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Abstract
Crystal collimation relies on the use of bent crystals to

coherently deflect halo particles onto dedicated collimator
absorbers. This scheme is planned to be used at the LHC to
improve the betatron cleaning efficiency with high-intensity
ion beams. Only particles with impinging angles below
2.5 𝜇rad relative to the crystalline planes can be efficiently
channeled at the LHC nominal top energy of 7 𝑍 TeV. For
this reason, crystals must be kept in optimal alignment with
respect to the circulating beam envelope to maximize the
efficiency of the channeling process. Given the small angu-
lar acceptance, achieving optimal channeling conditions is
particularly challenging. Furthermore, the different phases
of the LHC operational cycle involve important dynamic
changes of the local orbit and optics, requiring an optimized
control of position and angle of the crystals relative to the
beam. To this end, the possibility to apply machine learning
to the alignment of the crystals, in a dedicated setup and
in standard operation, is considered. In this paper, possible
solutions for automatic adaptation to the changing beam
parameters are highlighted and plans for the LHC ion runs
starting in 2022 are discussed.

INTRODUCTION
In the context of the intensity upgrade foreseen by the

High-Luminosity LHC (HL-LHC) Project [1, 2], collisions
with high-intensity ion beams close to the HL-LHC base-
line will be delivered already during Run 3 of the LHC [3],
starting in 2022. An upgrade of the collimation system is
crucial to ensure high-efficiency operation in these demand-
ing conditions, since losses generated by high-intensity ion
beams were already close to the quench limits of the super-
conducting magnets in Run 2 [4–6].

Crystal collimation is an innovative collimation technique
that has been extensively studied over the course of Run 2
as a way to improve the cleaning efficiency of the LHC col-
limation system [7–13]. This concept exploits the property
of materials with highly ordered atomic structure to capture
charged particles with suitable impact conditions in the po-
tential well generated by neighbouring crystalline planes, a
process called crystal channeling. Bent crystals can thus be
used to efficiently steer beam halo particles by forcing them
to follow the curvature of the crystal itself. Since channeled
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particles oscillate in the relatively empty space between
crystalline planes, inelastic interactions with the constituting
atoms of the crystal are greatly suppressed, reducing the
production of off-momentum particles. After the promising
results obtained in first beam tests during Run 2 [14–18], it
is planned to use crystal collimation in Run 3 for operation
with ion beams, for which a standard secondary collimator
can be safely used to intercept the channeled halo [19].

Achieving and maintaining optimal channeling conditions
is a crucial element of the setup of a crystal-based colli-
mation system. Only particles whose incident direction is
close enough to the direction of the crystalline planes can
be caught in the potential well and be efficiently channeled.
This process defines an acceptance angle for the channeling
phenomenon, which is heavily dependent on the particle en-
ergy and changes during dynamical phases of LHC operation,
reaching values as low as about 2.5 𝜇rad for energies close to
7 𝑍 TeV. The crystal goniometer assembly is equipped with a
high-resolution goniometer with a piezo actuator [20–22] to
align its orientation to the beam halo. However, even when
achieved, optimal channeling conditions can be easily lost in
case of changes in beam dynamics, if the crystal orientation
is not promptly and precisely adjusted.

CHALLENGES FOR THE OPERATION OF
CRYSTAL COLLIMATORS

The optimal channeling orientation can be identified us-
ing Beam Loss Monitors (BLMs) [23, 24] that are ioniza-
tion chambers placed around the ring to detect secondary
showers produced by the interactions of beam particles with
machine equipment. In total, around 3500 of these monitors
are installed in the LHC. By monitoring losses at the crystal
location while it is slowly rotated (a procedure called an-
gular scan), a characteristic pattern can be measured when
different coherent interactions of beam particles with the
crystalline planes become dominant. As can be seen in the
top frame of Fig. 1, the optimal channeling orientation cor-
responds to a minimum in the loss pattern observed at the
crystal location during the scan, called channeling well (2),
due to the decreased probability of inelastic interactions.
Given the limited angular range of the region of interest
(only a few tens of 𝜇rad) and the relatively low reduction
factor of local losses for raw data, identifying the optimal
channeling orientation online is particularly challenging.
Correspondingly, an increase of losses at the location of the
secondary collimator used to intercept the channeled halo
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Figure 1: a) Raw BLM signal in which the channeling pattern
and the increase of losses on the corresponding secondary
collimator can be identified. b) Autocorrelation of the crystal
signal showing positive values for all lags.

