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Abstract 
The proposed U.S. Electron-Ion Collider (EIC) pro-

vides a unique tool to explore the next frontier in Quantum 
Chromodynamics, the dependence of hadron structure on 
the dynamics of gluons and sea quarks. Polarized beams 
are essential to these studies; understanding of the hadron 
structure cannot be achieved without knowledge of the 
spin. The existing EIC concepts utilize both polarized 
electrons and polarized protons/light ion species to probe 
the sea quark and gluon distributions. Polarized deuterons 
provide an especially unique system for study by essen-
tially providing a combination of quark and nuclear phys-
ics. This polarized deuteron source can serve as a polar-
ized deuteron injector for a future EIC. 

INTRODUCTION 
Highly polarized ion sources are essential to the de-

velopment of the next generation high-luminosity high-
polarization colliders. Maximum beam polarization at 
collision is crucial to reduce systematic and statistical 
errors in measurements of spin-dependent effects. Maxi-
mum polarization of the neutral atoms before ionization is 
also desired for polarimeter applications where the polar-
ized atoms serve as a polarized target for recoil measure-
ments [1]. 

TECHNICAL APPROACH 
Background Information 

The proposed U.S. Electron-Ion Collider envisions 
providing polarized light ion species, H-, D-, 3He, 6Li, as 
probes for understanding hadron structure. While polar-
ized H- beams are readily available at RHIC [2] and active 
development of polarized 3He beams is ongoing [3], there 
are currently no operational polarized deuteron sources in 
the United States. Existing polarized deuteron sources are 
typically atomic beam polarized ion sources (ABPIS) 
[4,5,6] that have seen incremental upgrades over their 
multi-decade lifetimes, but still retain legacy components 
that have not been optimized using modern techniques or 
materials. Currently operational ABPIS sources have not 
met the beam pulse structure/intensity requirements that 
have been put forth by the EIC design teams. As an exam-
ple, for the Jefferson Lab Electron-Ion Collider (JLEIC) 
concept, 2 mA/0.5 ms polarized deuteron beams with 
~90% vector nuclear polarization are desired [7]. These 
parameters have not been demonstrated in existing sources 
and, to the best of our knowledge, active development is 
not being pursued for polarized D- from ABPIS sources. 

Laser Photolysis Generation of Polarized Deuterons 
A novel method of polarized deuteron generation [8] has 
recently been demonstrated that provides polarized deu-
teron beam pulses with production rates that are ~104-106 
times higher than the rates achievable in a conventional 
ABPIS. This method involves the UV photodissociation of 
deuterium iodide (DI) gas. The measured nuclear polariza-
tion of the polarized deuteron pulse is ~60%. We plan to 
explore this method of polarized deuterium atom genera-
tion by combining it with novel ionizer components of a 
ABPIS source, creating a novel hybrid ABPIS for high 
intensity, highly polarized deuterium ions. 
UV photodissociation methods for production of polarized 
deuterium ions have gained interest in the nuclear fusion 
community as a means to test the properties of polarized 
fusion [8]. The method produces short bunches (~ns scale) 
of polarized deuterium ions with densities on the order of 
1018 cm-3, several orders of magnitude larger than the 
densities that have been produced in ABPIS sources 
(~1012 cm-3).  

 
Figure 1: Experimental apparatus for laser photolysis 
generation of polarized deuterium ions. 
 
The experimental setup used to demonstrate this method is 
shown in Fig. 1 [9]. The laser photolysis method for polar-
ized deuterium ion production uses one laser pulse to first 
dissociate deuterium iodide (DI) molecules. The laser 
photodissociation results in D and I photofragments that 
are initially electronically polarized; the polarization oscil-
lates between the electron and nuclear spins due to the 
hyperfine interaction, as seen in Fig. 2 [8]. This oscillation 
is terminated by ionizing the photofragments with a sec-
ond laser pulse; proper timing of the second laser pulse 
allows one to terminate the polarization exchange when 
the nuclear polarization is at a maximum.  
An advantage of this method is the ability to produce 
intense pulses of polarized deuterons; one photon in the 
photodissociation pulse produces one polarized deuteron, 
and thus kilowatt-class UV lasers can achieve polarized 
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deuteron production rates on the order of 1021 s-1, several 
orders of magnitude larger than is currently achieved in 
atomic beam source methods [1]. The current method 
produces short bunches of polarized deuterium ions with a 
maximum measured polarization of 60%. These parame-
ters are not compatible with the desired parameters for a 
polarized deuteron injector for a high luminosity collider. 
We propose to evaluate this method for production of 
polarized deuterium atoms only, combining it with aspects 
of an ABPIS device for resonant charge-exchange ioniza-
tion to achieve the ionization process. Because this meth-
od can generate higher densities of polarized deuterium 
atoms, it has the potential to produce more intense pulses 
of polarized deuterium ions than are available from con-
ventional ABPIS devices.  

