
BEAMLINE ARCHITECT

Josiah Denton Kunz∗, Lizette Michelle Romero, Caleb Matthew Conrad

Anderson University, Anderson, IN, USA

Abstract

Beamline Architect is a new particle accelerator simula-

tion interface. Currently, two of the most widely used tools
in this field are G4beamline and COSY Infinity. While these
codes are fast and quite accurate, sometimes their interfaces
can be time-consuming for students to learn, particularly
undergraduate students or students whose primary field is
not accelerator physics. Without Beamline Architect, each
code has its own high-level language that must be manually
written into a file and then executed on the command line.
Moreover, sometimes the use of both simulation tools is war-

ranted in order to check for consistency between the codes.
Writing the codes by hand or translating between software
can sometimes be cumbersome, even for experts. Further-

more, knowledge of an additional language, such as Python,
is required in order to analyze the outputs of the codes (which
may be in different formats from one another). Beamline
Architect is a tool that provides a graphical user interface
to G4beamline and COSY Infinity. This lets the user build
a particle accelerator channel in 3D with or without using
code. The channel may then be saved, exported, translated,
or run. Any output data will be plotted in Beamline Architect
using Python, since it is both flexible aesthetically and quite
standard in the particle accelerator community. For under-

graduate and non-accelerator students, Beamline Architect
allows a hands-on experience with accelerator simulations.
Some applications for these students include health physics
radiation dosimetry problems, medical imaging mechanics,
security scanner simulations, and (of course) accelerator
channel design for particle physics experiments. For experts,
Beamline Architect provides visual confirmation of the chan-

nel and a faster, more consistent way of cross-referencing
results between the codes.

INTRODUCTION

Beamline Architect is a new particle accelerator simula-

tion interface. Its basic goal is to serve as a graphical user
interface for several well-known text-based particle acceler-

ator codes, such as G4beamline [1] and COSY Infinity [2].

As a demonstration, Fig. 1 is a COSY channel containing
a magnetic quadrupole, a central magnetic solenoid, and an-

other magnetic quadrupole, with their centers at z = -0.276,
0.307, and 0.482 m, respectively. In Beamline Architect,
constructing the channel involves simply dragging the ele-

ment and customizing the element via popup.

∗ jdkunz@anderson.edu

Figure 1: Example screenshot of Beamline Architect in

COSY mode.

The channel may then be exported to a text file and run in

COSY1. Since the exported file in its entirety is too large to

be reproduced here, below is a snippet of the placing of the

elements.

{INITIAL OFFSET}
DL -0.2805422;

{MQ named MQ1 and color RGBA(0.000, 1.000, 1.000, 1.000)}
MQ 0.01 0.1 0.1 ;
DL 0.5724507;

{CMST named CMST1 and color RGBA(0.000, 1.000, 1.000, 1.000)}
CMST 0.01 0 0 0.1 ;
DL 0.1647326;

{MQ named MQ2 and color RGBA(1.000, 0.000, 1.000, 1.000)}
MQ 0.01 0.1 0.1 ;

BASIC IMPLEMENTATIONS

At its core, Beamline Architect uses intuitive menus and

popups to allow the user to construct a particle accelera-

tor channel. The channel settings and user preferences are

saved as a Beamline Architect channel at the user’s choice

of directory.

Figure 2: Top menu system for Beamline Architect. Symbols

are from right to left: new channel, open channel, save

channel, save channel as, new channel element, view current

channel elements, and export to file.

1 A distribution of COSY is not included with Beamline Architect.

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAF003

WEPAF003
1812

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

Figure 2 shows the top menu system as it appears to the

user. These are the primary actions that the user may take.

The first set of four buttons are standard operations for the

channel: new, open, save, and save as. The next two buttons

pertain to the supported elements, be they particle acceler-

ator elements (e.g., magnetic hexapole) or logic elements

(e.g., for loop). With these two buttons, the user may add a

new element or view a list of elements already in the channel.

The last button is to export this channel so that it may be

read by its native code (e.g., a .fox file for COSY).

Figure 3: Example popup menu for the G4beamline mag-

netic quadrupole element in Beamline Architect.

Once the users has selected an element, they may drag it

into the channel. The popup menu (Figure 3) allows the user

to customize the element. Several major options are listed

with defaults, with all others in the advanced options menu.

G4BEAMLINE

G4beamline [1] is a particle tracking simulation software

that can be used to simulate a multitude of different elements.

G4beamline has a large library of known materials that help

it to accurately model the way particles interact with matter.

It is built on top of Geant4, which is a toolkit developed by

CERN, and offers visualization of elements and eliminates

the need for the user to know how to program in C++.

G4beamline has a long list of predefined elements that

the user can choose from. To run a simulation with these

elements, the user is required to write a text file containing

all of the parameters of all of the elements that they wish

to use. After all of the elements are defined, the user needs

to place them in their proper position for them to run in

G4beamline.

G4BEAMLINE IMPLEMENTATION

Not all undergraduate physics students are prepared to

learn a unique language in order to run one particle sim-

ulation. Beamline Architect removes the need to write a
text file or run anything from the command line. Beamline
Architech offers a stylized user interface that is easy to
use. The user only needs to change the parameters to match
their needs, or use the defaults.

One of the greatest features of G4beamline is its
customiz-ability. Most elements have a plethora of optional
parameters that can be tweaked to the user’s
specifications. However, due to the large number of
parameters, when writing the code the user may not be
aware of what options the element has.

