepper motors. With this paper we present the mechanical design for the SDL. It will additionally show the design of a prototype of a positioning stage which allows extensive testing of the implemented concepts and techniques.
* A. Madsen et al., Technical Design Report: Scientific Instrument MID, 2013.
** T. Noll et al., Parallel kinematics for nanoscale Cartesian motions, Precision Engineering, vol. 33, no. 3, 2009.
 
poster icon Poster MOPE22 [4.691 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE22  
About • paper received ※ 11 September 2016       paper accepted ※ 14 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE27 The Influences of Material Properties to Micro Damages on Vacuum Chamber CF Flanges ion, vacuum, simulation, diagnostics 63
 
  • S. Vilcins, M. Holz, M. Lemke, D. Nölle, Ch. Wiebers
    DESY, Hamburg, Germany
 
  The European-XFEL, a 3.3 km long X-Ray laser facility, powered by a 17.5 GeV superconducting linear accelerator, is located at DESY in Hamburg [1]. For the diagnostics ultra-high vacuum components with high mechanical precision and strict requirements on particle cleanliness had to be developed, designed and produced. For the screen system of the facility, enabling to observe the size and shape of the electron beam, massive vessels, precisely milled out of stainless steel blocks 1.4435 (316L) have been produced. For these chambers all flange-connections are milled into these blocks. This paper will report onμdamages in these integrated knife edges and will present simulations of the damage mechanisms. It will also describe the influences of material properties of two different stainless steel brands, effects on the ¿knife edge¿ due to the penetration into the gaskets as well as the non-elastic deformation of the sealing area. The dependence of tightening forces under special conditions, like the very clean conditions in particle free applications due to the non-lubricated conditions will be reported. A ¿cooking recipe¿ to avoid suchμdamages will be given.  
poster icon Poster MOPE27 [0.187 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE27  
About • paper received ※ 09 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE31 Dynamic Performance of a Support System for BBA Components in SXFEL ion, undulator, electron, quadrupole 80
 
  • F. Gao, R.B. Deng, Y.X. Dong, X. Hu, Z. Jiang, S. Sun, L. Wang, Y.M. Wen
    SINAP, Shanghai, People’s Republic of China
 
  The electron beam orbit stability is very important for the Free Electron Laser (FEL) facility. The high beam position stability requirement results in the high position stability for the FEL key components, such as quadruple magnet (Q) and beam position monitor (BPM). This work focus on the research of the dynamic performance of a mechanical support system composed of mechanical supports - including sheets and adjustments - and a granite block mounted on them. It will be applied for the beam based alignment (BBA) Q magnet and BPM for the Soft X-ray FEL project (SXFEL). The Finite-element -FE- calculations of the model characteristics were carried out to guide the subsequent tests. The test results show that the support system can meet the requirement of the SXFEL project.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE31  
About • paper received ※ 09 September 2016       paper accepted ※ 14 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUBA03 The Generic Mirror Chamber for the European XFEL ion, alignment, optics, software 121
 
  • T. Noll
    BESSY GmbH, Berlin, Germany
  • H. Sinn, A. Trapp
    XFEL. EU, Hamburg, Germany
 
  For the high demanding requirements of the beam-lines of the European XFEL [*] new mirror chambers were developed, designed and tested. A prototype contains the main features of all needed ten units which are tested extensively. The concept of the mirror chamber is a further development of our Cartesian parallel kinematics for X-ray optics in the UHV [**]. The stiffness and vibration behaviour were further improved and the position resolution was increased compared to earlier implementations at Bessy and Flash. For that the drives were redesigned and now feature a stroke of 100 mm with nanometer resolution.
* H. Sinn, TDR: X-Ray Optics and Beam Transport, December 2012, XFEL. EU TR-2012-006 doi:10.3204
** T. Noll, Parallel kinematics for nanoscale Car-tesian motions, Precision Engineering Vol.33/3 Pg.291
 
slides icon Slides TUBA03 [38.484 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUBA03  
About • paper received ※ 09 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCA02 Structural Dynamic Modelling and Measurement of SwissFEL Bunch Compressor ion, GUI, acceleration, damping 128
 
  • X. Wang, H. Jöhri, F. Löhl, M. Pedrozzi, T. Stapf
    PSI, Villigen PSI, Switzerland
 
  Magnetic chicanes are used in accelerator facilities to longitudinally compress the accelerated particle bunches. The second compression chicane (BC2) of SwissFEL consists of four dipole magnets bending the beam on the horizontal plane along a C-shaped orbit and has a total length of 17 m. The position of the two central dipoles can be continuously adjusted to achieve the required transverse offset in order to realize a wide range of compression schemes. To ensure the requires mechanical stability of the accelerator components sitting on the long and movable steel girder (7.7 m), it is essential to design a stiff support structure with high eigen frequencies. In the design stage, displacement frequency responses are calculated in a modal based linear dynamic analysis using finite element method to ensure vibration amplitude below 1 micrometer. Special considerations are given to the modelling of linear guide systems, as they introduce nonlinear support conditions and need to be adequately simplified in the calculation. After completing the BC2 assembly, vibration measurements were performed. Finally, the validation of the numerical model by measurement results will be presented.  
slides icon Slides TUCA02 [3.884 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUCA02  
About • paper received ※ 10 September 2016       paper accepted ※ 20 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE36 Ground Vibration Monitoring for SXFEL Construction at SSRF ion, SRF, experiment, site 242
 