can be observed. On one side of the channeling well, a vol-
ume reflection plateau (3), where particles bounce off of the
crystalline planes instead of being channeled and losses are
slightly higher, can be seen. Two amorphous plateaus (1),
where the orientation is so far away from optimal channeling
that the crystal behaves like a standard collimator, are visible
at the edges of the scan.

Three tasks, distinguished by progressively smaller an-
gular range and applied in different scenarios, have been
identified for the operation of crystal collimators:

• Task 1: Angular scan in the full angular range of the
goniometer. This is performed to find the optimal chan-
neling orientation of a crystal collimator in the initial
setup after the installation in the machine, or if the ref-
erence orientation of the goniometer was lost. This
first setup step is particularly difficult as this character-
istic pattern spans only a few tens of 𝜇rad, while the
rotational range of the goniometer is of 20 mrad.

• Task 2: Short angular scan (i.e. only around the chan-
neling well). This procedure is done to verify the opti-
mal orientation found in previous measurements and
features a much smaller range (a few 𝜇rad), requir-
ing a more detailed analysis of BLM patterns. This
is important to check fill-to-fill variations and assess
the long-term stability of the system, which was never
tested to the extent of the planned operational use.

• Task 3: Continuous monitoring of losses while the
crystal is kept in channeling. The aim of this task is
to recognize if the optimal orientation is being lost not
only because the crystal is moving, but also because of
changes in the beam dynamics. Being able to adapt and
compensate these changes is important to ensure stable
performance of crystal collimation during operation.

Figure 2: a) Raw BLM signal in which the channeling pattern
cannot be identified and its b) autocorrelation. The signal
shows a weak autocorrelation for all lags.

The possibility to use machine learning to achieve and
continuously monitor channeling conditions by recognizing
these loss patterns has been explored, to potentially automa-
tize the process while making it less dependent on human
inputs and less error-prone. This work started by tackling
task 1 as a first step. While preliminary results show that the
machine learning model developed in [25] can be used to
classify the signal increase at the secondary collimator, as
the profile is similar to that of a collimator spike, an entirely
new model needed to be developed to recognize the peculiar
shape of the channeling well. The algorithm design and
results are presented.

MACHINE LEARNING MODEL FOR
CHANNELING WELL CLASSIFICATION

The limited dataset used in this initial work consists of
about 150 sets of 1 Hz BLM signals gathered during machine
development studies with proton and Pb ion beams in 2018.
The segmented BLM signals have been evenly distributed
into two classes in the following way: 63 signals belonging
to the channeling class (Fig. 1) and 83 signals belonging to
the non-channeling class (Fig. 2). In Fig. 1 a BLM signal pro-
file with the characteristic pattern of channeling conditions
and the three sections of the full angular scan are shown.
The first analysis performed, in order to exploit the differ-
ences between the signals of the two classes under study,
has been the autocorrelation analysis. The autocorrelation
represents the degree of similarity between a signal and a
lagged version of itself over successive time intervals [26].
Low correlation could be a symptom of randomness in the
signals, while strong positive autocorrelation is symptom
of high predictability. Therefore, this analysis was adopted
because it allows to visually verify randomness differences
in the signals of the channeling and non-channeling classes.
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The vertical axis of the autocorrelation plot is given by:

𝑅ℎ = 𝐶ℎ
𝐶0

(1)

where 𝐶ℎ is the autocovariance function:

𝐶ℎ = 1
𝑁

𝑁−ℎ
∑
𝑡=1

(𝑌𝑡 − 𝑌)(𝑌𝑡+ℎ − 𝑌) (2)

and 𝐶0 is the variance function [27]:

𝐶0 =
∑𝑁

𝑡=1 (𝑌𝑡 − 𝑌)2

𝑁 . (3)

As it can be seen in the lower frame of Fig. 1, the raw
BLM signal belonging to the channeling class shows an au-
tocorrelation that starts at value 1 and slowly declines, which
is the signature of “strong autocorrelation”. In Fig. 2, on
the other hand, a pattern cannot be seen as the autocorrela-
tion is always under 0.5 for all lags and the signal is mostly
random. Therefore from this analysis it was possible to iden-
tify differences between the signals belonging to the classes
under study. This difference can be exploited by a machine
learning algorithm to distinguish and classify signals.

