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Abstract

The space-charge driven envelope instability presents a

great danger in high intensity accelerator design. In this pa-

per, we report on the study of bunched beam envelope insta-

bility in a periodic focusing channel using three-dimensional

envelope model for a 3D uniform Waterbag distribution and

a 3D Gaussian distribution. Our results show that the enve-

lope instability stopband becomes broader with the increase

of longitudinal focusing and are not sensitive to the type

of distribution. Self-consistent macroparticle simulations

using both distributions show similar structure in emittance

growth but also extra instability stopbands. The emittance

growth from the Waterbag distribution has larger stopband

than that from the Gaussian distribution.

INTRODUCTION

The space-charge driven envelope instability presents a

potentially great danger in high intensity accelerators by

causing beam size blow up and quality degradation. It has

been studied theoretically [1–13] and experimentally [14–

16] since 1980s. However, most of those theoretical studies

were based on a two-dimensional model. Three-dimensional

macroparticle simulations were carried out for a bunched

beam under the guidance of the two-dimensional envelope

instability model [10, 13]. Recently, 3D envelope instability

analysis was done for a 3D ellipsoidal uniform Waterbag

beam in periodic focusing channels using a 3D envelope

equation model [17]. In this paper, we study the sensitivity of

the instability stopband with another Gaussian distribution.

We also compare the instability stopband from the envelope

model with the emittance growth from the self-consistent

macroparticle simulations.

THREE-DIMENSIONAL ENVELOPE

INSTABILITY ANALYSIS

For a 3D uniform density ellipsoidal beam inside a pe-

riodic focusing channel without acceleration, the three-

dimensional envelope equations are given as [18–20]:

d2X

ds2
+ k2

x (s)X − Ix (X,Y, Z )X −
ǫ2x

X3
= 0 (1)

d2Y

ds2
+ k2

y (s)Y − Iy (X,Y, Z )Y −
ǫ2y

Y 3
= 0 (2)

d2Z

ds2
+ k2

z (s)Z − Iz (X,Y, Z )Z −
(ǫz/γ

2)2

Z3
= 0 (3)
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with

Ii (X,Y, Z ) = C

∫ ∞

0

dt

(e2
i
+ t)
√

(X2
+ t)(Y 2

+ t)(γ2Z2
+ t)

(4)

where X , Y , and Z are horizontal, vertical, and longitudi-

nal rms beam sizes respectively, k2
x , k2

y , k2
z represent the

external periodic focusing forces ǫ x , ǫy , and ǫz are unnor-

malized rms emittances, ei = X,Y, γZ , for i = x, y, z, and

C = 1
2

3
4πǫ0

q

mc2
I

fr f β
2γ2

1

5
√

5
. Here, ǫ0 is the vacuum permit-

tivity, q the charge, mc2 the rest energy of the particle, c

the light speed in vacuum, I the average beam current, fr f
the RF bunch frequency, β = v/c, v the bunch velocity,

and the relativistic factor γ = 1/
√

1 − β2. The nonlinear

space-charge defocusing terms Ix,y,z depend on the horizon-

tal, vertical, and longitudinal rms beam sizes and provide

coupling between the transverse and longitudinal envelope

oscillations. It was pointed out in reference [18] that the

space-charge form factor 1/5
√

5 for a uniform distribution

depends only weakly on the type of distributions and is

1.01/5
√

5 for a parabolic distribution and 1.05/5
√

5 for a

Gaussian distribution. The external periodic focusing forces

kx,y,z (s) = kx,y,z (s+L) in above equations vary for different

accelerator beam line elements.

The above equations can be linearized with respect to

periodic solutions (i.e. matched solutions) as:

X (s) = X0(s) + x(s) (5)

Y (s) = Y0(s) + y(s) (6)

Z (s) = Z0(s) + z(s) (7)

where X0, Y0 and Z0 denote the periodic matched envelope

solutions and x, y and z denote small perturbations

x(s) ≪ X0(s), y(s) ≪ Y0(s), z(s) ≪ Z0(s) (8)

