Keyword: extraction
Paper Title Other Keywords Page
TUZO03 New Extraction Design for the JYFL 14 GHz ECRIS simulation, ion, plasma, space-charge 34
 
  • V. Toivanen, T. Kalvas, H. A. Koivisto, J.P.O. Komppula, O.A. Tarvainen
    JYFL, Jyväskylä, Finland
 
  Funding: VT acknowledges the financial support of the Ehrnrooth foundation.
A new extraction system has been designed and constructed for the JYFL 14 GHz ECRIS at the Department of Physics, University of Jyväskylä (JYFL). The goal of the new design is to improve the performance of the ion source and increase the transmission efficiency of the low energy beam transport and the accelerator. The new extraction system is designed to be able to handle higher beam currents, yield better beam quality and offer more tuning flexibility. The design was made with the aid of simulations performed with the IBSimu code. The suitability of the code for this task was verified by simulating the old extraction system and good agreement between simulations and measurements was achieved. The new extraction system has been constructed, installed and tested. The new design, simulations and the first measurement results will be presented.
 
slides icon Slides TUZO03 [4.470 MB]  
 
TUPP03 Integration of a Third Ion Source for Heavy Ion Radiotherapy at HIT ion, ion-source, operation, emittance 46
 
  • T.W. Winkelmann, A.B. Büchel, R. Cee, A. Gaffron, Th. Haberer, J.M. Mosthaf, B. Naas, A. Peters, J. Schreiner
    HIT, Heidelberg, Germany
 
  HIT is the first European hospital based facility for scanned proton and heavy ion radiotherapy. In 2009 the clinical operation started, since then more than 800 patients were treated in the facility. In a 24/7 operation scheme two 14.5 GHz electron cyclotron resonance ion sources are routinely used to produce protons and carbon ions. In the near future a helium beam for regular patient treatment is requested. The modification of the low energy beam transport line (LEBT) for the integration of a third ion source into the production facility was done in winter 2011. For beam quality improvement with a smaller emittance at the same current we designed and tested a new extraction system at the testbench and equipped the source for protons and helium with this optimized system. This paper will present results of the LEBT modification and gives an outlook to further enhancements at the HIT ion source testbench.  
 
TUPP04 Design of a Compact ECR Ion Source for Various Ion Production ion, ion-source, ECR, plasma 49
 
  • M. Muramatsu, S. Hojo, Y. Iwata, K. Katagiri, A. Kitagawa, Y. Sakamoto, S. Sato
    NIRS, Chiba-shi, Japan
  • A.G. Drentje
    KVI, Groningen, The Netherlands
  • T.F. Fujita
    National Institute of Radiological Sciences, Chiba, Japan
 
  Compact ECR ion source with all permanent magnets, so called Kei2, was developed for high energy carbon ion therapy facility at National Institute of Radiological Sciences. Kei2 source was design for production of only carbon ion for medical treatment. A copy of Kei2, so called KeiGM is used for Gunma University. Kei series are optimized for carbon ion production. In order to produce various ion beams for research, we design a new compact ECR ion source, so called Kei3. Kei3 is designed based on previous Kei series. In addition, there are three important points: 1) Movable beam extraction system for various extraction current densities, 2) An evaporator and MIVOC method for production of ions from solid materials and metal, and 3) Biased disk method and double frequency heating method for heavier ions. Same permanent magnets and microwave system will be used for easy maintenance and the cost effectiveness. Design of the Kei3 source will be described in this paper.  
 
TUPP13 Development of Intense Proton ECR Ion Sources at IMP proton, ion, ECR, plasma 64
 
  • Z.M. Zhang, Z.W. Liu, H.Y. Ma, L.T. Sun, Q. Wu, Y. Yang, W.H. Zhang, X.Z. Zhang, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
 
  Since 1997, there have been two ECR ion sources for producing intense proton beam developed at Institute of Modern Physics (IMP). In 1999, a high current 2.45 GHz ECR proton source for Lanzhou university neutron generator, was constructed and tested at IMP. A mixed ion (H1+ + H2+ + H3+) beam current of 110 mA with CW mode was delivered from a single aperture of 6mm diameter with microwave power of 600 W at the extraction voltage of 22 kV. Recently a new pulsed proton source has been designed and built at IMP for the CPHS (Compact Pulse Hadron Source) facility in Tsinghua University. Now this source is under commissioning for 60 mA proton beam with 50 keV energy. The long time running stability and beam emittance have been tested and the results are well up to the requirements of CPHS. In this paper, after a short review of the proton ion source for Lanzhou University, the design and test results of the CPHS proton source as well as the LEBT will be presented. The design of the proton ion source and the LEBT for the Chinese ADS project will also be discussed in the contents.  
 
