Paper | Title | Other Keywords | Page |
---|---|---|---|
MOPWA022 | Influence of Transient Beam Loading on the Longitudinal Beam Dynamics at BESSY VSR | synchrotron, damping, simulation, cavity | 141 |
|
|||
BESSY VSR, a scheme where 1.7 ps and 15 ps long bunches (rms) can be stored simultaneously in the BESSY II storage ring has recently been proposed *. The strong longitudinal bunch focusing is achieved by superconducting high gradient RF cavities. If the bunch fill pattern exhibits a significant inhomogeneity, e.g. due to gaps, transient beam loading causes a distortion of the longitudinal phase space which is different for each bunch. The result are variations along the fill pattern in synchronous phase, synchrotron frequency and bunch shape. This paper presents investigations of transient beam loading and depicts the consequences on bunch length, phase stability and longitudinal multi-bunch oscillations for the projected setup of BESSY VSR.
* G. Wüstefeld, A. Jankowiak, J. Knobloch, M. Ries, Simultaneous Long and Short Electron Bunches in the BESSY II Storage Ring, Proceedings of IPAC2011, San Sebastián, Spain |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPWA022 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPMA026 | Proposed Cavity for Reduced Slip-Stacking Loss | cavity, booster, injection, emittance | 600 |
|
|||
This paper employs a novel dynamical mechanism to improve the performance of slip-stacking. Slip-stacking in an accumulation technique used at Fermilab since 2004 which nearly double the proton intensity. During slip-stacking, the Recycler or the Main Injector stores two particles beams that spatially overlap but have different momenta. The two particle beams are longitudinally focused by two 53 MHz 100 kV RF cavities with a small frequency difference between them. We propose an additional 106 MHz 20 kV RF cavity, with a frequency at the double the average of the upper and lower main RF frequencies. In simulation, we find the proposed RF cavity significantly enhances the stable bucket area and reduces slip-stacking losses under reasonable injection scenarios. We quantify and map the stability of the parameter space for any accelerator implementing slip-stacking with the addition of a harmonic RF cavity. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPMA026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA010 | RF Feedback and Detuning Studies for the BESSY Variable Pulse Length Storage Ring Higher Harmonic SC Cavities | cavity, feedback, synchrotron, operation | 798 |
|
|||
For the feasibility of the BESSY VSR upgrade project of BESSY II two higher harmonic systems at a factor of 3 and 3.5 of the ring's RF fundamental of 500 MHz will be installed in the ring. Operating in continuous wave at high average accelerating field of 20 MV/m and phased at zero-crossing, the superconducting cavities have to be detuned within tight margins to ensure stable operation and low power consumption at a loaded Q of 5·107. The field variation of the cavities is mainly driven by the repetitive transient beam-loading of the envisaged complex bunch fill pattern in the ring. Within this work combined LLRF-cavity and longitudinal beam dynamics simulation will demonstrate the limits for stable operation, especially the coupling between synchrotron oscillation and RF feedback settings. Further impact by beam current decay and top-up injection shots are being simulated.
* G. Wüstefeld et al., IPAC 11, San Sebastiàn, Spain, p. 2936. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA010 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPHA056 | Status of LLRF Control System for SuperKEKB Commissioning | controls, cavity, LLRF, klystron | 924 |
|
|||
Beam commissioning of the SuperKEKB will be started in JFY2015. A new LLRF control system, which is an FPGA-based digital RF feedback control system on the MicroTCA platform, has been developed for high current beam operation of the SuperKEKB. The mass production and installation of the new systems has been completed as scheduled. The new LLRF control systems are applied to nine RF stations (klystron driving units) among existing thirty stations. As a new function, klystron phase lock loop was digitally implemented within the cavity FB control loop in the FPGA, and in the high power test it worked successfully to compensate for the klystron phase change. Beam loading was also simulated in the high power test by using an ARES cavity simulator, and then good performance in the cavity-voltage feedback control and the cavity tuning control was demonstrated to compensate the large beam loading for the SuperKEKB parameters. Fabrication of another new LLRF control system for damping ring which is required for low-emittance positron injection is scheduled in JFY2015. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPHA056 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
MOPTY042 | ALBA LLRF Upgrades to Improve Beam Availability | cavity, LLRF, operation, synchrotron | 1022 |
|
|||
ALBA is a 3GeV synchrotron light source located in Barcelona and operating with users since May 2012. The RF system of the SR is composed of six cavities, each one powered by combining the power of two 80 kW IOTs through a Cavity Combiner (CaCo). At present, there are several RF interlocks per week. The redundancy given by the six cavities makes possible the survival of the beam after one of these trips. In these cases, the cavity has to be recovered with the circulating beam. An autorecovery process has been implemented in the digital LLRF system in order to recover the faulty RF plant after a trip. But these trips also create perturbations to the beam stability. In order to minimize the beam perturbations induced by these RF interlock, an additional feed-forward loop is being implemented. The functionally, main parameters and test results of these new algorithms will be presented. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-MOPTY042 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWA017 | An Optimization of ILC Positron Source for Electron-Driven Scheme | positron, electron, target, linac | 2529 |
|
|||