 
Figure 2: Electronic (dashed blue line) and nuclear (or-
ange solid line) polarization vectors for the polarized deu-
terium ion generated by laser photolysis. 
 
We will study alternative methods for termination of the 
electronic-nuclear polarization oscillation, since the hybrid 
ABPIS envisions utilizing the resonant charge-exchange 
ionization process.  

ABPIS Components 
ABPIS devices have been used for many years as sources 
of polarized H- and D- ions. The source comprises two 
major components: an atomic beam source that produces 
atomic particles and polarizes them, and an ionizer that 
facilitates the resonant charge-exchange reaction between 
the polarized atoms and unpolarized ions. The ionizer 
itself comprises a plasma source for the generation of the 
relevant ion species, and a charge-exchange cell. A sche-
matic of such a source is shown in Fig 3 [10]. For the 
ABPIS production of polarized D-, the charge-exchange 
reaction is: 
 

D 0↑+ H −⇒D−↑+ H 0
 

 
In this case, deuterium atoms are generated in the atomic 
beam source through dissociation of the molecular gas via 
RF discharge 

 

 
Figure 3: Schematic diagram of an ABPIS with resonant 
charge-exchange ionization. The atomic beam source 
components are to the left, and the ionizer components are 
to the right.  
 
  The atoms are then cryogenically cooled and polarized 
through a series of RF transition units before injection into 
one end of the charge-exchange cell. Hydrogen ions are 
injected into the opposite end of the charge-exchange cell 
from the plasma source. The polarized Deuterium atoms 
and unpolarized Hydrogen ions are confined within the 
charge-exchange cell by a solenoid field on the order of 1 
kG. The cross-section for this reaction is 10-14 cm2 at Hy-
drogen ion energies ~10 eV [10]. For this process, the 
efficiency of the conversion from polarized atom to polar-
ized D- is estimated to be on the order of 12% [6]. Each 
major component of an ABPIS device facilitates complex 
physics processes and has several avenues for optimiza-
tion.  
A previous ABPIS for polarized deuteron production [5] 
used an arc-discharge plasma source and cesiated convert-
er stages to enhance the production of unpolarized H- ions. 
We propose to optimize the plasma source design by in-
corporating multi-spherical focusing of the negative ions 
produced by the plasma. We believe that the negative ion 
flux can be enhanced using this method, and the overall 
intensity of the polarized D- beams can be improved in 
this hybrid ABPIS. 
Plasma sources for intense negative ion production rely on 
the efficient conversion of positive plasma ions to nega-
tive ion species on surfaces with reduced work functions 
[11,12]. The emission is enhanced by using cesium to 
lower the work function of the emission surface, a well-
known and often-used technique. Shaping of the emission 
surface into concave spherical surfaces, known as geomet-
rical focusing or self-extraction [13, 12], results in a natu-
ral focusing of the negative ions that increases the nega-
tive ion current density. This has demonstrated an increase 
in negative ion emission even on cesiated surfaces [14]. 
The concept is illustrated in Fig. 4.  
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Figure 4: Cylindrical or spherical shaping of the emitter 
surface geometrically focuses the emitted negative ions. 

  
Figure 5: Surface plasma source-based ionizer for resonant 
charge-exchange ionization of polarized atomic hydrogen 
will extract the polarized D-. 
 
The concave spherical emitter electrodes in the surface 
plasma source can be arranged such that the generated 
negative hydrogen ions are focused onto apertures leading 
away from the discharge, into a charge exchange area. 
We will design and simulate aspects of a surface plasma 
source-based ionizer with multi-spherical focusing of 
negative H- ions. The ionizer combines the surface plasma 
source with a short charge-exchange region into which the 
unpolarized H- ions are injected radially. The polarized 
atomic deuteron beam will be injected into this charge-
exchange region on axis from one end of the region, and 
an extraction grid at the opposite end. The concept is illus-
trated in Fig. 5. 
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