TUPP18 DECRIS-5 Ion Source for DC-110 Cyclotron Complex Results of the First Tests ion, injection, ion-source, ECRIS 74
 
  • A.A. Efremov, V. Bekhterev, S.L. Bogomolov, Yu.K. Kostyukhov, N. Lebedev, V.N. Loginov, Yu. Yazvitsky
    JINR, Dubna, Moscow Region, Russia
  • V. Mironov
    KVI, Groningen, The Netherlands
 
  The project of the DC-110 cyclotron facility to provide applied research in the nanotechnologies (track pore membranes, surface modification of materials, etc.) has been designed by the Flerov Laboratory of Nuclear Reactions of the Joint Institute for Nuclear Research (Dubna). The facility includes the isochronous cyclotron DC-110 for accelerating the intense Ar, Kr, Xe ion beams with 2.5 MeV/nucleon fixed energy. The cyclotron is equipped with system of axial injection and ECR ion source DECRIS-5, operating at the frequency of 18 GHz. The main parameters of DECRIS-5 ion source and results of the first tests are presented in this report.  
 
WEXO03 Numerical Modeling of Ion Production in ECRIS by using the Particle-in-Cell Method ion, plasma, ECR, ECRIS 82
 
  • V. Mironov, J.P.M. Beijers
    KVI, Groningen, The Netherlands
 
  To better understand the physical processes in ECRIS plasmas, we developed a Particle-in-Cell code that follows the ionization and diffusion dynamics. The basic features of the numerical model are given elsewhere*. An electron temperature of about 1 keV is needed to reproduce the experimentally observed performance of our 14 GHz ECR source. We assume that a pre-sheath is located outside the ECR zone, where the ion acceleration toward the walls occurs. Electric field inside the ECR zone is supposed to be zero. The ion production is modeled assuming the ion confinement by a ponderomotive barrier formed at the boundary of the ECR zone. The barrier height is defined by the RF radiation density at the electron resonance layer and is taken as an adjustable parameter; when the plasma becomes overdense, we set the barrier value to zero. With these assumptions, we are able to reproduce the main features of ECRIS performance, such as the saturation and decrease of highest charge state currents with increasing gas pressure, as well as response to an increase of injected RF power. Afterglow and frequency-tuning effects can be explained by introducing the ponderomotive barrier.
* V. Mironov and J. P. M. Beijers, "Three-dimensional simulations of ion dynamics in the plasma of an electron cyclotron resonance ion source", Phys. Rev. ST Accel. Beams 12, 073501 (2009).
 
slides icon Slides WEXO03 [7.032 MB]  
 
WEXO04 Proton Beams Formation from Dense Plasma of ECR Discharge sustained by 37.5 GHz Gyrotron Radiation ion, plasma, proton, emittance 85
 
  • V. Skalyga, I. Izotov, S. Razin, V. Sidorov, V. Zorin
    IAP/RAS, Nizhny Novgorod, Russia
  • T. Kalvas, H. A. Koivisto, O.A. Tarvainen
    JYFL, Jyväskylä, Finland
 
  Funding: Work was performed in frame of realization of federal targeted program "Scientific and pedagogical labor force for an innovative Russia" for 2009-2013 yy.
Operation of modern high power accelerators often requires production of intense beams of hydrogen ions. Newer facilities aiming at outperforming the previous generation accelerators are usually designed for higher beam currents. Meeting the demand for hydrogen ion beams with higher intensity and low transverse emittance is, therefore, becoming increasingly difficult problem. Present work is devoted to experimental investigation of proton beams production from dense plasma (Ne>1013 cm-3) of ECR discharge sustained by 37.5 GHz, 100 kW gyrotron radiation at SMIS 37 facility at IAP RAS. Different extraction system configurations were used. It was demonstrated that ultra bright proton beam with 4.5 mA current and 0.1 π·mm·mrad normalized emittance (brightness=45 A/(π·mm·mrad)2) can be formed with 1-hole (1 mm in diameter) extraction. For production of high current beams a 13-hole extractor was used. 200 mA and 1.1 π·mm·mrad normalized emittance proton beam was obtained. A possibility of further beam parameters enhancement by developing of extraction system and its power supply is discussed. It was shown that in generated proton beams H2+ component was less than 6%.
 
slides icon Slides WEXO04 [2.512 MB]  
 
