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Abstract
The ability to control beam optics in the presence of such

imperfections as focusing and energy gain errors is essential

for a successful operation of high brightness electron linacs

providing beams for free-electron lasers. We characterize

the cumulative effect of these imperfections using the value

of mismatch parameter calculated at the linac exit and show

how it depends on the design of the focusing lattice.

INTRODUCTION
Control of the opticsmatching is one of the key ingredients

for a successful operation of modern high brightness elec-

tron linacs providing beams for free-electron lasers (FELs).

Available operational experience indicates that in order to

optimize FEL signal at different wavelengths or to fine-tune

the FEL wavelength, empirical adjustment of the machine

parameters is often required and, therefore, the sensitivity

of the beamline optics to small changes in the beam energy

and in the magnet settings becomes one of the important

issues which affects both, the final performance and the re-

producibility of the results after breaks in operation. This

fact was quickly recognized when the FLASH facility at

DESY started its regular user operation in August 2005.

In a little while after that the simple criteria for compari-

son of the optics sensitivities was introduced, new (lower

sensitivity) optics for the FLASH beamline was developed

and brought in operation in spring 2006, and has shown

a superior performance with respect to the previous setup

of the transverse focusing [1]. Later on this criteria also

has been usefully adopted as a part of the optics redesign

strategy during commissioning of the FERMI@Elettra FEL

facility [2].

The purpose of this paper is to give some generalizations

and provide details of the derivation of the optics sensitivity

criteria which were missing in [1], and practical examples

and discussions of the application strategies can be found in

the papers [1] and [2].

DYNAMICAL VARIABLES AND TWISS
PARAMETERS

We consider the linear beam dynamics with acceleration

in one degree of freedom (lets say, horizontal) and use the

variables z = (x, q)� for the description of the horizontal
beam oscillations. We assume that evolution of these vari-

ables along the linac is described by the linear equation

dz / dτ = F (τ) z, (1)

where the independent variable τ is the longitudinal posi-
tion. As concerning the physical meaning of the variables

z, we do not see any particular reasons to specify it at this
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point, because, first, there is no single commonly accepted

transverse coordinates for description of the beam dynamics

in the linacs and, second, the main object of our study (the

mismatch parameter) is, up to some extend, independent on

the coordinate system choice.

As often, we introduce the Twiss (or Courant-Snyder)

parameters using the second central moments of the particle

distribution and define them as follows

β = 〈x2〉 / ε, α = −〈xq〉 / ε, γ = 〈q2〉 / ε, (2)

where

ε =

√
〈x2〉〈q2〉 − 〈xq〉2 (3)

is the rms emittance. With this definition, the Twiss matrix

Σ =

[
β −α
−α γ

]
, det(Σ) = 1 (4)

satisfies the linear differential equation

dΣ / dτ = JHΣ − ΣH J, (5)

where J is the 2 × 2 symplectic unit matrix and the 2 × 2
symmetric matrix H is defined by the expression

H (τ) = 1
2
tr[F (τ)] J − JF (τ). (6)

The solution of Eq. (5) is given by the formula

Σ(τ) = M (τ) Σ(0) M�(τ), (7)

where the symplectic matrix M satisfies the equation

dM / dτ = JH M, M (0) = I, (8)

and the rms emittance ε evolves according to the rule
ε (τ)
ε (0)

= det [A(τ)] = exp
(∫ τ

0

tr[F (ξ)] dξ
)
, (9)

where A is the fundamental matrix solution of the Eq. (1).

