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Abstract 

The planned luminosity upgrade to LHC is likely to 
necessitate a large crossing angle and a local crab 
crossing scheme. For this scheme crab cavities align 
bunches prior to collision. The scheme requires at least 
four such cavities, a pair on each beam line either side of 
the interaction point (IP). Upstream cavities initiate 
rotation and downstream cavities cancel rotation. 
Cancellation is usually done at a location where the optics 
has re-aligned the bunch. The beam line separation near 
the IP necessitates a more compact design than is possible 
with elliptical cavities such as those used at KEK. The 
reduction in size must be achieved without an increase in 
the operational frequency to maintain compatibility with 
the long bunch length of the LHC. This paper proposes a 
suitable superconducting variant of a four rod coaxial 
deflecting cavity (to be phased as a crab cavity), and 
presents analytical models and simulations of suitable 
designs. 

INTRODUCTON  
R. Palmer [1] first proposed the crab crossing scheme 

in 1988 as an idea to enable effective head-on collisions 
with a crossing angle in linear colliders. This scheme 
utilised transverse deflecting cavities where the cavities 
are phased such that the head and tail of the bunch are 
deflected in opposite directions, causing an effective 
rotation of the bunch. Such cavities are known as crab 
cavities. 

A crab cavity is being proposed for the LHC luminosity 
upgrade in order to allow a larger crossing angle and a 
bunch with a smaller cross section without the loss of 
luminosity. 

For the proposed LHC Phase II upgrade (circa 2017-
2018) a frequency of 400 MHz is preferred due to the 
long bunch length of the proton beam (7.55cm) [2]. 
However due to the size constraints imposed by the 
desired location of the crab cavities a novel compact 
design is required. For the LHC we are constrained both 
in the maximum transverse size of the cavity and the 
minimum beam pipe aperture. The maximum cavity 
radius is limited to 150 mm due to the separation between 
opposing beamlines and the beam pipe radius is limited, 
due to the large transverse size of the LHC bunch, to a 
minimum of 42 mm. As a higher CW voltage is required 
the LHC cavity will have to be superconducting. 

Like coaxial line, parallel bars can support TEM waves 
[4]. This allows the construction of cavities where the 
resonant frequency is independent of the transverse size. 

The bars can either be orientated perpendicular to the 
beam [5] or parallel to it with a gap [6]. 

In order to separate bunches in CEBAF a four rod 
transverse deflecting cavity is utilised [5]. The cavity 
comprises of two parallel bars supporting a TEM mode. 
By placing a gap in the centre of each rod we obtain the 
transverse fields required to produce a kick to the 
bunches. In the CEBAF cavity it was possible to reduce 
the transverse radius of the cavity at 500 MHz to 120 mm 
compared to the 800 mm of an equivalent pillbox cavity 
supporting a TM110 mode.  A compact crab cavity for 
LHC is proposed based on this concept.  

Figure 1 shows the electric fields in the LHC cavity for 
the operating mode. A beam passing through the cavity 
will be defected by both the electric and magnetic fields.  

 
Figure 1: Electric field plot of cavity. 

Previous methods of calculating the length of parallel 
bar cavity for a given frequency [7] did not include the 
capacitance between longitudinally opposing rods hence 
each rod is exactly a quarter wavelength long. The 
accuracy of the calculation can be increased by including 
this capacitance as has been applied to quarter wave 
resonators. 

The length of a quarter wave resonator can be 
calculated by setting the admittance Yaa of the equivalent 
circuit to zero [5]. ௔ܻ௔ ൌ ܥ߱݅ ൅ ଵ௜௓బ ୲ୟ୬ቀమഏഊ ௟ቁ   (1) 

 Where C is the capacitance between the end of the rod 
and the wall, λ is the wavelength ω is the angular 
frequency, Z0 is the characteristic impedance of the line 
and l is the length of the rod. 

By slightly modifying the previous equation by 
including the Capacitance of the gap Cg and re arranging, 
the length of the rods for the cavity can be calculated.   

 ݈ ൌ ఒଶగ tanିଵ ൬ ఒଶగ௖஼೒௓బ൰  (2) 
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