WEYO02 Experimental Results: Charge-state and Current-density Distribution at the Plasma Electrode of an ECR Ion Source ion, plasma, ion-source, ECR 101
 
  • L. Panitzsch, T. Peleikis, M. Stalder, R.F. Wimmer-Schweingruber
    IEAP, Kiel, Germany
 
  We have measured the current-density in very close vicinity (15 mm downstream) of the plasma electrode of our hexapole-geometry electron-cyclotron-resonance ion source (ECRIS). For this, we equipped our 3D-movable puller electrode with a customized Faraday Cup (FC) inside. To achieve high spatial resolution we reduced the aperture of the puller electrode to only 0.5 mm. Thus, the source-region of the extracted ion beam is limited to a very small area of the plasma electrode's hole (d = 4 mm). The information about the charge-state distribution and the current density in the plane of the plasma electrode is conserved in the ion beam and was scanned by remotely moving the small-aperture puller electrode (incl. FC) across the aperture of the plasma electrode. From additional m/q- measurements for the different positions we can deduce that different ion charge-states are grouped into bloated triangles of different sizes but with the same orientation in the plane of the plasma electrode with the current density peaking at the centre. This confirms simulations by various groups as well as some emittance measurements, but adds spatial resolution for the different charge-states.  
slides icon Slides WEYO02 [2.298 MB]  
 
WEYO03 Ion Beam Extraction from Magnetized Plasma plasma, ion, electron, ion-source 106
 
  • P. Spädtke, R. Lang, J. Mäder, F. Maimone, J. Roßbach, K. Tinschert
    GSI, Darmstadt, Germany
 
  With increasing the total extracted current for any ion source, the optimisation of the extraction system becomes more important, because of the space charge effect. Several attempts have been made in the past to simulate the extraction from an Electron Cyclotron Resonance Ion Source (ECRIS) in a correct way. Most of these attempts failed, because they were not able to reproduce the experimental results. The best model up to now is given by the following procedure: tracing the magnetic field lines through the extraction aperture, looking where these field lines are coming from; using these coordinates of the magnetic field line as starting points for ions to be extracted; the initial current of each trajectory is determined by theoretical assumptions about the plasma or by a plasma simulation; Child's law is applicable locally only in direction of the magnetic field, if no emission limited flow is present.  
slides icon Slides WEYO03 [16.955 MB]  
 
WEZO01 Status of the SEISM Experiment plasma, injection, resonance, ECR 111
 
  • M. Marie-Jeanne, J. Angot, P. Balint, C. Fourel, J. Giraud, J. Jacob, T. Lamy, L. Latrasse, P. Sortais, T. Thuillier
    LPSC, Grenoble Cedex, France
  • C. Daversin, F. Debray, C. Trophime, S. Veys
    GHMFL, Grenoble, France
  • I. Izotov, V. Skalyga, V. Zorin
    IAP/RAS, Nizhny Novgorod, Russia
 
  Funding: This work has been supported by the EuroMagNET II under the EU contract number 228043 and by the European Commission Framework Programme 7 Design Study: EUROnu, Project Number 212372.
LPSC and LNCMI (Laboratoire National des Champs Magnétiques Intenses) of Grenoble have developed the first and unique magnetic confinement structure in the world that allows a closed 60 GHz ECR zone, using high field magnet technologies. The magnetic structure has been validated for 28 GHz resonance and a closed 1 T iso-B surface was measured. Calculated and measured field maps were carefully compared in order to determine an operation range for 28 GHz plasma tests. A whole test bench, including high pressure water for helix cooling, intense currents (up to 15 kA) for helix powering and a beam line with mass separation is under construction at LNCMI. This contribution presents the status of the experiment, hopefully including the results of the first beam tests scheduled in September. The 350 kW - 60 GHz gyrotron has been built at IAP, the status of its operation will be shown.
 
slides icon Slides WEZO01 [11.245 MB]  
 
WEPP13 Development Update of the LECR4 Ion Source - Dragon at IMP ion, sextupole, ion-source, ECR 133
 
  • W. Lu, B.H. Ma, L.T. Sun, H. Wang, D. Xie, X.Z. Zhang, H.W. Zhao
    IMP, Lanzhou, People's Republic of China
  • L. Ruan, B. Xiong
    IEE, Beijing, People's Republic of China
 
  A new room temperature ECR ion source, LECR4-DRAGON to operate at 18 GHz, is under development for the SSC-LINAC project at IMP. In comparison to other room temperature ECRISs, one unique feature of LECR4-DRAGON is that its plasma chamber is of ID 126 mm that is the biggest chamber for a room temperature ECRIS and the same as the superconducting ECR ion source SECRAL. Because the project funding requests testing a different magnet cooling scheme, solid quadrate copper coils cooled by medium evaporation at about 50oC are to be used to produce a maximum axial magnetic field of about 2.5 T at injection and 1.4 T at the extraction, which are similar to SECRAL operating at 18 GHz. Furthermore, a large bore non-Halbach permanent sextupole with staggered structure has been under fabrication which can produce a radial magnetic field reaching 1.5 T at the plasma chamber wall for operation at 18 GHz. The progress updates and discussions of this new ion source will be presented in this paper.  
 