Because the matrices M and A are connected by the relation

M (τ) =
1√

det (A(τ))
· A(τ), (10)

and because for an arbitrary 2 × 2 matrix X
X J X� = X�J X = det(X ) J, (11)

the transport rule (7) can also be written as follows

[Σ(τ)J] = A(τ) [Σ(0)J] A−1(τ). (12)

Alternatively, the matrices M and A can be expressed

using Σ and ε , if they are known, in the familiar forms

M (τ) = T−1(τ) R[μ(τ)]T (0), (13)

A(τ) =
√
ε (τ)/ε (0) · T−1(τ) R[μ(τ)]T (0), (14)

where
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R(ϕ) =
[

cos(ϕ) sin(ϕ)
− sin(ϕ) cos(ϕ)

]
(15)

is a rotation matrix, μ is the horizontal phase advance with

dμ / dτ = h22 / β = f12 / β, (16)

and

T =
[
1/
√
β 0

α/
√
β
√
β

]
, Σ = (T� T )−1. (17)

BETATRON MISMATCH PARAMETER
Let us assume that we have two different Twiss matrices,

Σ1 and Σ2, given at the same position in the linac and let us

define a quantity called the betatron mismatch parameter as

mp = (β1γ2 − 2α1α2 + β2γ1) / 2 ≥ 1. (18)

The importance of this parameter is that it stays unchanged

when both Twiss matrices propagate along the same beam-

line and gives a numerical measure of the amplitude of the

β-beat (i.e. of the ratio β2 / β1). It was introduced as a re-
sult of geometrical observation of the dynamics of the beam

ellipse defined by the matrix Σ2 in the so-called normalized

coordinates connected with the matrix Σ1 [3, 4], and later

on it was shown that the inverse hyperbolic cosine of the

mismatch parameter is a distance function (metric) in the

space of the Twiss parameters [5].

Let us supplement the mismatch parameter mp by the

mismatch phase θ1→2 defined via relations√
m2

p − 1 · sin(2θ1→2) = α2 − α1 (β2 / β1), (19)

√
m2

p − 1 · cos(2θ1→2) = (β2 / β1) − mp . (20)

Then Σ2 can be expressed through Σ1 = (T�
1

T1)−1 as

Σ2 = mp · Σ1 +
√

m2
p − 1 · T−11 RL (θ1→2) T−�1 , (21)

where

RL (ϕ) =
[

cos(2ϕ) − sin(2ϕ)
− sin(2ϕ) − cos(2ϕ)

]
(22)

is matrix of reflection about a line L given by equation

sin(ϕ) x + cos(ϕ) q = 0. (23)

Note that the matrix RL can be represented in the form

RL (ϕ) = R(ϕ) RL (0) R�(ϕ), (24)

where RL (0) is reflection about the x-axis.
Let us assume that the representation (21) was calculated

for τ = 0. Then, using (13) written for Σ = Σ1, one obtains

Σ2(τ) = mp · Σ1(τ)

+

√
m2

p − 1 · T−11 (τ)RL
[
μ1(τ) + θ1→2(0)

]
T−�1 (τ), (25)

which is the matrix form of the well-known rule that the

β-beat oscillates at twice the betatron frequency.
Note, for completeness, that the invariance of mp during

propagation along the linac easily follows from the transport

rules (7) and (12) and the fact that the definition (18) can be

equivalently written in the following forms

mp =
1
2
tr
[
Σ2 Σ

−1
1

]
= − 1

2
tr [Σ2 J Σ1 J] . (26)

Invariance under Linear Change of Variables
Let us introduce new dynamical variables z̃ with the help

of the linear non-autonomous coordinate transformation

z̃(τ) = C(τ) z(τ), det [C(τ)] � 0. (27)

Then the following relations hold

Σ̃(τ) =
1

|det [C(τ)]| · C(τ) Σ(τ) C�(τ), (28)

ε̃ (τ) = |det [C(τ)]| · ε (τ). (29)

One sees that not only the Twiss parameters, but, in general,

the rms emittance also change. Nevertheless, if one calcu-

lates mismatch between the two Twiss matrices in the old

and in the new variables, one obtains that it stays unchanged,

i.e. m̃p (τ) ≡ mp (τ). It means that for the estimation of
the mismatch parameter the choice of the variables does not

play essential role as far as transition between coordinate

systems of interest can be approximated by means of a linear

non-autonomous transformation.