  • R.B. Deng, F. Gao, L. Yin
    SINAP, Shanghai, People’s Republic of China
 
  Funding: Project supported by the National Natural Science Foundation of China (Grant No. 11405255)
Shanghai X-ray Free Electron Laser test facility (SXFEL) began construction on Dec.30 2014. It is quite important to monitor the ground vibration influenced by the construction at Shanghai Synchrotron Radiation Facility (SSRF), because the SXFEL is just in the north of SSRF and the nearest distance is only 20m. In this paper, the results of ground vibration measurement during the construction period at SSRF experimental hall, tunnel and experimental room near the SXFEL site are shown. Vibrations at different hours, frequency bands and directions are discussed to provide more detailed information on the influence of SXFEL construction to SSRF.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE36  
About • paper received ※ 08 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE38 Progress and Mechanical Engineering of FEL Projects at SINAP ion, undulator, electron, linac 246
 
  • L. Yin, W. Fang, X. Hu, S. Sun, L. Wang, L.Y. Yu, W. Zhang
    SINAP, Shanghai, People’s Republic of China
 
  Free electron laser (FEL) technology is the next focus at Shanghai Institute of Applied Physics (SINAP). Shanghai Deep Ultraviolet Free-Electron Laser (SDUV-FEL), a test facility for new FEL principles, was operated for 5 years and got a series of important results. Dalian Coherent Light Source (DCLS), a 50~150nm wavelength FEL user facility based on a 300MeV linac located at Dalian Institute of Chemical Physics, started beam commissioning in August. Shanghai X-ray Free-Electron Laser (SXFEL), a soft X-ray FEL test facility based on an 840MeV linac, will be installed in this month and the commissioning is scheduled at the beginning of 2017. The Progress of the FEL projects and the mechanical engineering in the design and construction are presented.  
poster icon Poster TUPE38 [8.096 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE38  
About • paper received ※ 07 September 2016       paper accepted ※ 15 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPE40 Cryo-Ready Undulator U15: Passing SOLEIL’s 2 Meters Threshold in Useful Magnetic Length ion, undulator, electron, storage-ring 249
 
  • M. Tilmont, F. Briquez, N. Béchu, L. Chapuis, M.-E. Couprie, J.M. Dubuisson, J.P. Duval, C. Herbeaux, A. Lestrade, J.L. Marlats, M. Sebdaoui, K.T. Tavakoli, C. de Olivera
    SOLEIL, Gif-sur-Yvette, France
 
  The U15 is an in-vacuum undulator designed to operate at room temperature and at 70K. It is the first in-vacuum undulator designed, assembled and which will be used in SOLEIL’s storage ring that have support beams for magnets longer than 2 meters. A clear gap is felt in the technologies used for manufacturing and assembling compared to our standard 2m length in-vacuum undulators. This is due, in part, to the tolerances imposed by the maximum phase error admissible in SOLEIL’s storage ring. The poster will shine lights on those difficulties from a design and manufacturing point of view.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUPE40  
About • paper received ※ 11 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WECA03 Experience With the Commissioning of the U15-Undulator for SwissFEL-Aramis Beamline and New Developments for the Athos Beamline ion, undulator, vacuum, controls 283
 
  • P. Boehler, M. Brügger, M. Calvi, H. Jöhri, A. Keller, M. Locher, T. Schmidt, L. Schulz
    PSI, Villigen PSI, Switzerland
 
  The development of the U15 undulator was presented at the MEDSI Conference 2012 in Shanghai. Meanwhile the undulator line is finished. The presentation will explain the experience with the production, the assembling and the commissioning of the undulators. We succeeded to implement a robotic system, that did the final adjustment of all the magnets automatically. Therefore, we were able to reduce the time for the adjustment of the magnets dramatically. A whole loop with measuring, adjustment of the columns and final adjustment with the robotic system for the magnets takes 3 days. The presentation will explain these steps. For the next beam-line, we will profit from the experience of the U15 undulator development, but there are new requirements, because it will be a polarized undulator with a period of 38mm. We are developing a new arrangement of the drives, a further development of the magnet keepers and a vacuum-pipe with only 0.2mm of wall thickness.  
slides icon Slides WECA03 [11.263 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WECA03  
About • paper received ※ 09 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE22 F-Switch: Novel ’Random Access’ Manipulator for Large Numbers of Compound Refractive Lenses ion, operation, vacuum, alignment 345
 
  • G.M.A. Duller, D.R. Hall, A. Stallwood
    DLS, Oxfordshire, United Kingdom
 
  The F-Switch is a new concept of device for the manipu-lation of large arrays of 2D CRLs or similar disc-shaped optical elements (12mm dia, 2mm thick) under high vac-uum. Unlike the well-known transfocator devices the optical elements are randomly selectable. This enables a number of potential modes of operation, including the fine adjustment of focal length by adjusting the effective lens centre position when using CRLs or the use of some positions within the array to implement filters or reference foils. Actuation and guidance is achieved within the thickness of the element, so that the overall length of the device is minimised. The device has been in user operation on the I04 MX beamline at Diamond Light Source (DLS) since 2015. Another device is being assembled for use on the I11 beamline at DLS. It is also hoped to install another device on the I03 beamline. We present details of the mechanical design of the F-Switch and some examples of its operation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE22  
About • paper received ※ 10 September 2016       paper accepted ※ 21 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)