WEPP16 Experimental Studies on the ALISES Ion Source at CEA Saclay plasma, ion, ion-source, electron 143
 
  • O. Tuske, O. Delferrière, Y. Gauthier, R. Gobin, F. Harrault, J.L. Jannin
    CEA/DSM/IRFU, France
  • S. Nyckees
    CEA/IRFU, Gif-sur-Yvette, France
 
  The ALISES ion source was originally designed to reduce beam emittance at RFQ entrance by shortened the length of the LEBT. A wide opened magnetic coil at ground potential produces the fringe field needed for the ECR heating at 2.45 GHz frequency. The first part describes the commissioning of the source: Penning discharges inside the accelerating column make the high voltage power supply collapse. Experimental tests with kapton films while discharges occur, and simulations with OPERA-3D code have shown great similarities to detect the location of those discharges and allow us to make the ion source work. The second part of this paper will present the result of low intensity light ion beam production versus the plasma chamber length and radius. Those very preliminary tests give us indications to reduce the ion source dimensions.  
poster icon Poster WEPP16 [2.556 MB]  
 
THXO02 Current Developments of the VENUS Ion Source in Research and Operations plasma, ion, cyclotron, ion-source 153
 
  • J.Y. Benitez, K.Y. Franzen, C.M. Lyneis, L. Phair, M.M. Strohmeier
    LBNL, Berkeley, California, USA
  • G. Machicoane
    FRIB, East Lansing, Michigan, USA
  • L.T. Sun
    IMP, Lanzhou, People's Republic of China
 
  The VENUS ion source functions as a research and development tool in the ECR community as well as an injector for LBNL's 88-Inch cyclotron. In order to meet the needs of both the ECR community and users at the 88-Inch cyclotron, technology such as ovens and a sputter probe have been developed for introducing metals into the plasma. Using a modified high temperature oven, VENUS has produced 450 eμA of 238U33+ and 400 eμA of 238U34+, twice the required Uranium beam current needed for FRIB. In addition, after upgrading its high voltage capabilities VENUS produced 11emA of 4He2+, a capability that remains unparalleled by other ECR ion sources. In addition to its recent record high intensities VENUS is also being developed to deliver low intensity, ultra high charge state ions for the cocktails beams, where many species are produced simultaneously for use by the BASE Facility. 124Xe43+ is now in regular production for the 16 MeV/u cocktail, and development of 209Bi56+ for the 10 MeV/u cocktail is in progress and has been accelerated through the 88-Inch cyclotron. This paper presents the latest work towards integrating the VENUS ion source into our research and operational goals.  
slides icon Slides THXO02 [8.391 MB]  
 
THXO03 Recent RIKEN 28 GHz SC-ECRIS Results ion, ion-source, ECRIS, ECR 159
 
  • Y. Higurashi, M. Fujimaki, H. Haba, O. Kamigaito, M. Kidera, M. Komiyama, J. Ohnishi, K. Ozeki
    RIKEN Nishina Center, Wako, Japan
  • T. Aihara, M. Tamura, A. Uchiyama
    SHI Accelerator Service Ltd., Tokyo, Japan
 
  For increasing the beam intensity of highly charged heavy ions at RIKEN RIBF, we constructed new SC-ECR ion source. In the spring of 2011, we injected 28GHz microwave into the ion source and obtained first beam. Since then, we made several test experiments for increasing the beam intensity of highly charged Xe and U ion beam, and produced ~60 eμA of U35+, ~90 eμA of U33+ at the injected RF power of ~2 kW using sputtering method. In case of Xe25+, 250 euA was obtained at RF power of 1.7 kW. Using sputtering method, we produced U35+ ion beam longer than one month for the RIBF experiment without break. In the beginning of 2012, we installed additional GM-JT refrigerator to increase the cooling power at 4.2 K, then the total cooling power became higher than 9 W. Using it, we can use higher than 8 W of cooling power for heat load due to the absorbed X-rays. In this summer, we will install the new plasma chamber made of Al for increasing the cooling power. We will also use high temperature oven to increase the U vapor. In this contribution, we report the recent modification of the ion source and test experiments for production of U and Xe ion beam.  
slides icon Slides THXO03 [49.487 MB]  
 