PERTURBATION EXPANSION OF THE
MISMATCH PARAMETER

Let us introduce an artificial small parameter κ so that

the value κ = 0 will indicate the beamline with the perfect

(design) settings of acceleration and focusing, and a nonzero

κ will stand for the motion through the beamline perturbed

by different imperfections. We will characterize the effect

of these imperfections using the value of the mismatch cal-

culated between the two Twiss matrices, one (Σ0) passing

through the ideal beamline and other (Σκ) moving through

the beamline with errors. According to Eqs. (26) and (7)

mp (τ) = − 1
2
tr [Σκ (τ) J Σ0(τ) J]

= 1
2
tr
[
Zκ (τ) Σκ (0) Z�

κ
(τ) Σ0(0)

]
, (30)

where

Zκ (τ) = M�0 (τ) J Mκ (τ) = J M−10 (τ) Mκ (τ), (31)

and, in the next step, we would like to find an analytical

formula for the lowest order terms with respect to κ when

the right hand side of Eq. (30) is expanded in Taylor series.

As it turns out, in order to do this, the knowledge of the

matrices Mκ and Hκ in Eq. (8) up to the second order is

required. So, let us assume that

Hκ =2 H0 + κH̃1 + κ
2H̃2, (32)

where the symbol =2 denotes equality up to second order

(inclusive) with respect to the parameter κ. Applying now

standard technique of the perturbation theory, one obtains

after lengthy but more or less straightforward manipulations

mp (τ) =2 mp (0) [1 + D1(τ)] +
√

m2
p (0) − 1 D2(τ), (33)

which is the desired result. In this formula

D1(τ) = 1
2
κ
2
{
tr2 [Λ1(τ)] − 4 det [Λ1(τ)]

}
, (34)

D2(τ) = κ tr {Λ1(τ)RL [θ0→κ (0) − π/4]}
+ 1

2
κ
2 tr[Λ1(τ)] · tr {Λ1(τ)RL [θ0→κ (0)]}

+κ2 tr {Λ2(τ)RL [θ0→κ (0) − π/4]} , (35)
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and the symmetric matricesΛ1(τ) andΛ2(τ) are to be found
by direct integration of the differential equations

dΛ1 / dτ = F� H̃1 F, Λ1(0) = 0, (36)

dΛ2 / dτ = F� H̃2 F

+ 1
2

[(
dΛ1
dτ

JΛ1

)
+

(
dΛ1
dτ

JΛ1

)�]
, Λ2(0) = 0, (37)

where

F (τ) = T−10 (τ) R[μ0(τ)]. (38)

SENSITIVITY TO ERRORS
The formula (33) contains only the lowest order terms

with respect to κ, but no assumptions about mp (0) were
made during its derivation. It can be arbitrarily large, which

essentially complicates Eq. (33) due to described by the

function D2 possibility for the initial mismatch to interact

with the lattice imperfections. But it makes no sense to

consider arbitrary entrance mismatches in the development

of the some kind of the simplified optics sensitivity criteria,

because the optics of the single pass beamline is by itself

a function of the initial conditions. So let us assume that

either Σκ (0) = Σ0(0), or the mismatch between them is

small. In the latter case two terms of the order κ2 in (35)

can be omitted, but it is not all. Due to the inequality

|tr[Λ1RL (ψ)]|2 ≤ tr2(Λ1) − 4 det(Λ1), ∀ψ, (39)

the remaining in D2 term will be reduced simultaneously

with the minimization of the function D1. It motivates us in

the following to consider only the case when Σκ (0) = Σ0(0)
and, for the mismatch development, to use the formula

mp (τ) ≈ 1 + D1(τ), (40)

where

D1(τ) = 1
2

(∫ τ

0

[
U cos(2μ0) + V sin(2μ0)

]
dξ
)2

+ 1
2

(∫ τ

0

[
U sin(2μ0) − V cos(2μ0)

]
dξ
)2
, (41)

U = β0 h̃11 − 2α0 h̃12 + (α20 − 1) h̃22 / β0, (42)