Table 1: Network Architecture Layers and Parameters

Layer Output Shape
1D CNN (None, 430, 64)
Batch Normalization (None, 430, 64)
ReLu (None, 430, 64)
Dropout (None, 430, 64)
Global Average Pooling (None, 64)
Dense (None, 1)

The structure of the convolutional neural network (CNN)
listed in Table 1, originally proposed in [28], was developed
with the use of the deep learning library Keras [29] with
TensorFlow [30] for the backend and it has been adapted
to the problem under study. Before feeding the data into
the first CNN layer a Z-Score normalization at each signal
is applied, such that they have the properties of a standard
normal distribution with mean 𝜇 = 0 and standard deviation
𝜎 = 1 [31]. The developed model consists of a 1D con-
volutional layer followed by a batch normalization layer, a
rectified linear unit activation function and a dropout layer
(with a 0.2 frequency rate) adopted to reduce overfitting.
The aforementioned structure is repeated three times and is
closed by a 1D global average pooling layer and a dense layer
with one neuron with a sigmoid activation function. The
choice of the latter allows to output a probability, precisely
the probability that the time series analyzed shows a pattern
compatible with channeling.

The evaluation metric adopted in this work is the precision,
i.e. the ratio between true positives and the sum of true
positives and false positives:

Precision = True Positive
True Positive + False Positive . (4)

A true positive is a BLM signal that presents the channel-
ing pattern correctly classified by the model, while a false
positive is a time series that represents a spurious signal
misclassified by the model. This was chosen among the
available evaluation metrics because false detection of a col-
limator under channeling conditions is more harmful than
not detecting channeling conditions.

In this first exploratory study, the proposed model has
been trained by using 80% of the randomly shuffled dataset
and has been tested on the remaining 20%. An Adam opti-
mizer was used to accelerate the gradient descent process
and the loss function utilized was the binary cross-entropy.
Furthermore, the early stopping technique with a patience
parameter of 50 was adopted in order to prevent overfitting.
The CNN achieved a precision of 96.15% on unseen BLM
signals with proton and ion beams. This is a promising result
considering the limited dataset, and indicates that convolu-
tional neural networks can be applied to tackle task 1.

CONCLUSIONS AND OUTLOOK
The precise alignment of crystal collimators is a funda-

mental aspect of their use to improve the cleaning perfor-
mance of the LHC collimation system, given the challenges
posed by the small angular acceptance of the channeling
process. In preparation for the use of crystal collimation in
the 2022 Pb ion run at the LHC, advanced control algorithms
were explored to achieve and continuously maintain optimal
channeling orientation during extended operation, identify-
ing in particular three separate tasks: full angular scan, short
angular scan and continuous monitoring. In this work, the
possibility to apply machine learning techniques to these
operational scenarios was considered, tackling task 1 as a
starting point. Following a detailed analysis of BLM signals
collected during 2018 machine development activities, a
new deep learning framework that makes use of convolu-
tional neural network was proposed to classify the signals
and identify the signature of an optimal channeling orienta-
tion. Despite the limited dataset, the developed model has
shown excellent results in terms of precision and demon-
strated reliability in the application of machine learning to
task 1. A further step is to improve model confidence by
using a larger dataset. This work will then be expanded in
future studies in order to address the two remaining tasks,
possibly by exploiting further the spike detection model al-
ready developed in [25], implementing the analysis of higher
frequency BLM signals for more granularity, and classifying
additional BLM signals other than those at the crystal and at
the secondary collimator. Machine development activities
are planned to take place during Run 3 of the LHC to deploy
and test these models.
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