The equations of motion for these small perturbations are

given by:

d2x

ds2
+ a1(s)x(s) + a12(s)y(s) + γ2a13(s)z(s) = 0 (9)

d2
y

ds2
+ a12(s)x(s) + a2(s)y(s) + γ2a23(s)z(s) = 0 (10)

d2z

ds2
+ a13(s)x(s) + a23(s)y(s) + a3(s)z(s) = 0 (11)

where

a1(s) = k2
x + 3ǫ2x/X

4
0 − Ix (X0,Y0, Z0) + 3X2

0 Fxx
(12)

a12(s) = X0Y0Fxy (13)

a13(s) = X0Z0Fxz (14)

a2(s) = k2
y + 3ǫ2y/Y

4
0 − Iy (X0,Y0, Z0) + 3Y 2

0 Fyy (15)

a23(s) = Y0Z0Fyz (16)

a3(s) = k2
z + 3(ǫz/γ

2)2/Z4
0 − Iz (X0,Y0, Z0) + 3γ2Z2

0 Fzz (17)
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where

Fxx = C

∫ ∞

0

(X2
0 + t)−5/2(Y 2

0 + t)−1/2(Z2
0γ

2
+ t)−1/2dt (18)

Fxy = C

∫ ∞

0

(X2
0 + t)−3/2(Y 2

0 + t)−3/2(Z2
0γ

2
+ t)−1/2dt (19)

Fxz = C

∫ ∞

0

(X2
0 + t)−3/2(Y 2

0 + t)−1/2(Z2
0γ

2
+ t)−3/2dt (20)

Fyy = C

∫ ∞

0

(X2
0 + t)−1/2(Y 2

0 + t)−5/2(Z2
0γ

2
+ t)−1/2dt (21)

Fyz = C

∫ ∞

0

(X2
0 + t)−1/2(Y 2

0 + t)−3/2(Z2
0γ

2
+ t)−3/2dt (22)

Fzz = C

∫ ∞

0

(X2
0 + t)−1/2(Y 2

0 + t)−1/2(Z2
0γ

2
+ t)−5/2dt (23)

With ξ = (x, x ′, y, y′, z, z′)T , the above equations can be

rewritten in matrix notation as:

dξ

ds
= A6(s)ξ (s) (24)

with the periodic matrix

A6(s) =

*.........
,

0 1 0 0 0 0

−a1(s) 0 −a12(s) 0 −γ2a13(s) 0

0 0 0 1 0 0

−a12(s) 0 −a2(s) 0 −γ2a23(s) 0

0 0 0 0 0 1

−a13(s) 0 −a23(s) 0 −a3(s) 0

+/////////
-

(25)

Let ξ (s) = M6(s)ξ (0), substituting this equation into Eq. 24

results in

dM6(s)

ds
= A6(s)M6(s) (26)

where M6(s) denotes the 6 × 6 transfer matrix solution of

ξ (s) and M6(0) is a 6 × 6 unit matrix. The above ordinary

differential equation can be solved using the matched enve-

lope solutions and numerical integration. The stability of

these envelope perturbations is determined by the eigenval-

ues of the transfer matrix M6(L) through one lattice period.

For the envelope oscillation to be stable, all six eigenvalues

(three pairs) of the M6(L) have to stay on the unit circle.

The amplitude of the eigenvalue gives the envelope mode

growth (or damping) rate through one lattice period, while

the phase of the eigenvalue yields the mode oscillation fre-

quency. When the amplitude of any eigenvalue is greater

than one, the envelope oscillation becomes unstable.

ENVELOPE INSTABILITY IN A

PERIODIC CHANNEL

We studied the envelope instability in a transverse

solenoid focusing and longitudinal RF focusing periodic

channel. A schematic plot of this periodic channel is shown

in Fig. 1. Each period of the channel consists of a 0.1 meter

solenoid, a 0.4 meter RF bunching cavity and two 0.1 meter

drifts. The total length of the period is 0.7 meters. The pro-

ton bunch has a kinetic energy of 10 MeV and normalized

Figure 1: Schematic plot of a periodic solenoid and RF

channel.

Figure 2: The 3D envelope mode growth rate amplitudes

as a function of depressed transverse phase advance with

100 degree zero current transverse phase advances and 100

degree, 60 degree, and 10 degree zero current longitudinal

phase advances in a periodic solenoid-RF channel using

(top) 3D Waterbag uniform distribution and (bottom) 3D

Gaussian distribution.

rms emittances of 0.2 um, 0.2 um, and 0.2 um in horizontal,

vertical, and longitudinal directions respectively.