V = 2
(
α0 h̃22 / β0 − h̃12

)
, (43)

β0, α0, and μ0 are the design Twiss parameters, and we have
hidden the artificial parameter κ into the elements h̃i j of the

matrix Hκ − H0,

Let us turn our attention to the situation when focusing

and acceleration is provided by quadrupoles and rotationally

symmetric cavities, and let us take as variables z the particle
horizontal position and the particle mechanical momentum

scaled with the kinetic momentum p0 of the ideal reference
particle. In these variables the matrix Hκ can be expressed

using the speed of light approximation as follows

Hκ =

⎡⎢⎢⎢⎢⎣
kκ + 1

2p0

d2pκ

dτ2
1
2p0

dp0
dτ

1
2p0

dp0
dτ

p0
pκ

⎤⎥⎥⎥⎥⎦ . (44)

Here kκ = (e / p0) bκ is quadrupole coefficient, bκ is

quadrupole gradient, e is particle charge, and pκ represent-

ing chromatic effects and RF focusing satisfies

dpκ / dτ = (e / c) Eκ [τ / c + tκ (0), τ] , (45)

where c is velocity of light, Eκ = Eκ (t, τ) is on-axis compo-
nent of the longitudinal electric field, and tκ (0) is laboratory
time which particle has at the starting position τ = 0. Be-
cause for the matrix (44) the element h̃12 is equal to zero,
Eq. (41) can be rewritten in the following useful form

D1(τ) = 1
2

(∫ τ

0

[
β0 cos(2μ0) h̃11 − 2dζ0

dξ
h̃22

]
dξ
)2

+ 1
2

(∫ τ

0

[
β0 sin(2μ0) h̃11 − 2dη0

dξ
h̃22

]
dξ
)2
, (46)

where the functions ζ0 and η0 are the apochromaticities [6],

h̃11 = kκ − k0 +
1

2p0

d2(pκ − p0)
dτ2

(47)

contains quadrupole gradient and RF focusing errors, and

h̃22 = −(pκ − p0) / pκ (48)

characterizes influence of chromatic effects. In order to sep-

arate the influence of focusing and chromatic imperfections,

let us estimate the function D1 from above as follows

D1(τ) ≤ D1A(τ) + D1B (τ), (49)

where

D1A=

(∫ τ

0

β0 cos(2μ0) h̃11dξ
)2
+

(∫ τ

0

β0 cos(2μ0) h̃11dξ
)2
,

D1B =

(∫ τ

0

2
dζ0
dξ

h̃22dξ
)2
+

(∫ τ

0

2
dη0
dξ

h̃22dξ
)2
.

Let us further assume that the errors in the focusing are

proportional to the focusing itself, i.e. that

h̃11 =
(
k0 +

1

2p0

d2p0
dτ2

)
· δ̃, (50)

and let us estimate D1A not using the Cauchy-Bunyakovsky

inequality as it was done in [1], but simply as

D1A ≤ 2max
τ
δ̃2 ·
(∫ τ

0

�����k0 +
1

2p0

d2p0
dξ2

����� β0 dξ
)2
. (51)

Then the integral in the parentheses in the right hand side of

(51) can be taken as a rough criteria of the optics sensitivity

to the focusing errors. By analogy, and using that

(dζ0 / dτ)2 + (dη0 / dτ)2 = (γ0 / 2)2 , (52)

one obtains the upper estimate of D1B as follows

D1B ≤ 2max
τ

h̃222 ·
(∫ τ

0

γ0 dξ
)2
, (53)

and, correspondingly, the integral of γ0 (which is equal to
two times the absolute value of the beamline chromaticity)

can be taken as the sensitivity criteria to the chromatic errors.

But it seems that due to relation

γ0 =

(
k0 +

1

2p0

d2p0
dξ2

)
β0 +

dα0
dτ
, (54)

this additional criteria (though important by itself) can be

skipped in the framework of this paper.
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