THYO02 LPSC PHOENIX ECR Charge Breeder Beam Optics and Efficiencies ion, injection, plasma, emittance 167
 
  • J. Angot, T. Lamy, M. Marie-Jeanne, P. Sortais, T. Thuillier
    LPSC, Grenoble Cedex, France
 
  The PHOENIX ECR charge breeder characteristics (efficiency and charge breeding time) were measured at CERN-ISOLDE and LPSC, they were considered as sufficient to allow its setup on various facilities (TRIUMF-Canada/GANIL-SPIRAL2-France/SPIRAL1). The developments performed at the Argonne National Laboratory (USA) have shown that the ECR charge breeder efficiencies could be much higher than the ones obtained with PHOENIX, without major differences between the two devices. We have tried to study the possible reasons of such different results in order to improve the PHOENIX charge breeder characteristics. The transmission value of the n+ beam line has been measured to be as low as 30%. Emittances of the total beam extracted from the source and of some analyzed beams (after the magnetic spectrometer) have been measured and will be presented. Simulations have shown a too low vertical acceptance at the center of the dipole. Simulations and experimental results will be presented to show how an additional Einzel lens inserted just before the dipole have drastically improve the beam transmission. The impact of this new beam transport on efficiency results will be presented.  
slides icon Slides THYO02 [4.337 MB]  
 
FRXA01 High Intensity Beam Production at CEA/Saclay for the IFMIF Project rfq, plasma, emittance, solenoid 182
 
  • R. Gobin, G. Adroit, D. Bogard, N. Chauvin, O. Delferrière, Y. Gauthier, P. Girardot, F. Harrault, J.L. Jannin, D. Loiseau, P. Mattei, A. Roger, F. Senée, O. Tuske
    CEA/DSM/IRFU, France
 
  At CEA/Saclay, IRFU institute is in charge of the design, construction and characterization of the 140 mA continuous deuteron Injector for the IFMIF project. This injector includes the source and the low energy beam line (LEBT) with its own diagnostics. The Electron Cyclotron Resonance (ECR) ion source operates at 2.45 GHz and the 2 m long LEBT is based on 2 solenoids. Krypton gas injection in the beam line is foreseen in order to reach a high level of space charge compensation for the beam matching at the RFQ entrance. During the last months hydrogen beam has been produced in pulsed and continuous mode and the beam diagnostics have been installed and commissioned. Recently a 125 mA-100 keV pulsed deuteron beam has been produced with a 1% duty cycle. In this article, the high intensity proton and deuteron beam characterization will be presented.  
slides icon Slides FRXA01 [9.797 MB]  
 
FRYA02 Status of ECR Ion Sources for Carbon-ion Radiotherapy in Japan ion, ECR, ion-source, operation 200
 
  • A. Kitagawa, M. Muramatsu
    NIRS, Chiba-shi, Japan
  • A.G. Drentje
    KVI, Groningen, The Netherlands
  • T.F. Fujita
    National Institute of Radiological Sciences, Chiba, Japan
  • M. Kanazawa
    SAGA HIMAT, Saga, Japan
  • N. Sasaki, W. Takasugi
    AEC, Chiba, Japan
  • E. Takeshita, S. Yamada
    Gunma University, Heavy-Ion Medical Research Center, Maebashi-Gunma, Japan
 
  Heavy-ion radiotherapy is successfully carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences (NIRS) since 1994. Now three facilities are in operation and two are under construction in Japan. Over 8000 cancer patients have already been treated. 140-400 MeV/u carbon beams were selected for the first clinical trials at HIMAC because carbon is one of the best candidates which gives good localized biological dose distribution for the typical conditions, a depth of 10 - 25 cm and a thickness of several cm. Based on the clinical results, all the patients have been treated by carbon beams at present. The ion source needs to realize a stable carbon beam with the same conditions for daily operation. Since operators are usually not specialists of the ion source, the source should not require complicated manual tuning. In addition, shorter maintenance time and cycle are better for a hospital. ECR ion sources are utilized for such requirements in each facility. We report the recent status of the ECR ion sources at heavy-ion radiotherapy facilities in Japan.  
slides icon Slides FRYA02 [5.652 MB]