Figure 2 shows the 3D envelope mode growth rate ampli-

tudes as a function of transverse depressed phase advance

for 100 degree zero current transverse and 100, 60 and 10

degree longitudinal phase advances using the Waterbag dis-

tribution and the Gaussian distribution. It is seen that the

instability stopbands are nearly the same for both distribu-

tions. For the zero current longitudinal phase advance below

90 degrees, the instability stopband width becomes broader

with larger zero current longitudinal phase advance. When

the zero current longitudinal phase advance attains 100 de-

grees, the instability structure becomes more complex and a

new stopband appears below 50 degrees.
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Figure 3: The 3D envelope mode phases as a function of

depressed transverse phase advance with 100 degree zero

current longitudinal and transverse phase advances in a pe-

riodic solenoid-RF channel using 3D Waterbag distribution.

The six colors are the phases of the six eigenvalues.

Figure 3 shows the envelope eigenmode phases as a func-

tion of transverse depressed phase advance for the 100 de-

gree zero current phase advance in both directions. It is seen

that between 30 and 50 degree depressed phase advance, the

eigenmode phases are locked at 180 degrees and the resul-

tant instability is due to half-integer parametric resonance

between the focusing lattice and the envelope oscillation

mode. Between 70 and 85 degree phase advance, two eigen-

modes attain the same phases and the resultant instability

is called confluent resonance between two envelope modes

since they have the same oscillation frequencies.

The instability stopbands from the 3D envelope analy-

sis were compared with the emittance growth from self-

consistent macroparticle simulations. Using above lattice 
setting and initial matched distribution, we carried out 
3D macroparticle simulation using a parallel quasi-static 
particle-in-cell code, IMPACT. Figure 4 shows the max-

imum emittance growth within 200 lattice periods as a func-

tion of depressed transverse phase advance for the above 
case using both the 3D Waterbag uniform distribution and 
the 3D Gaussian distribution. Here, we have used 625664
macroparticles and 64 × 64 × 64 computational grid points

in the simulations. It is seen that for both initial distribu-

tions, the emittance growth show similar structures to the

envelope instability stopband. For the zero current longi-

tudinal phase advance below 90 degrees, there exists ma-

jor emittance growth between 70 and 80 degree depressed

transverse phase advance. With 100 degree zero current

longitudinal phase advance, the emittance growth structure

becomes more complex as the envelope instability stopband

does. Besides the stopband between the 70 and 80 degree

phase advance, there is another stopband between 40 and 50

degrees. Moreover, self-consistent simulations show another

emittance growth stopband between 30 and 40 degrees. This

growth is probably due to strong tune depression and results

in higher order collective mode instabilities that is not in-

cluded in the rms envelope model. Comparing the emittance

growth from the Waterbag distribution and the Gaussian

Figure 4: Maximum emittance growth within 200 lattice

periods as a function of depressed transverse phase advance

with 100 degree zero current transverse phase advances and

100 degree, 60 degree, and 10 degree zero current longitudi-

nal phase advances in a periodic solenoid-RF channel using

(top) 3D Waterbag distribution and (bottom) 3D Gaussian

distribution.

distribution, we see some differences in emittance growth

stopbands. For 60 degree zero current longitudinal phase

advance, the Waterbag distribution shows an extra stopband

between 50 and 60 degree depressed transverse phase ad-

vances. Such a stopband does not appear in the emittance

growth from the initial Gaussian distribution. This is due to

the long tail of the Gaussian distribution that provides the

Landau damping to the instability. This instability stopband

is not observed in the envelope instability stopband either

and could result from the third order collective mode [1]

that is absent in the rms envelope model. For 10 degree zero

current phase advance, the Waterbag distribution shows a

broader stopband width between 60 and 80 degree phase

advance than the Gaussian distribution that has a longer tail

and stronger damping effects. The emittance growth be-

tween 60 and 70 transverse depressed phase advance using

the Waterbag distribution might be related to the third or

fifth order collective modes, but needs to be further studied.
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