International Linear Collider is a future accelerator to find new physics behind the electroweak symmetry breaking by precise measurements of Higgs sector, Top quark, and so on. ILC has capacities to reveal new phenomena beyond Standard model, such as Supersymmetry particles and dark matters. In current design of positron source, undulator scheme is adapted as a baseline. In the scheme, positrons are generated from gamma rays through pair-creation process in Ti-alloy target. Generations of the gamma rays by the undulator radiation requires more than 130 GeV electrons. Therefore, a system demonstration of the scheme is practically difficult prior to the real construction. Consequently, it is desirable to prepare a technical backup of this undulator scheme. We study an optimization of positron source based on the conventional electron-driven scheme for ILC. In this scheme, positron beam is generated by several GeV electron beam impinging on W-Re target. Although heavy heat load and destruction of the target is a potential problem, it can be relaxed by stretching the effective pulse length to 60 ms instead of 1 ms, by a dedicated electron linac for the positron production. In this report, a start-to-end simulation of the electron-driven ILC positron source is performed. Beam-loading effect caused by multi-bunch acceleration in the standing wave RF cavity is also considered. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA017 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWA026 | Loading of a Plasma-Wakefield Accelerator Section Driven by a Self-Modulated Proton Bunch | plasma, electron, proton, simulation | 2551 |
|
|||
We investigate beam loading of a plasma wake driven by a self-modulated proton beam using particle-in-cell simulations for phase III of the AWAKE project. We address the case of injection after the proton beam has already experienced self-modulation in a previous plasma. Optimal parameters for the injected electron bunch in terms of initial beam energy and beam charge density are investigated and evaluated in terms of witness bunch energy and energy spread. An approximate modulated proton beam is emulated in order to reduce computation time in these simulations. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA026 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPWA048 | Design Studies and Commissioning Plans for PARS Experimental Program | plasma, acceleration, wakefield, electron | 2612 |
|
|||
Funding: Science and Technology Facilities Council and Cockcroft Institute Core Grant PARS (Plasma Acceleration Research Station) is an electron beam driven plasma wakefield acceleration test stand proposed for VELA/CLARA facility in Daresbury Laboratory. In order to optimise various operational configurations, 2D numerical studies were performed by using VSIM for a range of parameters such as bunch length, radius, plasma density and positioning of the bunches with respect to each other for the two-beam acceleration scheme. In this paper, some of these numerical studies and considered measurement methods are presented. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPWA048 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPMA054 | A Disturbance-Observer-based Controller for LLRF Systems | controls, LLRF, cavity, experiment | 2895 |
|
|||
Digital low-level radio frequency (LLRFs) systems have been developed and evaluated in the compact energy recovery linac (cERL) at KEK. The required RF stabilities are 0.1% rms in amplitude and 0.1° rms in phase. These requirements are satisfied by applying digital LLRF systems. To further enhance the control system and make it robust to disturbances such as large power supply (PS) ripples and high-intensity beams, we have designed and developed a disturbance observer (DOB)-based control method. This method utilizes the RF system model, which can be acquired using modern system identification methods. Experiments show that the proposed DOB-based controller is more effective in the presence of high disturbances compared with the conventional proportional and integral (PI) controller. In this paper, we present the preliminary results based on the experiments with DOB-based controller. | |||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPMA054 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
WEPTY044 | Phase Transients in the Higher-Harmonic RF Systems For the ALS-U Proposal | simulation, experiment, impedance, synchrotron | 3372 |
|
|||
Funding: This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National Laboratory under U.S. Department of Energy Contract No. DE-AC02-05CH11231. The ALS upgrade proposal (ALS-U) requires lengthening the bunch by a factor of at least four in order to increase the beam lifetime to acceptable values. Due to the presence of gaps in the fill pattern, required by the injection/extraction kicker system, the beam-induced voltage in the passive, normal-conducting, cavities which we plan to use is not constant over the length of a bunch train. We present our result on the optimal tuning of the harmonic cavities to obtain the best lifetime increase, including the effects of strongly non-gaussian bunch shapes and wakefield distortions of the potential well. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-WEPTY044 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||
THPF140 | Unique Accelerator Integration Features of the Heavy Ion CW Driver Linac at FRIB | linac, proton, solenoid, focusing | 4051 |
|
|||
Funding: Work supported by the U.S. Department of Energy Office of Science under Cooperative Agreement DE-SC0000661 The FRIB driver linac is a front runner for the future high power hadron linacs, making a full use of CW, superconducting acceleration from very low β. Accelerator Driven Nuclear Waste Transmutation System (ADS), International Fusion Material Irradiation Facility (IFMIF), Project-X type proton accelerators for high energy physics and others may utilize the technologies developed for the design, construction, commissioning and power ramp up of the FRIB linac. Although each technology has been already well developed individually (except for charge stripper), their integration is another challenge. In addition, extremely high Bragg peak of uranium beams (several thousand times as high as that of proton beams) gives rise to one of the biggest challenges in many aspects. This report summarizes these challenges and their mitigations, emphasizing the commonly overlooked features. |
|||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2015-THPF140 | ||
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | ||