Keyword: damping
Paper Title Other Keywords Page
MOPE09 Preliminary Design and Test of Damping Mechanism for Reducing Vibration of TPS SR Vacuum Chamber ion, vacuum, site, experiment 20
 
  • K.H. Hsu, M.L. Chen, C.M. Cheng, H.C. Ho, D.-G. Huang, C.K. Kuan, W.Y. Lai, C.J. Lin, S.Y. Perng, T.C. Tseng, H.S. Wang
    NSRRC, Hsinchu, Taiwan
 
  Since flow-induced vibration of vacuum chamber effects of the stability of the electron beam storage ring in Taiwan Photon Source (TPS), a damping mechanism was designed and installed to reduce vibration. The damping mechanism is composed of a clamper of vacuum chamber, a fixed fixture on the girder and a sandwiched stain-less steel support with damping materials inside. Different kinds of materials were applied in the damping mechanism for vacuum chamber. The vibration of vacuum chamber were obtained and compared. The design and vibration measurement results of damping mechanism for vacuum chamber are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE09  
About • paper received ※ 11 September 2016       paper accepted ※ 14 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPE32 Preliminary Design and Analysis of the FODO Module Support System for the APS-U Storage Ring ion, storage-ring, alignment, experiment 83
 
  • J. Nudell, H. Cease, J.T. Collins, Z. Liu, C.A. Preissner
    ANL, Argonne, Illinois, USA
 
  Funding: Work supported by: Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under con-tract DE-AC02-06CH11357.
The most technically challenging module of the planned APS Upgrade (APS-U) project is the Focusing-Defocusing (FODO) module. The girder for the FODO must support a ~6m long string of three Q-bend and four quadrupole mag-nets. The challenges which emanate from retrofitting the existing APS tunnel with new hardware along with the stringent requirements for alignment and vibrational stability * necessitate a unique engineering solution for the magnet support system. FEA is heavily relied upon in order to create an optimized solution and reduce the number of design iterations required to meet specifications. The prototype FODO magnet support design is presented from the ground up, along with FEA justification and the expected vibrational performance of the module.
* Glenn Decker (2014) Design Study of an MBA Lattice for the Advanced Photon Source, Synchrotron Radiation News, 27:6, 13-17, DOI: 10.1080/08940886.2014.970932
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-MOPE32  
About • paper received ※ 09 September 2016       paper accepted ※ 20 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUCA02 Structural Dynamic Modelling and Measurement of SwissFEL Bunch Compressor ion, GUI, FEL, acceleration 128
 
  • X. Wang, H. Jöhri, F. Löhl, M. Pedrozzi, T. Stapf
    PSI, Villigen PSI, Switzerland
 
  Magnetic chicanes are used in accelerator facilities to longitudinally compress the accelerated particle bunches. The second compression chicane (BC2) of SwissFEL consists of four dipole magnets bending the beam on the horizontal plane along a C-shaped orbit and has a total length of 17 m. The position of the two central dipoles can be continuously adjusted to achieve the required transverse offset in order to realize a wide range of compression schemes. To ensure the requires mechanical stability of the accelerator components sitting on the long and movable steel girder (7.7 m), it is essential to design a stiff support structure with high eigen frequencies. In the design stage, displacement frequency responses are calculated in a modal based linear dynamic analysis using finite element method to ensure vibration amplitude below 1 micrometer. Special considerations are given to the modelling of linear guide systems, as they introduce nonlinear support conditions and need to be adequately simplified in the calculation. After completing the BC2 assembly, vibration measurements were performed. Finally, the validation of the numerical model by measurement results will be presented.  
slides icon Slides TUCA02 [3.884 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-TUCA02  
About • paper received ※ 10 September 2016       paper accepted ※ 20 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEBA01 Nostradamus and the Synchrotron Engineer: Key Aspects of Predicting Accelerator Structural Response ion, synchrotron, experiment, simulation 272
 
  • C.A. Preissner, H. Cease, J.T. Collins, Z. Liu, J. Nudell
    ANL, Argonne, Illinois, USA
  • B.N. Jensen
    MAX IV Laboratory, Lund University, Lund, Sweden
 
  Funding: Argonne is managed by UChicago Argonne, LLC, for the U.S. Department of Energy under contract DE-AC02-06CH11357.
MBA designs are placing stringent mechanical tolerances on the magnet support systems. At the APS-U the mag-net-to-magnet vibration tolerances are about 10 nm *. Timelines, installation requirements, and budgets constrain the resources available for prototyping and physical testing. Reliance on FEA to predict dynamic response is para-mount in insuring the tolerances are met. However, obtaining accurate results from a magnet support structure FEA is not as simple as analysing the CAD model of the structure. The 16th century author Nostradamus published a collection of prophecies that since his time, have been held up as predictions of various world events. While it is attractive to think his collection of short poems can be used to foretell the future, in reality it is only the vagueness and absence of any dates that make them easy to apply in a posthoc basis. Arguably, a similar statement can be made about the use of FEA in predicting accelerator support response. In this presentation the important contributors to FEA dynamic modelling will be discussed along with techniques that can be used to generate necessary data for models that can accurately predict response.
* APS-Upgrade, Functional Requirements Document, Advanced Photon Source, Argonne, IL, USA, APSU 1695659, May 2016.
 
slides icon Slides WEBA01 [14.136 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEBA01  
About • paper received ※ 10 September 2016       paper accepted ※ 16 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPE09 Designing the Photon Beamline Frontends in the PETRAIII Extension Project ion, photon, vacuum, wiggler 330
 
  • H. Krüger, W.A. Caliebe, M. Degenhardt, M. Hesse, F. Marutzky, H.-B. Peters, R. Peters, M. Röhling, H. Schulte-Schrepping, B. Steffen
    DESY, Hamburg, Germany
 
  The new insertion device beamlines in the PETRAIII extension project are arranged in three new sector types. Following will present the designs of the photon beamlines frontends for these sectors. The designs are based on the original design concept developed for the photon beamline frontends at PETRAIII. The aim of this generic approach was to minimize the number of specialized components for all beamlines. The existing girder concept allows a fast and reliable installation phase. The newly designed frontends aimed at using the same proven components and minimizing of the number of girder variations. There will be 4 new sectors with two undulator IDs in each sector. The canting angle between the undulators has been increased from 5mrad to 20mrad in difference to the generic beamlines. Additionally, two of the straight sections are modified. One straight section will be transformed in a side station sector with a 1mrad canting angle. The other straight section with the 40m long damping wiggler will be used as a single beamline with a hard X-ray source. The modifications of the original frontend design, the components and the deviations between the sector types are being presented.  
poster icon Poster WEPE09 [4.799 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-MEDSI2016-WEPE09  
About • paper received ※ 09 September 2016       paper accepted ※ 23 September 2016       issue date ※ 22 June 2017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)