Beamline Architect separates every G4beamline
parame-ter into one of two categories: mandatory or
optional (see, e.g., Figure 3). Mandatory parameters are
clearly laid out and typically have a default value assigned.
Optional param-eters can be found under the advanced
options toggle and are assigned default values as specified
in the G4beamline manual.

Figure 4 shows a channel constructed in Beamline
Architect and, below that, exported as a .g4bl file.

Figure 4: Example G4beamline channel constructed in

Beamline Architect. Elements are a beam start, a magnetic

quadrupole, and a detector.

#Physics
#-------
physics FTFP_BERT minRangeCut=1.0 maxTime=1000000

#Beam named Beam0
#----------------
beam gaussian particle=proton nEvents=1000 beamZ=-500 \

sigmaX=100 sigmaY=100 meanMomentum=200
polycone Beam0 outerRadius=50.000,0 z=0,50.000 \

color=0.000,0.000,1.000,1.000
place Beam0 z=-500

#MQ named MQ0
#------------
genericquad MQ0 apertureRadius=100 ironRadius=150 \

ironLength=10 color=0.000,1.000,1.000,1.000
place MQ0 z=-123.7

#DET named DET0
#--------------
detector DET0 height=500 width=500 \

color=0.000,1.000,0.000,0.500
place DET0 z=431.9

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAF003

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

WEPAF003
1813

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

COSY INFINITY

COSY Infinity [2] is a powerful software language used

for the simulation of particle optical and accelerator physics

environments. This system uses the transfer map method

and differential-algebraic (DA) techniques to allow for very

efficient calculations and understanding of nonlinear motion.

In its most basic level, it allows for the computation of the

maps of standard beamline elements. This includes fringe

fields, wedge absorbers and system parameters to arbitrary

orders. It can also be very versatile and work for very large

and complex mapping codes, which allows for many ways

to efficiently manipulate and analyze the maps.

COSY Infinity’s approach for the user interface is to

phrase various tasks in terms of a standard scripting lan-

guage environment called COSYScript. For users in need of

special-purpose features, it can be very powerful, as it allows

the use of DA and others as built-in types. Most commands

are calls to previously defined procedures, and if desired,

the user can create new commands by defining procedures

of their own. The commands within COSY Infinity are sim-

plistic and consist of a few letters which are abbreviations

for the words that describe the action of the procedure. In

addition to the commands that describe the particle-optical

elements, there are commands that instruct the code on what

to do.

COSY IMPLEMENTATION

Even though COSY is be fast and accurate, its interface

can be somewhat cumbersome for students to learn, partic-

ularly those whose primary field is not accelerator physics.

This this is because the systems code language must be man-

ually written into a file and then executed on the command

line. Beamline Architect as a tool provides a graphical user

interface for COSY Infinity, letting users build particle accel-

erator channels in 3D. The user can decide to build with or

without using code, then the channels can be saved, exported,

translated, or run.

Some of the COSY Infinity elements that were imple-

mented into Beamline Architect include: magnetic quadru-

ple and hexapole, superimposed multipole, a thick central

magnetic solenoid (CMST), and fringe fields. Since fringe

fields are modelled as Enge functions, an interface to con-

struct Enge functions was also implemented. Likewise, a

polynomial interface was implemented in preparation for

adding wedge absorbers into Beamline Architect.

OTHER IMPLEMENTATIONS

There are several other advanced systems and features

that are of little immediate consequence to the first-time

user. These features are:

• Variables. There are several variable types that the

user may use repeatedly. Examples of variable types

that the user can create are: colors, Enge functions, and

polynomials.

• Error handling. Users are commonly prevented from

entering in text which may prevent the accelerator code

(G4beamline, COSY) from functioning. Examples of

data types that error handling pertains to are: positive

numerals, vectors, valid G4beamline absorber files, and

conflicting variable names.

• Native manual description. For every element, there

exists a more detailed description from the native code’s

user manual.

CURRENT CHALLENGES

The greatest challenge thus far is the sheer amount of

labor hours that the project requires. While the bulk of the

project’s logic is finished, there are only a few elements that

are actually implemented.

One core tenet of Beamline Architect is that it is “code

agnostic”. Therefore, though the user may be able to con-

struct and even run the simulation, there is currently no way

to get useful information from it. An interface to Python is

the proposed solution, but proving to be somewhat difficult.

REFERENCES

[1] Tom Roberts. G4beamline. http://www.muonsinternal.

com/muons3/G4beamline, 2014. Version 2.15w.

[2] M. Berz and K. Makino. COSY Infinity Beam Physics Manual,

2013. Version 9.1.

9th International Particle Accelerator Conference IPAC2018, Vancouver, BC, Canada JACoW Publishing
ISBN: 978-3-95450-184-7 doi:10.18429/JACoW-IPAC2018-WEPAF003

WEPAF003
1814

Co
nt

en
tf

ro
m

th
is

w
or

k
m

ay
be

us
ed

un
de

rt
he

te
rm

so
ft

he
CC

BY
3.

0
lic

en
ce

(©
20

18
).

A
ny

di
str

ib
ut

io
n

of
th

is
w

or
k

m
us

tm
ai

nt
ai

n
at

tri
bu

tio
n

to
th

e
au

th
or

(s
),

tit
le

of
th

e
w

or
k,

pu
bl

ish
er

,a
nd

D
O

I.

06 Beam Instrumentation, Controls, Feedback, and Operational Aspects
T33 Online Modeling and Software Tools

